JPH03279869A - Direct current measuring method - Google Patents

Direct current measuring method

Info

Publication number
JPH03279869A
JPH03279869A JP8228990A JP8228990A JPH03279869A JP H03279869 A JPH03279869 A JP H03279869A JP 8228990 A JP8228990 A JP 8228990A JP 8228990 A JP8228990 A JP 8228990A JP H03279869 A JPH03279869 A JP H03279869A
Authority
JP
Japan
Prior art keywords
voltage signal
voltage
current
zero
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8228990A
Other languages
Japanese (ja)
Other versions
JP2570458B2 (en
Inventor
Kazuo Kotani
一夫 小谷
Kenichiro Soma
杣 謙一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2082289A priority Critical patent/JP2570458B2/en
Publication of JPH03279869A publication Critical patent/JPH03279869A/en
Application granted granted Critical
Publication of JP2570458B2 publication Critical patent/JP2570458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To take a measurement with high accuracy even if an AC current has a noise or asymmetrical distortion by calculating a 2nd DC voltage signal which varies a 1st DC voltage signal to 0 when the 1st DC voltage signal is added to an AC voltage signal. CONSTITUTION:A current-voltage converting circuit 1 converts the AC current into an AC voltage to generate the AC voltage signal, which is inputted to a comparator 3 through a DC voltage adding circuit 2 to detect the plus and minus time limits of each cycle of the AC voltage signal. Then a 1st DC voltage signal VDC1 corresponding to the difference between the plus and minus time limits of the AC voltage signal is generated through a filter 4. The signal VDC1 is inputted to an arithmetic circuit 6 through an A/D converting circuit 5 to calculate the 2nd DC voltage signal VDC2 which varies the signal VDC1 to zero when the AC voltage signal is added. Then the VDC2 is added to the AC voltage signal which is inputted to the circuit 2 through a D/A converting circuit 7. The DC current included in the AC current is measured according to the signal VDC2 which is added to vary the signal VDC1 to zero.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は交流電流に含まれる直流電流を測定する方法に
関し、特に、連続的に高精度の測定ができる直流電流測
定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring direct current contained in alternating current, and particularly to a method for measuring direct current that allows continuous and highly accurate measurement.

〔背景技術〕[Background technology]

交流電流に含まれる直流電流を測定する方法として従来
、例えば、直流電流を含む交流電流をローパスフィルタ
に通し、そこで交流電流を除去して直流電流のみを通過
させ、それを測定装置で測定する方法がある。
Conventional methods for measuring direct current contained in alternating current include passing alternating current containing direct current through a low-pass filter, removing the alternating current there and allowing only direct current to pass, and measuring it with a measuring device. There is.

一方、交流電流のゼロクロス点の時間差t、周期Tおよ
び波高値I□を測定し、これらに基づいて直流電流1 
dcを式 %式%) から求める方法がある。
On the other hand, the time difference t, period T, and peak value I□ of the zero crossing point of the AC current are measured, and based on these, the DC current 1
There is a method of calculating dc from the formula %formula%).

本発明者は特願平1−142600号で、交流電流を交
流電圧に変換し、周期T、波高値■。、交流電圧信号の
ゼロレベルのシフト分の電圧V4cの交流電圧に直流電
圧を加算し、交流電圧のゼロクロス点の時間差tをゼロ
にするような直流電圧値に基づき、上記と同様の式 %式%) を用いて求める方法を従業した。この方法は、直流電流
成分が交流電流成分より大きい場合でも、直流電流成分
を測定できるという利点がある。
In Japanese Patent Application No. 1-142600, the present inventor converted alternating current to alternating voltage with period T and peak value ■. , based on the DC voltage value that adds the DC voltage to the AC voltage of the voltage V4c corresponding to the shift of the zero level of the AC voltage signal, and makes the time difference t of the zero crossing point of the AC voltage zero, the formula % formula similar to the above is calculated. %). This method has the advantage that the direct current component can be measured even when the direct current component is larger than the alternating current component.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし従来の直流電流測定方法によると、ローパスフィ
ルタを通過させて直流電流を測定する方法では、交流電
流に単発的な雑音等が入っていたり、交流電流に非対称
的な歪がある場合には、それらがローパスフィルタを通
過してしまうため、測定結果に誤差が生じるという問題
がある。
However, according to the conventional method of measuring direct current, in which the direct current is measured by passing it through a low-pass filter, if the alternating current contains isolated noise or has asymmetrical distortion, Since they pass through the low-pass filter, there is a problem in that errors occur in the measurement results.

交流電流のゼロクロス点の時間差、周期および波高値か
ら演算により直流電流を求める方法は、直流電流が交流
電流よりも大きい場合には、ゼロクロス点が検出できな
いため、用いることができない。
The method of calculating the DC current from the time difference, period, and peak value of the zero-crossing point of the AC current cannot be used if the DC current is larger than the AC current because the zero-crossing point cannot be detected.

