JPH03281724A - Production of high strength steel wire for use in sour environment - Google Patents

Production of high strength steel wire for use in sour environment

Info

Publication number
JPH03281724A
JPH03281724A JP8090890A JP8090890A JPH03281724A JP H03281724 A JPH03281724 A JP H03281724A JP 8090890 A JP8090890 A JP 8090890A JP 8090890 A JP8090890 A JP 8090890A JP H03281724 A JPH03281724 A JP H03281724A
Authority
JP
Japan
Prior art keywords
steel wire
steel
high strength
wire
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8090890A
Other languages
Japanese (ja)
Inventor
Yukio Ochiai
落合 征雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8090890A priority Critical patent/JPH03281724A/en
Publication of JPH03281724A publication Critical patent/JPH03281724A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Wire Processing (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high strength steel wire for use in sour environment excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance by successively applying cold working, spheroidizing annealing, stretching, and blueing to a steel having a composition containing specific percentages of C, Si, Mn, P, and S under respectively specified conditions. CONSTITUTION:Patenting treatment is applied to a steel which has a composition consisting of 0.40-0.70% C, 0.10-1% Si, 0.20-1% Mn, <=0.025% P, <=0.010% S, and the balance Fe with inevitable impurities and containing, if necessary 0.008-0.050% Al. Subsequently, this steel is subjected to cold working at 25-75% reduction of area and to spheroidizing annealing at 500-620 deg.C, and, after 0.2-2% tensile strain is applied, blueing treatment is carried out at 250-400 deg.C. By this method, the high strength steel wire usable in a wet hydrogen sulfide environment and having >= about 70kgf/mm<2> tensile strength can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は引張強さ70kgf/nm2以上の高強度鋼線
の製造方法に関し、さらに訂しくはサワー環境(湿潤硫
化水素環境)で使用される高強度鋼線の製造方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a high-strength steel wire having a tensile strength of 70 kgf/nm2 or more, and more particularly for use in a sour environment (wet hydrogen sulfide environment). The present invention relates to a method for manufacturing high-strength steel wire.

〔従来の技術〕[Conventional technology]

従来、たとえば、カス、原油等の高圧流体輸送用フレキ
ンプルパイプの鎧装線などは、C0,2%以下の低炭素
鋼線材を伸線後、異形引抜き、ローラーダイス加工、圧
延等の異形加工により所定の断面形状の異形鋼線(平圧
線や溝形線)とし、そのままないしは500℃未満の低
温焼鈍を行なったのち、非ザワー環境の使用に供せられ
ていた。
Conventionally, for example, armored wires for flexible pull pipes for transporting high-pressure fluids such as waste and crude oil have been produced by drawing low carbon steel wire rods with a carbon content of 0.2% or less and then processing them into irregular shapes such as irregular drawing, roller die processing, and rolling. The steel wires were made into deformed steel wires (flat pressure wires or groove wires) with a predetermined cross-sectional shape, and used as they were or after being annealed at a low temperature of less than 500° C. and then used in a non-sauer environment.

しかし、最近の深井戸化に伴って油井を取り巻く環境か
変化し、原油やガスの輸送環境も厳しくなってきた。す
なわち、硫化水素を伴ったサワー環境か多くなってきた
。このため、異形鋼線に要求される特性の中でも、使用
環境から鋼線中に侵入する水素に対する安定性、すなわ
ち水素誘起割れ(以下、I−I I Cという)および
硫化物応力腐食割れ(以下、SSCという)の発生しな
いことが特に要求されるようになった。ちなみに、HI
 Cは無負荷状態の鋼線に水素か侵入することに伴って
発生する割れであり、一方、SSCは高負荷状態の鋼線
に水素が侵入し、これが原因となって起こる割れである
However, with the recent development of deeper wells, the environment surrounding oil wells has changed, and the environment for transporting crude oil and gas has become harsher. In other words, sour environments with hydrogen sulfide are becoming more common. For this reason, among the properties required for deformed steel wires, stability against hydrogen penetrating into the steel wires from the usage environment, namely hydrogen-induced cracking (hereinafter referred to as I-I IC) and sulfide stress corrosion cracking (hereinafter referred to as I-I IC), are required. , SSC) has become particularly required. By the way, HI
C is a crack that occurs when hydrogen enters a steel wire under no load, while SSC is a crack that occurs when hydrogen enters a steel wire under a high load.

