JPH0328133A - Production of colored quartz glass - Google Patents

Production of colored quartz glass

Info

Publication number
JPH0328133A
JPH0328133A JP16106389A JP16106389A JPH0328133A JP H0328133 A JPH0328133 A JP H0328133A JP 16106389 A JP16106389 A JP 16106389A JP 16106389 A JP16106389 A JP 16106389A JP H0328133 A JPH0328133 A JP H0328133A
Authority
JP
Japan
Prior art keywords
silicate
solution
transition metal
methyl
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16106389A
Other languages
Japanese (ja)
Inventor
Kazuo Shingyouchi
新行内 和夫
Shiro Konishi
小西 史郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP16106389A priority Critical patent/JPH0328133A/en
Publication of JPH0328133A publication Critical patent/JPH0328133A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/3423Cerium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/3435Neodymium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/26Wet processes, e.g. sol-gel process using alkoxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To enable inexpensive production of colored glass bodies of a large size without foaming or cracking in the production by adding transition metal salts to a methyl silicate or methyl silicate solution in an alcohol to effect hydrolysis and glassifying the porous gel with heat. CONSTITUTION:A solution of methyl silicate or ethyl silicate in an alcohol is combined with a nitrate, chloride or alkoxide of transition metals and an aqueous alkali of 10 to 11pH is admixed thereto under violent agitation. Then the porous gel formed by hydrolysis is glassified with high temperature heat. The aqueous alkali is preferably aqueous ammonia. The transition metal is, for example, copper, cobalt, nickel, manganese, vanadium, tungsten, molybdenum, neodymium, cerium or the like. The amount of the metal salts depends on the color concentration, but usually about 0.002 to 0.20mol per mole of methyl or ethyl silicate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱性、耐薬品性のすぐれた着色石英ガラスの
製造方法、特に大型の着色石英ガラス体を製造するに適
した方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing colored quartz glass having excellent heat resistance and chemical resistance, and particularly to a method suitable for producing large-sized colored quartz glass bodies.

〔従来の技術〕[Conventional technology]

着色石英ガラスの製造方法として、従来、米国コーニン
グ社の開発した、気相中で四塩化珪素を酸素で分解して
多孔質シリカを作り.これに遷移金属塩の溶液を含浸さ
せ、高温で焼或する方法があって、米国窯業協会誌,第
57巻.第309〜313ページに記載されている。
The conventional method for manufacturing colored quartz glass was developed by Corning Corporation in the United States, in which silicon tetrachloride is decomposed with oxygen in the gas phase to create porous silica. There is a method of impregnating this with a solution of a transition metal salt and firing it at high temperature, as described in Journal of the American Ceramics Association, Vol. 57. It is described on pages 309-313.

また珪酸エチル、エタノール、水の混合液に、遷移金属
塩を溶解し(遷移金属はイオン状態となる)、液のpH
を3ないし6として加水分解し、ゲル化させた後、高温
に加熱しガラス化させる方法があり、特開昭57−11
845に記載されている。
In addition, a transition metal salt is dissolved in a mixture of ethyl silicate, ethanol, and water (the transition metal is in an ionic state), and the pH of the solution is
There is a method of hydrolyzing 3 to 6, gelling it, and then heating it to a high temperature to vitrify it.
845.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし上記のコーニング社開発の方法は、気相反応を必
要とし、一定量を製造するのに多くの時間を要するので
、原価が高くなる。
However, the method developed by Corning Inc. requires a gas phase reaction and takes a long time to produce a certain amount, resulting in high cost.

一方、特開昭57−11845の方法は液相での反応を
用いているが、酸性媒体中での加水分解のため、得られ
るゲルを高温で加熱処理する際に発泡や割れが起こり易
く、大型の着色ガラス体を作ることが困難であった。
On the other hand, the method of JP-A-57-11845 uses reaction in a liquid phase, but because of hydrolysis in an acidic medium, foaming and cracking are likely to occur when the resulting gel is heated at high temperatures. It was difficult to make large colored glass bodies.