一方、交流電流を交流電圧に変換し、交流電圧に直流電
圧を加算し、交流電圧のゼロクロス点の時間差をゼロに
する直流電圧値に基づいて直流電流を測定する方法は、
上記の欠点をいずれも解消するものであるが、直流電流
に変動がある場合には、ゼロクロス点の時間差を零にす
るような直流電圧値を連続して求めることが困難である
。従って、直流電流が変動する場合に連続的に測定する
ことができない。
On the other hand, the method of measuring DC current based on the DC voltage value that converts AC current to AC voltage, adds DC voltage to AC voltage, and makes the time difference between zero crossing points of AC voltage zero is:
Although all of the above-mentioned drawbacks are solved, when there is a fluctuation in the DC current, it is difficult to continuously obtain a DC voltage value that makes the time difference between zero crossing points zero. Therefore, continuous measurement is not possible when the DC current fluctuates.

すなわち、従来は、直流電流が交流電流よりも大きい場
合をも含めて直流電流を、連続的に高い精度で測定でき
る方法がなかった。
That is, conventionally, there has been no method that can continuously measure direct current with high accuracy, even when the direct current is larger than the alternating current.

従って本発明の目的は、交流電流に雑音等が入っていた
り、非対称的な歪がある場合でも、高い精度で測定でき
る直流電流測定方法を、提供することである。
Therefore, an object of the present invention is to provide a DC current measuring method that can measure with high accuracy even when the AC current contains noise or has asymmetrical distortion.

本発明の他の目的は、直流電流成分が交流電流成分より
大きい場合でも直流電流成分を高い精度で測定すること
ができる、直流電流測定方法を提供することである。
Another object of the present invention is to provide a direct current measuring method that can measure a direct current component with high accuracy even when the direct current component is larger than the alternating current component.

本発明のさらに他の目的は、直流電流に変動がある場合
にも連続測定ができる、直流電流測定方法を提供するこ
とである。
Still another object of the present invention is to provide a DC current measuring method that allows continuous measurement even when there are fluctuations in the DC current.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、交流電流に雑音等が入っていたり、非対称
的な歪がある場合でも、また直流電流成分が交流電流成
分より大きい場合でも、高い精度で測定でき、直流電流
に変動がある場合にも連続測定ができる直流電流測定方
法を提供するため、■交流電流を交流電圧に変換して交
流電圧信号を住成し、 ■生成した交流電圧信号について正および負の時限をそ
れぞれ検出し、 ■交流電圧信号の正の時限と負の時限の差に対応した直
流電圧信号(以下、第一の直流電圧信号と言う)を住成
し、 ■交流電圧信号(正および負の時限を有する)に加算し
たとき第一の直流電圧信号を零にする直流電圧信号(以
下、第二の直流電圧信号と言う)を算出し、 ■この第二の直流電圧信号を交流電圧信号(正および負
の時限を有する)に加算し、 ■加算した結果第一の直流電圧信号が零となる第二の直
流電圧信号に基づいて、交流電流に含まれる直流電流を
測定するようにした。
With the present invention, even if the AC current contains noise or has asymmetrical distortion, or even if the DC current component is larger than the AC current component, it can be measured with high accuracy. In order to provide a direct current measurement method that can continuously measure the current, A DC voltage signal (hereinafter referred to as the first DC voltage signal) corresponding to the difference between the positive time period and the negative time period of the AC voltage signal is generated; A DC voltage signal (hereinafter referred to as the second DC voltage signal) that makes the first DC voltage signal zero when added is calculated, and this second DC voltage signal is converted into an AC voltage signal (positive and negative time (2) The direct current included in the alternating current is measured based on the second direct current voltage signal whose addition results in the first direct current voltage signal being zero.

第一の直流電圧信号(VO61とする)は、交流電圧信
号■Acについて検出された正の時限と負の時限の長さ
(以下、単に時限と言う)の差に基づき、次のように生
成される。例えば、交流電圧信号■^Cが正である時限
の長さと負である時限の長さが等しければ、第一の直流
電圧信号VD(1は零となる。正である時限が負である
時限より長ければ、その差に応じた、例えば比例した大
きさ(絶対値)の正の信号が、また正である時限より負
である時限が長ければ、その差に応じた、例えば比例し
た大きさ(絶対値)の負の信号が、それぞれ生成される
The first DC voltage signal (referred to as VO61) is generated as follows based on the difference between the length of the positive time period and the length of the negative time period (hereinafter simply referred to as time period) detected for the AC voltage signal ■Ac. be done. For example, if the length of the positive time period of the AC voltage signal ■^C is equal to the length of the negative time period, the first DC voltage signal VD (1 becomes zero. If it is longer, the positive signal has a magnitude (absolute value) proportional to the difference, and if the negative time period is longer than the positive time period, the signal has a magnitude proportional to the difference, e.g. (absolute value) negative signals are respectively generated.