このような動向に対して、本発明者らは、引張強さ50
kgf/mm2以」二の鋼線を対象とj7て二つの技術
を開発(7た。一つはすでに特開平1−279710号
公報に開示されているように、0.40−0.70%の
Cを含む高炭素鋼線祠をパテンティング後、断面減少率
25〜75%の冷間加工を行なったのち、500〜70
0℃で球状化焼鈍する方法である(以下、従来法1とい
う)。他の一つは従来法lで製造された鋼線に0.3〜
5%の引っ張りひずみを付与する方法である(以下、従
来法2という)。
In response to this trend, the present inventors have developed a tensile strength of 50
Two technologies have been developed for steel wires of kgf/mm2 or more. After patenting a high carbon steel wire containing C, cold working with a cross-section reduction rate of 25-75%,
This is a method of spheroidizing annealing at 0°C (hereinafter referred to as conventional method 1). The other one is 0.3~
This method applies a tensile strain of 5% (hereinafter referred to as conventional method 2).

゛従来法lに従って製造された鋼線は耐HIC特性は優
れている。しかし、実際の使用環境においては、鋼線に
は強い引張応力が作用していることから、耐HIC特性
以外に耐SSC特性にも優れていることが重要である。
゛The steel wire manufactured according to the conventional method 1 has excellent HIC resistance properties. However, in actual use environments, steel wires are subjected to strong tensile stress, so it is important that they have excellent SSC resistance as well as HIC resistance.

このような観点にたって従来法lの耐SSC特性を改善
したものが従来法2である。しかし、鋼線をより高負荷
状態で、しかもサワー環境でより安定して使用できるよ
うにするためには、鋼線の強度を高め、かつ耐SSC特
性をさらに向上させる必要かある。
From this viewpoint, Conventional Method 2 improves the SSC resistance characteristics of Conventional Method 1. However, in order to enable the steel wire to be used more stably under higher loads and in sour environments, it is necessary to increase the strength of the steel wire and further improve its SSC resistance.

〔発明か解決j〜ようとする課題〕[Problem to be invented or solved]

本発明の目的は、強度および耐SSC特性か従来法に比
べてより一段と優れたサワー環境用高強度鋼線の製造方
法を提供することにある。
An object of the present invention is to provide a method for manufacturing a high-strength steel wire for use in sour environments, which has even better strength and SSC resistance than conventional methods.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、C:0.40〜0.705%、Si:0.1
〜1%、Mn:0.20〜1%、P : 0.025%
以下、S:0.010%以下を含有し、必要に応じてA
l : 0.008%〜0.050%を含有し、残部が
Peおよび不可避的不純物からなる鋼を、断面減少率2
5〜75%の冷間加工を行なった後500〜620℃で
球状化焼鈍し、その後0.2〜2%の引っ張りひずみを
与えた後、250〜400℃でブルーイングすることを
特徴とするサワー環境用高強度鋼線の製造方法である。
In the present invention, C: 0.40 to 0.705%, Si: 0.1
~1%, Mn: 0.20~1%, P: 0.025%
The following contains S: 0.010% or less, and A as necessary.
l: 0.008% to 0.050%, with the remainder consisting of Pe and unavoidable impurities, with a reduction in area of 2
It is characterized by performing 5-75% cold working, spheroidizing annealing at 500-620°C, then applying 0.2-2% tensile strain, and then bluing at 250-400°C. This is a method for manufacturing high-strength steel wire for sour environments.

〔作 用〕[For production]

以下、本発明について詳細に説明する。 The present invention will be explained in detail below.

Cは、0.40%未満では、球状化焼鈍後、所定の強度
が得られない。また、C0,70%を超えると冷間加工
で強加]二が困難となり、加工中に鋼線中心部に微細ク
ラックが発生して)(I C特性が劣化するため、0.
70%を上限とした。
If C is less than 0.40%, the desired strength cannot be obtained after spheroidizing annealing. In addition, if the CO exceeds 70%, it becomes difficult to strengthen the steel wire by cold working, and micro-cracks occur in the center of the steel wire during processing, resulting in deterioration of the IC properties.
The upper limit was set at 70%.