それ故、本発明の目的は、液相での反応を利用して、安
い原価で、製造時の発泡や割れを生ずることなく大型の
着色ガラス体を作ることが可能な、着色石英ガラスの製
造方法を提供することである。
Therefore, an object of the present invention is to produce colored quartz glass, which can produce large colored glass bodies at low cost and without foaming or cracking during production, by utilizing reactions in the liquid phase. The purpose is to provide a method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を解決するため、本発明では着色石英ガラスの
製造方法を、珪酸メチルまたは珪酸エチルのエタノール
溶液に遷移金属の硝酸塩、塩酸塩またはアルコキシドを
添加し、激しく撹拌しながら、pH10ないし11に調
整されたアンモニア水等のアルカリ水溶液を添加し、加
水分解して得られる多孔質のゲルを高温に加熱し、ガラ
ス化させる工程から構成した。
In order to solve the above object, the present invention provides a method for producing colored quartz glass by adding a transition metal nitrate, hydrochloride, or alkoxide to an ethanol solution of methyl silicate or ethyl silicate, and adjusting the pH to 10 to 11 while stirring vigorously. The process consisted of adding an alkaline aqueous solution such as aqueous ammonia, and heating the porous gel obtained by hydrolysis to a high temperature to vitrify it.

本発明の着色石英ガラスの製造方法は以下の各過程から
或る。
The method for producing colored quartz glass of the present invention includes the following steps.

(1)珪酸メチルまたは珪酸エチルのアルコール溶液に
遷移金属の硝酸塩、塩酸塩またはアルコキシドを添加す
る過程 珪酸メチルまたは珪酸エチルのアルコール溶液を調製す
るためのアルコールとしてはメチルアルコール、エチル
アルコール、n−プロビルアルコール、イソプロビルア
ルコール等を用いることができるが、エチルアルコール
が好ましい。
(1) Process of adding transition metal nitrate, hydrochloride, or alkoxide to an alcoholic solution of methyl silicate or ethyl silicate. Alcohols for preparing an alcoholic solution of methyl silicate or ethyl silicate include methyl alcohol, ethyl alcohol, n-propylene Viru alcohol, isopropyl alcohol, etc. can be used, but ethyl alcohol is preferred.

溶液の濃度は、珪酸メチルまたは珪酸エチル1モルに対
し、アルコールを2ないし6モル程度とする。
The concentration of the solution is approximately 2 to 6 moles of alcohol per 1 mole of methyl silicate or ethyl silicate.

遷移金属として銅、チタン、鉄、コバルト、ニッケル、
マンガン、バナジウム、タングステン、モリブデン、ネ
オジム、セリウム等を用いることができる。遷移金属の
硝酸塩の具体例は硝酸銅、硝酸ニッケル、硝酸コバルト
、硝酸マンガン.硝酸ネオジム、硝酸セリウム等である
。また遷移金属塩酸塩の具体例は塩化銅、塩化チタン、
塩化鉄、塩化コバルト、塩化ニッケル、塩化マンガン、
塩化バナジウム、塩化モリブデン、塩化タングステン、
塩化ネオジム、塩化セリウム等である。
Copper, titanium, iron, cobalt, nickel, as transition metals
Manganese, vanadium, tungsten, molybdenum, neodymium, cerium, etc. can be used. Specific examples of transition metal nitrates include copper nitrate, nickel nitrate, cobalt nitrate, and manganese nitrate. These include neodymium nitrate and cerium nitrate. Specific examples of transition metal hydrochlorides include copper chloride, titanium chloride,
Iron chloride, cobalt chloride, nickel chloride, manganese chloride,
Vanadium chloride, molybdenum chloride, tungsten chloride,
These include neodymium chloride and cerium chloride.

遷移金属アルコキシドの具体例は鉄トリーnーブトキシ
ド、コバルトジイソプロボキシド、バナジウムトリーn
−ブトキシド、、タングステンベンタエトキシド、モリ
ブデンペンタエトキシド、セリウムテトラーt−ブトキ
シドである。
Specific examples of transition metal alkoxides include iron tri-butoxide, cobalt diisoproboxide, and vanadium tri-butoxide.
-butoxide, tungsten pentaethoxide, molybdenum pentaethoxide, and cerium tetrat-butoxide.

遷移金属硝酸塩、塩酸塩またはアルコキシドの添加量は
、希望する着色濃度に依存するが、珪酸メチルまたは珪
酸エチル1モルに対し通常、1000分の2ないし20
モル程度である。
The amount of transition metal nitrate, hydrochloride or alkoxide added depends on the desired coloring density, but is usually 2/1000 to 20% per mole of methyl silicate or ethyl silicate.
It is on the order of moles.

添加中および添加後は、硝酸塩、塩酸塩またはアルコキ
シドを充分に分散または溶解させるため、よく撹拌する
ことが望ましい。
During and after the addition, it is desirable to stir well in order to sufficiently disperse or dissolve the nitrate, hydrochloride, or alkoxide.

添加された遷移金属硝酸塩または塩酸塩は、珪酸メチル
または珪酸エチルのアルコール溶液中に溶解はせず、分
散するだけであって、次の加水分解の過程で溶解される
The added transition metal nitrate or hydrochloride is not dissolved in the alcohol solution of methyl silicate or ethyl silicate, but only dispersed, and is dissolved in the subsequent hydrolysis process.