交流電圧信号が正から負に、または負から正に、変わる
ゼロクロス点の前後で、上述のように交流電圧信号が正
である時限と負である時限に差があるとき、この差をゼ
ロクロス点の時間差と言う。
Before and after the zero-crossing point where the AC voltage signal changes from positive to negative or from negative to positive, if there is a difference between the time period when the AC voltage signal is positive and the time period when it is negative as described above, this difference is defined as the zero-crossing point. It is called the time difference.

交流電圧信号VACに加算したとき第一の直流電圧信号
VDCIを零にする直流電圧信号、すなわち第二の直流
電圧信号V 、c、の算出は、後述するように、それら
の間に近似的に比例関係が成立するものとして行われる
。実際に直流電流を測定する際にこの演算を行うために
は、予め、第一の直流電圧信号■ゎ、1の大きさと、交
流電圧信号■Acに加算したとき第一の直流電圧信号V
DCIを零にする第二の直流電圧信号■ゎ、2の大きさ
の間の、比例定数を求めておく必要がある。それには上
述の比例関係を利用して次のように行う。
As will be described later, calculation of the DC voltage signal that makes the first DC voltage signal VDCI zero when added to the AC voltage signal VAC, that is, the second DC voltage signal V, c, is performed by approximately This is done assuming that a proportional relationship holds. In order to perform this calculation when actually measuring the DC current, in advance, the magnitude of the first DC voltage signal ■ゎゎ, 1 and the magnitude of the first DC voltage signal V when added to the AC voltage signal ■Ac
It is necessary to find the proportionality constant between the magnitude of the second DC voltage signal ゎゎ, 2 which makes the DCI zero. This is done as follows using the proportional relationship mentioned above.

交流電圧信号■Acについて正および負の時限を検出し
、検出した正の時限と負の時限の差(これは、前述のよ
うにゼロクロス点の時間差に相当する)に基づいて第一
の直流電圧信号VDC,を生成させる。次いで、適宜の
既知の値の直流電圧信号(V nczとする)を交流電
圧信号vACに加算し、第一の直流電圧信号VDCIの
変化量(ΔV DCI とする)を測定する。加算する
直流電圧信号は、第一の直流電圧信号が減少する符号の
ものとする。
The positive and negative time periods are detected for the AC voltage signal ■Ac, and the first DC voltage is determined based on the difference between the detected positive time period and the negative time period (this corresponds to the time difference of the zero crossing point as described above). A signal VDC is generated. Next, a DC voltage signal (referred to as V ncz ) having an appropriate known value is added to the AC voltage signal vAC, and the amount of change in the first DC voltage signal VDCI (referred to as ΔV DCI ) is measured. The DC voltage signal to be added has a sign that decreases the first DC voltage signal.

第一の直流電圧信号の変化量ΔV DCI と加算した
直流電圧信号■9,2の比を、第一の直流電圧信号V 
D CI の大きさと、交流電圧信号vAcに加算した
とき第一の直流電圧信号VDCIを零にする第二の直流
電圧信号V DC2の大きさとの間の比例定数にとして
用いる。このとき、第一の直流電圧信号■、、が零にな
るような第二の直流電圧信号V D+4そのものを求め
、それから比例定数を求めておけば、−層好ましい。
The ratio of the DC voltage signal ■9,2 added to the amount of change ΔV DCI of the first DC voltage signal is calculated as the first DC voltage signal V
It is used as a proportionality constant between the magnitude of D CI and the magnitude of the second DC voltage signal V DC2 which, when added to the AC voltage signal vAc, makes the first DC voltage signal VDCI zero. At this time, it is preferable to obtain the second direct current voltage signal V D+4 itself such that the first direct current voltage signal (1) becomes zero, and then obtain the proportionality constant.

実際の測定ではこの比例定数kを利用して演算を行い、
第一の直流電圧信号V DCIを零にするよう第二の直
流電圧値V DC2を交流電圧信号■1に加算し、加算
した第二の直流電圧値■、。に基づいて、交流電流に含
まれる直流電流IACを決定する。
In actual measurements, calculations are performed using this proportionality constant k,
A second DC voltage value V DC2 is added to the AC voltage signal ■1 so as to make the first DC voltage signal V DCI zero, and the added second DC voltage value ■. Based on this, determine the direct current IAC included in the alternating current.

〔作用〕[Effect]

本発明では、まず交流電流を交流電圧に変換して交流電
圧信号を生成し、生成した交流電圧信号について交流電
圧信号の各周期における正および負の時限をそれぞれ検
出する。交流電圧信号の正の時限と負の時限の差に対応
した直流電圧信号(第一の直流電圧信号)を生成する。
In the present invention, first, an alternating current is converted into an alternating voltage to generate an alternating current voltage signal, and the positive and negative time limits in each cycle of the alternating voltage signal are respectively detected for the generated alternating voltage signal. A DC voltage signal (first DC voltage signal) corresponding to the difference between the positive time period and the negative time period of the AC voltage signal is generated.