Siは脱酸剤として最低o、 io%以上必要である。Si is required as a deoxidizing agent in an amount of at least 0% or more.

その量が多くなるに従って強度が向上する。しかし、1
%を超えると脱炭が激しくなり、これか原因となって冷
間加工時に鋼線に割れか多発する。
As the amount increases, the strength improves. However, 1
If it exceeds %, decarburization will be severe, and this may be the cause of frequent cracking of the steel wire during cold working.

Mnは熱間脆性を防止するため0.2%以上必要である
。また、Mnは焼入性を向上させるため、パテンティン
グによって均一 なパーライト組織を得るためにはその
量は多いほど望ましいが、1%を超えると中心偏析に起
因する)−1I Cの発生頻度か高くなるため1%を上
限とする。
0.2% or more of Mn is required to prevent hot brittleness. Furthermore, since Mn improves hardenability, it is desirable to have a large amount of Mn in order to obtain a uniform pearlite structure through patenting, but if it exceeds 1%, it will cause center segregation. The upper limit is set at 1%.

次に、Pは粒界に偏析(7やすいため加工性を低下させ
る。したがって、その量は少ないほうが好ましい。しか
し、連続鋳造で製造する場合、溶製温度を高くするため
復Pが起こるので、上限のみを0.025%に規定した
Next, P tends to segregate (7) at grain boundaries, reducing workability. Therefore, the smaller the amount, the better. However, when manufacturing by continuous casting, re-P occurs due to the high melting temperature. Only the upper limit was defined as 0.025%.

SはPと同様な弊害のほか、耐蝕性の点で少ないはと好
ま(5いが、現在経済的に製造できる0、010%を上
限とした。なお、Sは0.001%までは工業的生産か
十分可能である。
In addition to the same disadvantages as P, it is preferable to use a small amount of S in terms of corrosion resistance (5), but the upper limit was set at 0.010%, which can be produced economically at present. It is quite possible to produce it.

八1は脱酸剤および結晶細粒化元素として必要に応じて
使用する。AI添加の場合、細粒化に必要なAl量の下
限は0.008%である。一方、Alか0.050%を
超えると非金属介在物量が増加するため、表面欠陥起因
の歩留低下を惹起する。
No. 81 is used as a deoxidizing agent and crystal grain refining element as necessary. In the case of adding AI, the lower limit of the amount of Al required for grain refinement is 0.008%. On the other hand, if Al exceeds 0.050%, the amount of nonmetallic inclusions increases, causing a decrease in yield due to surface defects.

上述の各元素のほかに、異形鋼線の肉厚が厚いために焼
入性が不足する場合には0.6%以−FのCrを添加す
ることが有効である。、さらに、0.3%以下のCuお
よび0.02%以下のWは鋼中への水素侵入を抑制する
効果かあるので、必要に応してこれらを添加すれば、よ
り一層耐HI C特性を向上させることができる。
In addition to the above-mentioned elements, it is effective to add 0.6% or more -F of Cr when the hardenability is insufficient due to the thick wall thickness of the deformed steel wire. Furthermore, since Cu of 0.3% or less and W of 0.02% or less have the effect of suppressing hydrogen intrusion into the steel, adding these as necessary will further improve HIC resistance. can be improved.

以上の組成からなる線材を加圧して鋼線とする。A wire rod having the above composition is pressurized to make a steel wire.

本発明で鋼線とは、線材を異形引抜き、ローラーダイス
加工、あるいは圧延等の加工により、断面形状が円また
は異形(矩形や溝形)と(7たものを総称している。ま
た、ここでは球状化焼鈍後の弓張強さが70〜80kg
f/++++++2のものを高強度鋼線と称している。
In the present invention, the steel wire is a general term for wire rods whose cross-sectional shape is round or irregular (rectangular or grooved) by processing such as irregular drawing, roller die processing, or rolling. The bow tensile strength after spheroidizing annealing is 70 to 80 kg.
A wire with f/++++++2 is called a high-strength steel wire.