(2)pH10ないしl1のアルカリ水溶液を加えて加
水分解により多孔質のゲルを得る過程:上記(1)で得
られた遷移金属硝酸塩、塩酸塩またはアルコキシドを含
む珪酸メチルまたは珪酸エチルのアルコール溶液に、激
しく撹拌しながら、pH10ないし1lのアルカリ水溶
液を加えて、珪酸メチルまたは珪酸エチルを加水分解さ
せる。
(2) A process of adding an alkaline aqueous solution with a pH of 10 to 11 to obtain a porous gel by hydrolysis: to the alcohol solution of methyl silicate or ethyl silicate containing the transition metal nitrate, hydrochloride, or alkoxide obtained in (1) above. Then, while vigorously stirring, an aqueous alkali solution having a pH of 10 to 1 liter is added to hydrolyze the methyl silicate or ethyl silicate.

pH10ないしI1のアルカリ水溶液は、緩衝能力を有
することが好ましく、アンモニア水がこの目的に適する
。pHをこの範囲に保つことは重要で、これより低いp
Hにすると乾燥後のゲルのかさ密度が大きくなり、焼結
の過程で発泡や割れを生じ、これより高いpHではゲル
化が速すぎ、作業が困難になる。
The alkaline aqueous solution having a pH of 10 to 11 preferably has a buffering capacity, and aqueous ammonia is suitable for this purpose. It is important to keep the pH within this range; lower p
If the pH is higher than this, the bulk density of the gel after drying will increase, causing foaming or cracking during the sintering process, and if the pH is higher than this, gelation will be too rapid and the work will be difficult.

アルカリ水溶液、例えばアンモニア水の量は、珪酸メチ
ルまたは珪酸エチル溶液のアルコール1モルに対し0.
5ないし2モル程度が適当である。
The amount of alkaline aqueous solution, such as aqueous ammonia, is 0.0% per mole of alcohol in the methyl silicate or ethyl silicate solution.
Approximately 5 to 2 moles are appropriate.

アルカリ水溶液、例えばアンモニア水は、珪酸メチルま
たは珪酸エチル溶液を激しく撹拌しながら、その中にゆ
っくり加えることが望ましい。
It is desirable to slowly add an alkaline aqueous solution, such as aqueous ammonia, to the methyl silicate or ethyl silicate solution while stirring the solution vigorously.

アルカリを添加後の溶液は適当な容器中で室温で放置す
れば,ゲル化する。
After adding the alkali, the solution will gel if left in a suitable container at room temperature.

(3)多孔質のゲルを高温に加熱しガラス化させる過程
: 上記(2)の過程で得られたウェットゲルを徐々に乾燥
させ、その後さらに1200゜C付近まで加熱して焼結
し、ガラス化させる。
(3) Process of heating porous gel to high temperature and vitrifying it: The wet gel obtained in the process of (2) above is gradually dried, and then further heated to around 1200°C to sinter and form glass. to become

添加された遷移金属塩の種類により得られたガラスの色
は、添加された遷移金属塩の種類により異なる。例えば
硝酸ネオジムや塩化銅を用いれば淡青色に、バナジウム
アルコキシドを用いれば黄色が得られる。
The color of the resulting glass varies depending on the type of transition metal salt added. For example, if neodymium nitrate or copper chloride is used, a pale blue color will be obtained, and if vanadium alkoxide is used, a yellow color will be obtained.

〔実施例1〕 1モルの珪酸メチルに0.01モルの6水硝酸ネオジム
を加え、4モルのエタノールを加えてよく撹拌する。こ
の混合液を激しく撹拌しながら、水4モルに相当する量
のpH10.5のアンモニア水を、ゆっくり加える。こ
れによって珪酸メチルは加水分解される。
[Example 1] Add 0.01 mole of neodymium hexahydrate nitrate to 1 mole of methyl silicate, add 4 moles of ethanol, and stir well. While stirring the mixture vigorously, aqueous ammonia having a pH of 10.5 in an amount equivalent to 4 moles of water is slowly added. This hydrolyzes the methyl silicate.

得られた液は淡青色を呈している。この液を第1図に示
すように、内径150mm、高さ50mmのテフロン樹
脂の容器lに、容積の8割を占めるように注いだ。容器
の上部をアルミニウム箔2で覆って密閉し、室温に放置
してゲル化させ、ウエットゲル3を得た。
The obtained liquid has a pale blue color. As shown in FIG. 1, this liquid was poured into a Teflon resin container l having an inner diameter of 150 mm and a height of 50 mm so as to occupy 80% of the volume. The upper part of the container was covered with aluminum foil 2 to seal it, and the container was allowed to stand at room temperature to gel, thereby obtaining wet gel 3.