ゼロクロス点の前後で交流電圧信号が正である時限と負
である時限の差は、前述の通りゼロクロス点の時間差で
ある。従って、交流電圧信号の正の時限と負の時限の差
に対応した直流電圧信号を生成することは、ゼロクロス
点の時間差に対応した直流電圧信号を生成することに相
当する。交流電圧信号のゼロレベルのシフト分の電圧V
dcと、周期T、ゼロクロス点の時間差t、波高値■□
との間には式%式%) で示される関係があることが知られている。ゼロクロス
点の時間差tが充分小であるとき、この式は返信的に Va−一(vpk/ 4 T ) t = k t(た
だし k=Vpk/4T) となる。交流電圧信号(正および負の時限を有する)V
Acに直流分が含まれるときには、上式に従いゼロクロ
ス点の時間差tが生じる。交流電圧信号が正である時限
と負である時限の差を検出することは、この交流電圧信
号VACに含まれる直流分に由来するゼロクロス点の時
間差tを検出することに相当する。交流電圧信号の正の
時限と負の時限の差に対応した第一の直流電圧信号を生
成させると、それは交流電圧信号のゼロクロス点の時間
差tに応した大きさをもつ。このように、本発明の方法
ではゼロクロス点の時間差の検出が交流電圧信号の波形
に関係なく行われるから、交流電流に雑音等が入ってい
たり、非対称的な歪があっても、影響されない。
As described above, the difference between the time period in which the AC voltage signal is positive and the time period in which the AC voltage signal is negative before and after the zero-crossing point is the time difference between the zero-crossing points. Therefore, generating a DC voltage signal corresponding to the difference between the positive time period and the negative time period of the AC voltage signal corresponds to generating a DC voltage signal corresponding to the time difference between zero crossing points. Voltage V for shift of zero level of AC voltage signal
dc, period T, time difference t of zero cross point, peak value■□
It is known that there is a relationship between . When the time difference t between the zero crossing points is sufficiently small, this equation becomes Va-1(vpk/4T) t=kt (where k=Vpk/4T). AC voltage signal (with positive and negative time limits) V
When Ac includes a DC component, a time difference t between zero crossing points occurs according to the above equation. Detecting the difference between the time period in which the AC voltage signal is positive and the time period in which it is negative corresponds to detecting the time difference t between zero-crossing points derived from the DC component included in this AC voltage signal VAC. When the first DC voltage signal corresponding to the difference between the positive time period and the negative time period of the AC voltage signal is generated, it has a magnitude corresponding to the time difference t between the zero crossing points of the AC voltage signal. In this way, in the method of the present invention, the time difference between zero crossing points is detected regardless of the waveform of the AC voltage signal, so even if the AC current contains noise or asymmetrical distortion, it will not be affected.

本発明では、交流電圧信号(正および負の時限を有する
)に加算したとき第一の直流電圧信号を零にする直流電
圧信号(第二の直流電圧信号)を算出し、この第二の直
流電圧信号を交流電圧信号(正および負の時限を有する
)に加算する。第二の直流電圧信号を算出するに際して
は、上記の弐Vdc=kt  (ただし k=Vpk/
4T)において交流電圧信号の波高41v−におよび周
期Tカ一定なら、ゼロレベルのシフト分の電圧■。とゼ
ロクロス点の時間差tとの間には近似的に比例関係 ■4c=kt(kは比例定数) が成り立つことを利用する。この近似的な比例関係は、
交流電圧信号のゼロレベルのシフ)V、Cの変化量ΔV
 4 (とゼロクロス点の時間差tの変化量Δtとの間
にも成り立つ(比例定数は同じ<k)。
In the present invention, a DC voltage signal (second DC voltage signal) that makes the first DC voltage signal zero when added to an AC voltage signal (having positive and negative time limits) is calculated, and this second DC voltage signal is Add the voltage signal to an alternating voltage signal (with positive and negative time limits). When calculating the second DC voltage signal, the above 2Vdc=kt (where k=Vpk/
4T), if the wave height of the AC voltage signal is 41v- and the period T is constant, the voltage for the shift of the zero level is ■. It is utilized that the following proportional relationship 4c=kt (k is a constant of proportionality) holds approximately between the time difference t and the zero crossing point. This approximate proportional relationship is
Amount of change ΔV in zero level shift of AC voltage signal) V and C
4 (also holds true between the change amount Δt of the time difference t of the zero crossing point (the constant of proportionality is the same <k).