すなわち、引張強さが70kgf/mm2以トないと苛
酷な使用環境から要求される内圧および外圧に耐えられ
ず、鎧装線としての効果がない。
That is, if the tensile strength is less than 70 kgf/mm2, it will not be able to withstand the internal and external pressures required in harsh usage environments, and will not be effective as an armored wire.

一方、引張強さが80kgf/mm2を超えると、硬度
がHRC22以上となり、SSCが低応力で発生するよ
うになるため、上限を80kgf/+nn+2とした。
On the other hand, when the tensile strength exceeds 80 kgf/mm2, the hardness becomes HRC22 or higher and SSC occurs with low stress, so the upper limit was set to 80 kgf/+nn+2.

次に、本発明にかかわる加工方法に関して説明する。Next, the processing method according to the present invention will be explained.

通常、線材は加工前に熱処理をおこなうが、本発明にお
いてはパテンティング処理を行なう。これにより線材の
組織を均一な微細パーライト組織とし、断面減少率25
〜75%の加工に耐え得る性能を付与する。
Usually, wire rods are heat treated before processing, but in the present invention, a patenting treatment is performed. As a result, the structure of the wire becomes a uniform fine pearlite structure, and the cross-section reduction rate is 25.
Provides performance that can withstand up to 75% processing.

本発明で断面減少率を25〜75%の範囲に限定した理
由は、断面減少率25%未満では、加工後の焼鈍でセメ
ンタイトの球状化が不十分となり、I−1ICが発生し
、断面減少率が75%を超えると例えば平圧線の端面お
よび内部に加工による割れが発生し、特に内部割れはH
I Cを誘発するためである。
The reason why the area reduction rate is limited to a range of 25 to 75% in the present invention is that if the area reduction rate is less than 25%, cementite will not be sufficiently spheroidized during annealing after processing, I-1IC will occur, and the area will decrease. If the ratio exceeds 75%, for example, cracks will occur on the end face and inside of the flat tension wire due to processing, and internal cracks in particular will cause H
This is to induce IC.

なお、本発明の断面減少率は次式で定義する。Note that the cross-sectional reduction rate of the present invention is defined by the following formula.

S :異形加工された鋼線の断面積 So 、素線(線材)の断面積 本発明は、断面減少率25〜75%の冷間加工後、球状
化焼鈍を行ない、加工ひずみを除去するとともに、パー
ライト組織をフェライト(マトリックス)中に微細な球
状化セメンタイトの分散した組織に変える。すなわち、
焼鈍によって得られた球状化セメンタイト組織は、従来
の層状パーライト組織に比べてHIC特性が著しく優れ
ている。鋼中に侵入した水素原子はセメンタイト/フェ
ライト界面に集積し、そこにHICの核を形成するが、
球状化セメンタイトの場合には応力集中が小さいため、
耐HIC特性が優れていると考えられる。
S: Cross-sectional area So of the deformed steel wire, cross-sectional area of the strand (wire rod) In the present invention, after cold working with a cross-section reduction rate of 25 to 75%, spheroidizing annealing is performed to remove processing strain. , changing the pearlite structure to a structure in which fine spheroidized cementite is dispersed in ferrite (matrix). That is,
The spheroidized cementite structure obtained by annealing has significantly better HIC properties than the conventional layered pearlite structure. Hydrogen atoms that penetrate into the steel accumulate at the cementite/ferrite interface and form HIC nuclei there.
In the case of spheroidized cementite, stress concentration is small, so
It is considered that the HIC resistance is excellent.

適正な球状化焼鈍温度範囲を求めるために、鉛パテンテ
イング処理された直径9.5mmの線材(成分を第1表
に示す)を伸線加工および平圧延で平圧線としたのち、
球状化焼鈍を実施した。球状化焼鈍は昇温2時間、保温
4時間の条件で行なった。
In order to find the appropriate spheroidizing annealing temperature range, a lead patented wire rod with a diameter of 9.5 mm (components are shown in Table 1) was drawn and rolled to make it a flat wire.
Spheroidizing annealing was performed. Spheroidizing annealing was performed under the conditions of heating for 2 hours and keeping the temperature for 4 hours.