容器を覆ったアルξニウム箔に直径0.5mm程の孔を
10個開けた上で、1時間にl″Cの割合で室温から1
20゜Cまで温度を上昇させて、ゲルを乾燥させた。
After making 10 holes with a diameter of about 0.5 mm in the aluminum foil that covered the container, the water was heated from room temperature to 1"C per hour.
The gel was dried by increasing the temperature to 20°C.

得られたドライゲル4を、電気炉5内で酸素雰囲気中で
加熱し、毎時100゜Cの割で600℃まで温度を上昇
させ、その後ヘリウム雰囲気中で同じ割合で1200″
Cまで温度を上昇させて焼結させた。ゲルはガラス化し
、直径50mm,厚さ10mmの淡青色透明のガラス円
板が得られた。
The obtained dry gel 4 was heated in an oxygen atmosphere in an electric furnace 5 to raise the temperature to 600°C at a rate of 100°C per hour, and then heated at a rate of 1200°C at the same rate in a helium atmosphere.
Sintering was carried out by increasing the temperature to C. The gel was vitrified to obtain a pale blue transparent glass disc with a diameter of 50 mm and a thickness of 10 mm.

ガラスの密度は2.20gr/cm’であった。The density of the glass was 2.20 gr/cm'.

ガラス板には気泡は見られず、割れもなかった.〔実施
例2〕 実施例1における6水硝酸ネオジムの代わりに0.00
5モルの2水塩化銅を用いたこと、アンモニア水のpH
を10.0としたこと以外は、実施例lと同様にして乾
燥ゲルを得た。
There were no bubbles or cracks on the glass plate. [Example 2] 0.00 in place of neodymium hexahydrate nitrate in Example 1
Using 5 mol of copper dichloride, pH of ammonia water
A dried gel was obtained in the same manner as in Example 1, except that 10.0 was used.

得られたドライゲル4を電気炉5内で酸素雰囲気中で加
熱し、毎時100゜Cの割で600℃まで温度を上昇さ
せ、その後ヘリウム雰囲気中で毎時50″Cの割合で1
200゜Cまで温度を上昇させて焼結させた. 実施例1と同じ大きさの淡青色透明のガラス円板が得ら
れ、ガラスの密度は2.23 g r/ cm3であっ
た.ガラス板には気泡は見られず、割れもなかった。
The obtained dry gel 4 was heated in an oxygen atmosphere in an electric furnace 5 to raise the temperature to 600°C at a rate of 100°C per hour, and then heated at a rate of 100°C per hour in a helium atmosphere.
The temperature was raised to 200°C for sintering. A pale blue transparent glass disk of the same size as in Example 1 was obtained, and the density of the glass was 2.23 g r/cm3. No air bubbles were observed on the glass plate, and there were no cracks.

〔実施例3〕 実施例2における2水塩化銅の代わりに、0.005モ
ルのバナジウムトリーn−ブトキシドを用いたこと以外
は、実施例2と同様にして着色ガラス手反をイ乍った。
[Example 3] A colored glass fabric was prepared in the same manner as in Example 2, except that 0.005 mol of vanadium tri-n-butoxide was used instead of copper dichloride in Example 2. .

実施例1と同じ大きさの淡黄色透明のガラス円板が得ら
れ、ガラスの密度は2.19 g r/cm3であった
。ガラス板には気泡は見られず、割れもなかった。
A pale yellow transparent glass disk of the same size as in Example 1 was obtained, the density of the glass being 2.19 g r/cm 3 . No air bubbles were observed on the glass plate, and there were no cracks.

〔発明の効果〕〔Effect of the invention〕

本発明では液相反応を利用しており、気相反応を利用す
る場合のような特別な装置を必要としないから、比較的
安価に着色石英ガラスを製造できる. 本発明の方法によると、一度に大量の着色ガラスを製造
できるから、量産により低価格も実現できる。
The present invention uses a liquid phase reaction and does not require special equipment unlike when using a gas phase reaction, so colored quartz glass can be produced at a relatively low cost. According to the method of the present invention, a large amount of colored glass can be manufactured at one time, so mass production can also achieve low prices.

また製造時の発泡や割れを生ずることなく大型の着色ガ
ラス体を作ることができる.従って、大型の着色ガラス
体の製造における歩留まりが極めて高い。
Additionally, large colored glass bodies can be made without foaming or cracking during manufacturing. Therefore, the yield in manufacturing large colored glass bodies is extremely high.