第一の直流電圧信号を零にする第二の直流電圧信号を算
出するための前記演算には、予め両者の間の比例定数を
求めておく必要があるが、それにはこの比例関係(ゼロ
レベルのシフト■6cの変化量ΔVdcとゼロクロス点
の時間差tの変化量Δtとの間の)を利用することがで
きる。交流tiから変換して得た交流電圧信号の波高値
■□および周期Tが一定である限り、一定の比例定数k
を用いて上記の演算に基づき第二の直流電圧信号が算出
されるので、交流電流に含まれる直流電流に変動がある
場合にもそれを連続的に測定できる。
In order to calculate the second DC voltage signal that makes the first DC voltage signal zero, it is necessary to determine the proportionality constant between the two in advance. (between the amount of change ΔVdc of the shift 6c and the amount of change Δt of the time difference t between zero crossing points) can be used. As long as the peak value ■□ and period T of the AC voltage signal obtained by converting from AC ti are constant, constant proportionality constant k
Since the second DC voltage signal is calculated based on the above calculation using , even if there is a fluctuation in the DC current included in the AC current, it can be continuously measured.

本発明では、上述のような、交流電圧信号(正および負
の時限を有する)VACに加算した結果第一の直流電圧
信号V、c、を零にする第二の直流電圧信号V DC2
に基づき、交流電流IAcに含まれる直流電流■ゎ、を
決定する。交流電圧信号■、、の正の時限と負の時限の
差に対応した第一の直流電圧信号■。、を零にすること
は、交流電圧信号V 4 (のゼロクロス点の時間差t
を零にすることを意味するから、それは取りも直さず交
流電圧信号■Acのゼロレベルのシフト分の電圧を零に
することに相当する。それ故、本発明の方法において、
交流電圧信号■Acの正の時限と負の時限の差に対応し
た第一の直流電圧信号VDCIを零にするように加算し
た第二の直流電圧信号 ■0,2は、加算することによ
り交流電圧信号VACのゼロレベルのシフト分の電圧■
。を零にする直流電圧(信号)に相当する。それは同時
に、ゼロレベルのシフト分の電圧■。そのものに相当す
る。交流電圧信号VACは交流を流IACから変換して
生成したものであるから、交流電圧信号VACのゼロレ
ベルのシフト分の電圧■。を零にする第二の直流電圧信
号■ゎc2は、交流電流IACのゼロレベルのシフト分
、つまり含まれる直流分に対応するものであり、前者に
基づき後者が決定される。
In the present invention, as described above, a second DC voltage signal V DC2 is added to the AC voltage signal (having positive and negative time limits) VAC, which makes the first DC voltage signal V, c, zero.
Based on this, determine the DC current ■ゎ included in the AC current IAc. The first DC voltage signal ■ corresponds to the difference between the positive time period and the negative time period of the AC voltage signal ■, . , is made zero by the time difference t of the zero-crossing point of the AC voltage signal V 4 (
Since it means to make the voltage zero, this basically corresponds to making the voltage corresponding to the shift of the zero level of the AC voltage signal AC to zero. Therefore, in the method of the invention,
AC voltage signal ■Second DC voltage signal added to zero the first DC voltage signal VDCI corresponding to the difference between the positive time period and negative time period of Ac ■0 and 2 are AC voltage signals by adding Voltage for zero level shift of voltage signal VAC■
. Corresponds to the DC voltage (signal) that makes the voltage zero. At the same time, the voltage for the zero level shift ■. corresponds to that. Since the alternating current voltage signal VAC is generated by converting alternating current from current IAC, the voltage ■ corresponds to the shift of the zero level of the alternating current voltage signal VAC. The second DC voltage signal ゎc2 that makes the current IAC zero corresponds to the shift of the zero level of the AC current IAC, that is, the included DC component, and the latter is determined based on the former.

交流電圧信号が正および負いずれかの時限を有しない、
つまりゼロクロス点が存在しない場合にも、正および負
いずれかの時限かが判定できるため、ゼロクロス点が存
在する方向に第2の直流電圧信号■ゎ6.を加えること
によって、ゼロクロス点を存在させることができ、上記
同様、交流電圧信号■^Cの正の時限と負の時限の差に
対応した第一の直流電圧信号VDCIを零にする第二の
直流電圧信号V DC!に基づき、交流電流IACに含
まれる直流電流I。Cを決定することができる。
The AC voltage signal does not have either positive or negative time limits,
In other words, even if there is no zero-crossing point, it is possible to determine whether it is a positive or negative time period, so the second DC voltage signal ■ゎ6. By adding , a zero cross point can be made to exist, and as above, the second DC voltage signal VDCI that corresponds to the difference between the positive time period and the negative time period of the AC voltage signal DC voltage signal V DC! Based on the DC current I included in the AC current IAC. C can be determined.

〔実施例1〕 本発明の方法の実施例を、以下図面に従って説明する。[Example 1] Embodiments of the method of the present invention will be described below with reference to the drawings.