結果を第1図に示ず。70kgf/inn”以上の引張
強さが得られるのは、CO,42%の鋼線では550℃
以下、またC O,65%では620℃以下である。一
方、引張強さを80kgf/nm”以下に抑えられる球
状化焼鈍温度は、CO,42%では500℃以上、C0
165%では520℃以上必要である。したかって、本
発明の球状化焼SII!温度範囲は500〜620℃と
なる。
The results are not shown in Figure 1. Tensile strength of 70 kgf/inn” or more can be obtained at 550°C with 42% CO steel wire.
Below, the temperature is 620° C. or below when CO is 65%. On the other hand, the spheroidizing annealing temperature that can suppress the tensile strength to 80 kgf/nm or less is 500°C or higher for CO, 42%, CO
At 165%, a temperature of 520°C or higher is required. Therefore, the spheroidized SII of the present invention! The temperature range will be 500-620°C.

第  1  表 本発明は、耐SSC特性を向上させるために、以−1−
の方法で製造した球状化焼鈍鋼線にさらに0.2〜2%
の引っ張りひずみを付与した後、250〜400℃でブ
ルーイングする。
Table 1 In order to improve the SSC resistance characteristics, the present invention has the following features.
Addition of 0.2 to 2% to the spheroidized annealed steel wire produced by the method of
After applying a tensile strain of , bluing is performed at 250 to 400°C.

SSCの原因は、サワー環境から鋼材中に侵入した水素
が、負荷応力により生じた微小降伏領域に拡散してそこ
に凝集する結果、降伏現象が加達されてマイクロクラッ
クが生じるためと考えられる。従って、耐SSC特性を
向上させるためには、マクロ的な降伏現象がはじまる前
の局部的な微小降伏現象を阻止することが重要である。
The cause of SSC is thought to be that hydrogen that has entered the steel material from the sour environment diffuses into the micro-yield region caused by the applied stress and aggregates there, resulting in a yield phenomenon and the generation of micro-cracks. Therefore, in order to improve the SSC resistance characteristics, it is important to prevent the local minute breakdown phenomenon before the macroscopic breakdown phenomenon begins.

すなわち、鋼Hの降伏強度を高めることが効果を発揮す
る。
That is, increasing the yield strength of steel H is effective.

しかし、一般的には、降伏強度を高めることにより引張
強さは増加する。引張強さの増加は、前述したようにS
SC発生の危険性を高めるため、好ましいことではない
However, in general, increasing yield strength increases tensile strength. As mentioned above, the increase in tensile strength is due to S
This is not desirable because it increases the risk of SC occurrence.

本発明者は、降伏強度を高めるが引張強さやほかの機械
的性質に与える影響の少ない加工方法を研究し、その結
果、球状化焼鈍後の鋼線にわずかな引っ張りひずみを与
え(以下、ストレッチングという)だ後、さらに250
〜400℃でブルーインクすることにより目標とする高
い降伏強度が得られ、その結果耐SSC特性か大幅に向
上するという、従来なかった新しい知見を得た。ストレ
ッチングにおける引っ張りひずみは、0,2%未満では
SSC改善効果が不十分である。引っ張りひずみの増加
に伴って降伏強度は上がり、それに伴ってSSC発生下
限応力も上昇する。しかし、本発明法のようにブルーイ
ングを行なう場合には、2%を超えるとHI Cが発生
し、SSC発生下限応力も低下傾向を示すため2%を」
二限とする。
The present inventor researched a processing method that increases the yield strength but has little effect on the tensile strength and other mechanical properties, and as a result, a slight tensile strain (hereinafter referred to as "stretch") is applied to the steel wire after spheroidizing annealing. After that, another 250
By applying blue ink at ~400°C, the target high yield strength can be obtained, and as a result, the SSC resistance properties are significantly improved, which is a new finding that was not previously available. When the tensile strain during stretching is less than 0.2%, the SSC improvement effect is insufficient. As the tensile strain increases, the yield strength increases, and the lower limit stress for SSC generation also increases accordingly. However, when performing bluing as in the method of the present invention, HIC will occur if it exceeds 2%, and the lower limit stress for SSC generation also tends to decrease, so 2% is recommended.
Limited to two.