本発明の方法で製造される着色石英ガラスは、耐候性、
耐熱性、耐薬品性がすぐれている。従って、例えば高温
の環境下での使用に適する。
The colored quartz glass produced by the method of the present invention has weather resistance,
Excellent heat resistance and chemical resistance. Therefore, it is suitable for use in a high temperature environment, for example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はゲル化に用いた容器を示す断面略図、第2図は
焼結に用いた装置の断面略図である。 符号の説明 ■−・・−・−一−一一容器     2−・・−・・
−−−−−アルミニウム箔3・・一一−−−・−ウェッ
トゲル 4−・−−−−一−−−ドライゲル
FIG. 1 is a schematic cross-sectional view of a container used for gelling, and FIG. 2 is a schematic cross-sectional view of the apparatus used for sintering. Explanation of symbols■−・・−・−1−11 Container 2−・・−・・
------Aluminum foil 3...11-----Wet gel 4-----1---Dry gel

Claims (2)

【特許請求の範囲】[Claims] (1)珪酸メチルまたは珪酸エチルのアルコール溶液に
遷移金属の硝酸塩、塩酸塩またはアルコキシドを添加し
、激しく撹拌しながらpH10ないし11のアルカリ水
溶液を添加し、加水分解して得られる多孔質のゲルを高
温に加熱しガラス化させる工程から成る着色石英ガラス
の製造方法。
(1) Add a transition metal nitrate, hydrochloride or alkoxide to an alcoholic solution of methyl silicate or ethyl silicate, add an alkaline aqueous solution of pH 10 to 11 while stirring vigorously, and hydrolyze the resulting porous gel. A method for producing colored quartz glass, which consists of a process of heating to high temperatures and vitrifying it.
(2)前記アルカリ水溶液がアンモニア水である請求項
第1項の着色石英ガラスの製造方法。
(2) The method for producing colored quartz glass according to claim 1, wherein the alkaline aqueous solution is aqueous ammonia.
JP16106389A 1989-06-23 1989-06-23 Production of colored quartz glass Pending JPH0328133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16106389A JPH0328133A (en) 1989-06-23 1989-06-23 Production of colored quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16106389A JPH0328133A (en) 1989-06-23 1989-06-23 Production of colored quartz glass

Publications (1)

Publication Number Publication Date
JPH0328133A true JPH0328133A (en) 1991-02-06

Family

ID=15727909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16106389A Pending JPH0328133A (en) 1989-06-23 1989-06-23 Production of colored quartz glass

Country Status (1)

Country Link
JP (1) JPH0328133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818644A (en) * 1995-11-02 1998-10-06 Olympus Optical Co., Ltd. Gradient index optical element and method for making the same
US6244074B1 (en) * 1997-12-25 2001-06-12 Nippon Sheet Glass Co., Ltd. Method of manufacturing glass plate with light-transmissive colored film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818644A (en) * 1995-11-02 1998-10-06 Olympus Optical Co., Ltd. Gradient index optical element and method for making the same
US6244074B1 (en) * 1997-12-25 2001-06-12 Nippon Sheet Glass Co., Ltd. Method of manufacturing glass plate with light-transmissive colored film

Similar Documents

Publication Publication Date Title
JP4035440B2 (en) Sol-gel process for producing dry gels with large dimensions and glasses derived thereby
JPH0328133A (en) Production of colored quartz glass
JP2635313B2 (en) Method for producing silica glass
JP2621491B2 (en) Method for producing silica glass
JPS61232239A (en) Production of porous glass
JP2666471B2 (en) Method for producing silica glass
JPH02149431A (en) Production of silica glass
JPS63182222A (en) Production of silica glass
JPS61201627A (en) Production of low oh glass
JPS62265127A (en) Production of silica glass
JPH0791069B2 (en) Glass manufacturing method
JPS63151623A (en) Production of organic substance-containing silica bulk material
JPS62292642A (en) Production of silica glass
JPH02289435A (en) Production of foam glass
JPH02267130A (en) Production of foam glass
JPS61186237A (en) Production of parent material for optical fiber of quartz glass
JPH03247515A (en) Manufacture of silica glass
JPS6369724A (en) Production of glass
JPH0340927A (en) Production of silica glass
JPS6317225A (en) Production of silica glass
JPS63288921A (en) Production of silica glass
JPS62119132A (en) Production of base material for optical fiber
JPS62230641A (en) Production of optical fiber preform
JPS62265128A (en) Production of silica glass
JPH01179730A (en) Production of quartz glass