第1図に本発明による直流電流測定に適用される構成を
示す。電流電圧変換回路1は、被測定交流電流(直流電
流を含む)を入力して交流電圧信号に変換する。電流電
圧変換回路1の出力は、後述する演算回路6により算出
されたレベルの直流電圧を交流電圧信号に加算させるた
めの直流電圧加算回路2に接続され、直流電圧加算回路
2の出力はコンパレータ3に接続されている。コンパレ
ータ3は交流電圧信号をゼロレベルと比較し、図示しな
いタイミングパルス発生回路からのタイミングパルスに
同期して、正または負のパルスを発生する。コンパレー
タ3の出力はフィルタ4に接続されている。フィルタ4
はコンパレータ3からの正および負のパルスを所定の期
間積算し、積算値に応した直流電圧に変換する。フィル
タ4からの直流電圧出力は、A/D変換回路5を通して
演算回路6に入力される。演算回路6の出力はD/A変
換回路7を通して直流電圧加算回路2に接続されている
FIG. 1 shows a configuration applied to direct current measurement according to the present invention. The current-voltage conversion circuit 1 receives an AC current to be measured (including DC current) and converts it into an AC voltage signal. The output of the current-voltage conversion circuit 1 is connected to a DC voltage addition circuit 2 for adding a DC voltage at a level calculated by an arithmetic circuit 6 (described later) to an AC voltage signal, and the output of the DC voltage addition circuit 2 is connected to a comparator 3. It is connected to the. The comparator 3 compares the AC voltage signal with a zero level and generates a positive or negative pulse in synchronization with a timing pulse from a timing pulse generation circuit (not shown). The output of comparator 3 is connected to filter 4. filter 4
integrates the positive and negative pulses from the comparator 3 for a predetermined period and converts it into a DC voltage corresponding to the integrated value. The DC voltage output from the filter 4 is input to the arithmetic circuit 6 through the A/D conversion circuit 5. The output of the arithmetic circuit 6 is connected to the DC voltage addition circuit 2 through the D/A conversion circuit 7.

第1図の構成による直流電流測定方法のタイミングチャ
ートを第2図に、フローチャートを第3図に示す。以下
に、第1図の構成による直流電流測定方法を、第2図の
タイミングチャートおよび第3図のフローチャートを適
宜参照しつつ説明する。
FIG. 2 shows a timing chart of the direct current measuring method using the configuration shown in FIG. 1, and FIG. 3 shows a flow chart thereof. The DC current measuring method using the configuration shown in FIG. 1 will be described below with appropriate reference to the timing chart shown in FIG. 2 and the flow chart shown in FIG. 3.

被測定交流電流(直流電流および雑音を含む)IACが
t流電正変換回路1に入力されると、電流電圧変換回路
1はそれを交流電圧信号VAc(第2図(a))に変換
する(第3図のステップi)。交流電圧信号VACは、
直流電圧加算回路2を経てコンパレータ3に入力され、
コンパレータ3において所定のタイミングでゼロレベル
と比較される。ゼロレベルより大きい信号ならば正パル
スP1が、ゼロレベルより小さい信号ならば負パルスP
、が、所定のタイミング毎に発生する(第2図(b) 
)。これらのパルスP+、Pgはフィルタ4に入力され
、フィルタ4により、正負のパルスp、、P、が所定の
期間計数される(第2図(C))、フィルタ4における
計数の結果、正パルスP、と負パルスP8の差分■、が
得られる(第2図(C))、前記所定の期間としては、
例えば交流電圧の1周期、あるいはその整数倍が選ばれ
る。フィルタ4による計数はこの期間の経過毎にリセッ
トされる。この計数差■、に基づいて第一の直流電圧信
号VDCI(第2図(d))が得られる(第3図のステ
ップiiに相当)、第一の直流電圧信号VDCIは交流
電圧信号■1の正および負の時限の差に対応した電圧値
を有する。正および負の時限の差は、ゼロクロス点の時
間差(先に定義した)に等しい、従って、第一の直流電
圧信号V DCIは交流電圧信号vACのゼロクロス点
の時間差に対応した値を有する(第3図ステップ■で 
Vnc、= O: N Oの場合に相当する)、第一の
直流電圧信号■。3.はA/D変換回路5を通して演算
回路6に入力される。演算回路6では、交流電圧信号■
Acに加算すると直流電圧■。、1が零になるような第
二の直流電圧信号V DCZが算出され(第3図のステ
ップivに相当する。Vbcz = k ・VDCI)
、この演算出力はD/A変換回路7を通して直流電圧加
算回路2に第二の直流電圧VEIC!  (第2図(e
))として入力され、直流電圧加算回路2で交流電圧信
号■Acに加算される(第3図のステップVの実行に相
当する)。
When the AC current to be measured (including DC current and noise) IAC is input to the t current positive conversion circuit 1, the current voltage conversion circuit 1 converts it into an AC voltage signal VAc (Fig. 2 (a)). (Step i in Figure 3). The AC voltage signal VAC is
It is input to the comparator 3 via the DC voltage adding circuit 2,
The comparator 3 compares it with the zero level at a predetermined timing. If the signal is larger than the zero level, the positive pulse P1 is sent, and if the signal is smaller than the zero level, the negative pulse P1 is sent.
, occurs at each predetermined timing (Fig. 2(b)
). These pulses P+, Pg are input to the filter 4, and the positive and negative pulses p, , P, are counted by the filter 4 for a predetermined period (Fig. 2(C)).As a result of the counting in the filter 4, the positive pulses The predetermined period during which the difference ■ between P and negative pulse P8 is obtained (FIG. 2(C)).
For example, one cycle of the AC voltage or an integral multiple thereof is selected. The count by the filter 4 is reset every time this period elapses. The first DC voltage signal VDCI (FIG. 2(d)) is obtained based on this counting difference (corresponding to step ii in FIG. 3). The first DC voltage signal VDCI is the AC voltage signal ■1. has a voltage value corresponding to the difference between positive and negative time periods. The difference between the positive and negative time periods is equal to the time difference of the zero crossing points (defined above), so the first DC voltage signal V DCI has a value corresponding to the time difference of the zero crossing points of the AC voltage signal vAC (the first 3 figure step■
Vnc, = O: corresponds to the case of NO), the first DC voltage signal ■. 3. is input to the arithmetic circuit 6 through the A/D conversion circuit 5. In the arithmetic circuit 6, the AC voltage signal ■
When added to AC, DC voltage ■. , 1 becomes zero (corresponding to step iv in FIG. 3, Vbcz = k ・VDCI).
, this calculation output is passed through the D/A converter circuit 7 to the DC voltage adder circuit 2 as the second DC voltage VEIC! (Figure 2(e)
)) and is added to the AC voltage signal AC by the DC voltage adding circuit 2 (corresponding to the execution of step V in FIG. 3).