ブルーイング温度に関(では、250℃未満では1−(
I Cが発生し、またSSC発生下限応力も低い。
Regarding the bluing temperature (1-( below 250℃)
IC occurs, and the lower limit stress for SSC generation is also low.

一方、400℃を超えると降伏強度が低下するため、耐
SSC特性は著しく低下する。以上の理由により、ブル
ーイング温度は250〜400℃とする。
On the other hand, if the temperature exceeds 400° C., the yield strength decreases, so the SSC resistance properties decrease significantly. For the above reasons, the bluing temperature is set at 250 to 400°C.

ストレッチング装置は、長尺のコイル状鋼線を連続的に
処理できるものでなければならない。この意味からは、
鋼線を供給する側のプーリの回転速度に対し、鋼線を巻
き取る側のプーリの回転速度を少し速くすることにより
鋼線に一定のひずみを与えるような機構を備えた装置が
望ましい。また、ブルーイング設備としては通電加熱な
いしは誘導加熱装置を備えた連続炉が望ましいが、大気
炉でも目的を達することができる。
The stretching device must be capable of continuously processing long lengths of coiled steel wire. From this meaning,
It is desirable to have a device that has a mechanism that applies a certain strain to the steel wire by making the rotation speed of the pulley on the side that winds the steel wire a little faster than the rotation speed of the pulley on the side that supplies the steel wire. Further, as the bluing equipment, a continuous furnace equipped with an electrical heating or induction heating device is preferable, but an atmospheric furnace can also achieve the purpose.

〔実施例〕 鉛パテンテイングによって微細なパーライト組織にされ
た直径9.5mmの線材を伸線加工により直径5 mm
の鋼線とし、ついで平圧延にて厚み0.9〜2.85i
n+の平線とした。これを球状化焼鈍したのち、上述し
たような機構を備えたストレッチング装置を用いて鋼線
に引っ張りひずみをあたえた後、引き続き連続ブルーイ
ング処理を行なった。
[Example] A wire rod with a diameter of 9.5 mm made into a fine pearlite structure by lead patenting is made into a diameter of 5 mm by wire drawing.
steel wire, and then flat rolled to a thickness of 0.9 to 2.85i.
It was set as an n+ flat line. After this was annealed to form a spheroid, a tensile strain was applied to the steel wire using a stretching device equipped with the mechanism described above, and then continuous bluing treatment was performed.

HIC特性は、上述の平線を長さ 100 ff1mに
切断し、5%NaC1−0,5%CH,C00H−H,
S飽和溶液に25℃で96時間浸漬後、3箇所研磨し、
ミクロクラックの有無を光学顕微鏡で観察して評価した
The HIC characteristics were obtained by cutting the above-mentioned flat wire into a length of 100 ff1m, 5% NaCl-0, 5% CH, C00H-H,
After immersing in S saturated solution at 25°C for 96 hours, three points were polished.
The presence or absence of microcracks was evaluated by observing with an optical microscope.

SSC特性は、上述の平線をそのままの状態で試験片と
し、両端をつかんで実際の降伏強度の80〜110%の
引張応力を与え、試験片の中央部200闘をサワー環境
、すなわち上述のHIC試験と同じ組成の溶液中に浸漬
し、溶液の温度は25℃とし、このような状態で720
時間の負荷試験を実施し、破断の生じない最大応力、す
なわちSSC発生下限応力を測定して評価した。
The SSC characteristics are determined by using the above-mentioned flat wire as a test piece, grasping both ends and applying a tensile stress of 80 to 110% of the actual yield strength, and placing the central part of the test piece 200 mm in a sour environment, that is, in the sour environment, i.e. It was immersed in a solution with the same composition as the HIC test, and the temperature of the solution was 25°C.
A time load test was carried out to measure and evaluate the maximum stress at which no breakage occurred, that is, the lower limit stress for SSC occurrence.

使用した鋼線の化学成分、冷間加工、焼鈍温度、ストレ
ッチングひずみ、ブルーイング条件などの製造条件なら
びに製品の機械的性質、耐サワー特性を第2表に示す。
Table 2 shows the chemical composition of the steel wire used, manufacturing conditions such as cold working, annealing temperature, stretching strain, and bluing conditions, as well as the mechanical properties and sour resistance properties of the product.