第2図の例では交流電圧信号VACのゼロレベルは正に
シフトしており、このときフィルタ4からの第一の直流
電圧信号V D CI は正となるが、演算回路6で算
出され直流電圧加算回路2に供給される第二の直流電圧
信号V DCZは負とされる。直流電圧加算回路2で加
算される直流電圧信号■。、2は、フィルタ4の時定数
に見合う時間だけ印加され、この間に第一の直流電圧信
号■1,1および第二の直流電圧信号■。、tは徐々に
減少し、零になる(第3図ステップ出で VDCI =
 O: Y E S  となることに相当)。このとき
の第二の直流電圧信号■。、2の値v 、c、’から直
流電流分が測定される(第3図のステップvi、 vi
に相当する)。
In the example of FIG. 2, the zero level of the AC voltage signal VAC is shifted positively, and at this time, the first DC voltage signal V D CI from the filter 4 becomes positive, but the DC voltage calculated by the calculation circuit 6 The second DC voltage signal VDCZ supplied to the adder circuit 2 is negative. DC voltage signal ■ added by DC voltage adding circuit 2. , 2 are applied for a time corresponding to the time constant of the filter 4, and during this time, the first DC voltage signal (1, 1) and the second DC voltage signal (2) are applied. , t gradually decreases and becomes zero (at step output in Figure 3, VDCI =
O: Equivalent to YES). The second DC voltage signal at this time ■. , 2, the DC current component is measured from the values v, c,' (steps vi, vi in Fig. 3).
).

直流電流成分が交流電流成分より大きい場合には、第2
図(f)に示すように、電流電圧変換回路1から出力さ
れる交流電圧信号VaCはゼロクロス点を示さず、この
場合、第2図(80に示すように、交流電圧信号の1周
期の間にコンパレータ3から正または負のパルスのみが
発生し、これがフィルタ4で所定の期間計数されると一
定レベルの出力を与える。この一定レベルの出力に基づ
いて同じように第一および第二の直−it圧信号V D
 CIおよびVD4Kが得られ、第二の直流電圧信号V
 DCZが交流電圧信号VACに加算される。その結果
、交流電圧信号VACがゼロクロス点を有するようにな
る。
If the DC current component is larger than the AC current component, the second
As shown in FIG. 2(f), the AC voltage signal VaC output from the current-voltage conversion circuit 1 does not show a zero crossing point, and in this case, as shown in FIG. Only positive or negative pulses are generated from the comparator 3, which gives a constant level output when counted by the filter 4 for a predetermined period.Based on this constant level output, the first and second direct pulses are similarly generated. -it pressure signal V D
CI and VD4K are obtained, and a second DC voltage signal V
DCZ is added to the alternating current voltage signal VAC. As a result, the AC voltage signal VAC has a zero-crossing point.

従って、第2図(a)ないしくe)で示したと同じ方法
により直流分の検出が可能になる。
Therefore, the DC component can be detected by the same method as shown in FIGS. 2(a) to 2(e).

〔発明の効果〕〔Effect of the invention〕

本発明によると、ゼロクロス点の検出が交流電圧信号の
波形や雑音の存在に関係なく行われるから、交流電流に
雑音等が入っていたり、非対称的な歪があっても、被測
定電流に含まれる直流電流を高い精度で測定できる。ま
た、直流電流分が交流電流より大きい場合でも、直流電
流の測定が可能である。
According to the present invention, since the zero-crossing point is detected regardless of the waveform of the AC voltage signal or the presence of noise, even if the AC current contains noise or has asymmetric distortion, it is not included in the current to be measured. It is possible to measure DC current with high accuracy. Further, even if the direct current component is larger than the alternating current, the direct current can be measured.