No、 1〜4、Nα10および11. No、18〜
21、No24〜27は本発明法と二つの従来法の比較
を行なったもので、同一製造工程で焼鈍鋼線を製造した
のち、本発明法では0.8〜2.0%の引っ張りひずみ
を付与した後、330〜360℃で約4分間誘導加熱す
る方法でブルーイングを行なった。本発明法で製造され
た鋼線はいずれも引張強さが70kgf/mm2以上有
り、従来法で製造された鋼線に比べ降伏強度が高い。
No, 1-4, Nα10 and 11. No, 18~
21, Nos. 24 to 27 are comparisons between the method of the present invention and two conventional methods. After producing annealed steel wire in the same manufacturing process, the method of the present invention produced a tensile strain of 0.8 to 2.0%. After the application, bluing was performed by induction heating at 330 to 360° C. for about 4 minutes. All of the steel wires manufactured by the method of the present invention have a tensile strength of 70 kgf/mm2 or more, and have a higher yield strength than steel wires manufactured by the conventional method.

また、SSC発生下限応力は67kgf/mm+2以]
二と、従来法のいずれにおいても達成できなかった高い
レベルに達している。
In addition, the lower limit stress for SSC occurrence is 67 kgf/mm+2 or less]
Second, it has reached a high level that could not be achieved by any of the conventional methods.

Nα5〜9はストレッチング時の引っ張りひずみか°、
またNo、13〜I7はストレッチング後のブルーイン
グ温度が異形線の特性におよぼす影響を調べたものであ
る。適切なひずみを付与し、さらにブルーイングを施す
ことにより、HICの発生がなく、かつSSC発生下限
応力が67kgf/am2以−Lある耐サワー特性に優
れた異形線を製造できた。
Nα5~9 is the tensile strain during stretching °,
Moreover, No. 13 to I7 are those in which the influence of the bluing temperature after stretching on the characteristics of the irregularly shaped wire was investigated. By imparting appropriate strain and further bluing, it was possible to produce a deformed wire with excellent sour resistance properties, which did not cause HIC and had a lower limit stress for SSC generation of 67 kgf/am2-L or more.

〔発明の効果〕〔Effect of the invention〕

以」−に説明したように、本発明法によれば、70kg
f/mm”以上の引張強さを有し、耐HIC特性ならひ
に耐SSC特性か格段に改善されたサワー環境用高強度
鋼線を製造することが可能である。
As explained below, according to the method of the present invention, 70 kg
It is possible to produce a high-strength steel wire for use in sour environments that has a tensile strength of f/mm'' or more and has significantly improved HIC resistance and SSC resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼鈍温度と引張強さの関係を示す図である。 FIG. 1 is a diagram showing the relationship between annealing temperature and tensile strength.

Claims (1)

【特許請求の範囲】[Claims] (1)C:0.40〜0.70%、Si:0.10〜1
%、Mn:0.20〜1%、P:0.025%以下、S
:0.010%以下を含有し、必要に応じてAl:0.
008〜0.050%を含有し、残部がFeおよび不可
避的不純物からなる鋼を、断面減少率25〜75%の冷
間加工を行なった後500〜620℃で球状化焼鈍し、
その後0.2〜2%の引っ張りひずみを与えた後、25
0〜400℃でブルーイングすることを特徴とするサワ
ー環境用高強度鋼線の製造方法。
(1) C: 0.40-0.70%, Si: 0.10-1
%, Mn: 0.20-1%, P: 0.025% or less, S
:0.010% or less, and if necessary, Al:0.010% or less.
A steel containing 008 to 0.050% with the remainder consisting of Fe and unavoidable impurities is subjected to cold working with an area reduction rate of 25 to 75%, and then spheroidizing annealed at 500 to 620 ° C.
After that, after applying a tensile strain of 0.2 to 2%, 25
A method for producing a high-strength steel wire for sour environments, which comprises bluing at 0 to 400°C.
JP8090890A 1990-03-30 1990-03-30 Production of high strength steel wire for use in sour environment Pending JPH03281724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8090890A JPH03281724A (en) 1990-03-30 1990-03-30 Production of high strength steel wire for use in sour environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8090890A JPH03281724A (en) 1990-03-30 1990-03-30 Production of high strength steel wire for use in sour environment

Publications (1)

Publication Number Publication Date
JPH03281724A true JPH03281724A (en) 1991-12-12

Family

ID=13731481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8090890A Pending JPH03281724A (en) 1990-03-30 1990-03-30 Production of high strength steel wire for use in sour environment

Country Status (1)

Country Link
JP (1) JPH03281724A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2731371A1 (en) * 1995-03-10 1996-09-13 Inst Francais Du Petrole METHOD FOR MANUFACTURING STEEL WIRE - SHAPE WIRE AND APPLICATION TO A FLEXIBLE PIPE
WO1998010113A1 (en) * 1996-09-09 1998-03-12 Institut Français Du Petrole Method for manufacturing self-hardening steel wire, reinforcing wire and application to a flexible duct
EP3674425A1 (en) * 2018-12-31 2020-07-01 GE Oil & Gas UK Limited Steel wire

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2731371A1 (en) * 1995-03-10 1996-09-13 Inst Francais Du Petrole METHOD FOR MANUFACTURING STEEL WIRE - SHAPE WIRE AND APPLICATION TO A FLEXIBLE PIPE
WO1996028575A1 (en) * 1995-03-10 1996-09-19 Institut Francais Du Petrole Method for making steel wires and shaped wires, and use thereof in flexible ducts
WO1998010113A1 (en) * 1996-09-09 1998-03-12 Institut Français Du Petrole Method for manufacturing self-hardening steel wire, reinforcing wire and application to a flexible duct
FR2753206A1 (en) * 1996-09-09 1998-03-13 Inst Francais Du Petrole PROCESS FOR MANUFACTURING SELF-PRIMING STEEL YARNS, SHAPE YARNS AND APPLICATION TO A FLEXIBLE PIPE
EP3674425A1 (en) * 2018-12-31 2020-07-01 GE Oil & Gas UK Limited Steel wire
WO2020141067A1 (en) * 2018-12-31 2020-07-09 Ge Oil & Gas Uk Limited Steel wire
CN113330124A (en) * 2018-12-31 2021-08-31 贝克休斯能源科技英国有限公司 Steel wire

Similar Documents

Publication Publication Date Title
JP5387799B1 (en) Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking
AU736258B2 (en) Steel wire rod and process for producing steel for steel wire rod
JPH0730394B2 (en) Method for manufacturing steel wire
JP2004091912A (en) Steel wire rod, production method therefor and production method for steel wire using the steel wire rod
WO2016002413A1 (en) Wire material for steel wire, and steel wire
JPH01279732A (en) High-strength steel wire excellent in hydrogen-induced cracking resistance
JP4980172B2 (en) Manufacturing method of high-strength ultrafine steel wire with excellent balance of strength and ductility
US10487373B2 (en) Steel pipe for line pipe and method of manufacturing the same
JP2840977B2 (en) Manufacturing method of high strength steel wire for sour environment
JP3733229B2 (en) Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance
JPH03274227A (en) Production of high strength steel wire for use in sour environment
JPH03281724A (en) Production of high strength steel wire for use in sour environment
JPH0583611B2 (en)
JP2004011002A (en) Element wire for drawing and wire
JPH03281725A (en) Production of high strength steel wire for use in sour environment
JP2016204699A (en) Case hardened steel for cold forging pulley excellent in fatigue peeling property and manufacturing method of pulley using the same
JP2004300481A (en) Steel wire for spring having excellent settling resistance and crack resistance
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
WO2016002414A1 (en) Wire material for steel wire, and steel wire
JPH0949018A (en) Production of steel wire for reinforcing rubber
JP2005163082A (en) High carbon steel wire rod having excellent longitudinal crack resistance
KR20160077418A (en) Hot rolled steel plate having excellent pipe expansibility and method for manufacturing the same
JPH04346618A (en) Drawn steel wire rod
KR100345704B1 (en) A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC
WO2017170515A1 (en) Steel wire