さらに、被測定電流に含まれる直流電流が変動するよう
な場合でも、それに応じて第二の直流電圧信号を演算し
て交流電圧信号に加算するので、被測定電流に含まれる
直流電流をその変動に追従して精度よく測定することが
できる。
Furthermore, even if the DC current included in the current to be measured fluctuates, the second DC voltage signal is calculated and added to the AC voltage signal accordingly, so the DC current included in the current to be measured is can be followed and measured with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一実施例に用いた構成を示すブ
ロック図、第2図(a)〜(g)は本発明の方法の一実
施例のタイミングチャート、第3図は本発明の方法の一
実施例のフローチャートである。 符号の説明 1−−−−−−一電流電圧変換回路 5−−−−−−−
A / D変換回路2−・−−一−−直流電圧加算回路
 6・・・・・・−演算回路3−−−−−−−コンパレ
ータ   7−・−・−D/A変換回路4−・−・・フ
ィルタ
FIG. 1 is a block diagram showing a configuration used in an embodiment of the method of the present invention, FIGS. 2(a) to (g) are timing charts of an embodiment of the method of the present invention, and FIG. 3 is a block diagram showing the configuration used in an embodiment of the method of the present invention. 3 is a flowchart of one embodiment of the method of FIG. Explanation of symbols 1-------- 1 Current-voltage conversion circuit 5--------
A/D conversion circuit 2---1--DC voltage addition circuit 6--Arithmetic circuit 3--Comparator 7--D/A conversion circuit 4-- -...filter

Claims (2)

【特許請求の範囲】[Claims] (1)交流電流に含まれる直流電流を測定する方法にお
いて 前記交流電流を交流電圧に変換して交流電圧信号を生成
し、 前記交流電圧信号の正および負の時限をそれぞれ検出し
、 前記交流電圧信号の前記所定の期間における正の時限と
負の時限の差に応じた第一の直流電圧信号を生成し、 前記交流電圧信号に加算したとき前記第一の直流電圧信
号を零にする第二の直流電圧信号を算出し、 前記第二の直流電圧信号を前記正および負の時限を有す
る交流電圧信号に加算し、 加算の結果前記第一の直流電圧信号が零となる前記第二
の直流電圧信号に基づいて前記直流電流を決定すること
を特徴とする直流電流測定方法。
(1) In a method for measuring a direct current contained in an alternating current, the alternating current is converted into an alternating voltage to generate an alternating current voltage signal, the positive and negative time periods of the alternating current voltage signal are respectively detected, and the alternating current voltage is a second DC voltage signal that generates a first DC voltage signal corresponding to a difference between a positive time period and a negative time period in the predetermined period of the signal, and makes the first DC voltage signal zero when added to the AC voltage signal; calculating a DC voltage signal, adding the second DC voltage signal to the AC voltage signal having positive and negative time limits, and adding the second DC voltage signal such that the first DC voltage signal becomes zero as a result of the addition. A direct current measuring method, characterized in that the direct current is determined based on a voltage signal.
(2)前記交流電圧信号に加算したとき前記第一の直流
電圧信号を零にする第二の直流電圧信号の前記算出は、
前記正および負の時限を有する交流電圧信号に所定の大
きさの第二の直流電圧信号を加算したとき生じる前記第
一の直流電圧信号の変化量と、前記加算した所定の第二
の直流電圧信号の大きさの比に基づいて行われる、請求
項第1項の直流電流測定方法。
(2) The calculation of the second DC voltage signal that makes the first DC voltage signal zero when added to the AC voltage signal,
The amount of change in the first DC voltage signal that occurs when a second DC voltage signal of a predetermined magnitude is added to the AC voltage signal having positive and negative time limits, and the added predetermined second DC voltage. 2. The direct current measuring method according to claim 1, wherein the method is performed based on a ratio of signal magnitudes.
JP2082289A 1990-03-29 1990-03-29 DC current measurement method Expired - Lifetime JP2570458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2082289A JP2570458B2 (en) 1990-03-29 1990-03-29 DC current measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2082289A JP2570458B2 (en) 1990-03-29 1990-03-29 DC current measurement method

Publications (2)

Publication Number Publication Date
JPH03279869A true JPH03279869A (en) 1991-12-11
JP2570458B2 JP2570458B2 (en) 1997-01-08

Family

ID=13770371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2082289A Expired - Lifetime JP2570458B2 (en) 1990-03-29 1990-03-29 DC current measurement method

Country Status (1)

Country Link
JP (1) JP2570458B2 (en)

Also Published As

Publication number Publication date
JP2570458B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
CN103119453B (en) Numerical frequency based on quadratic form is estimated
JPS6025745B2 (en) Power measurement method
US6973839B2 (en) Electromagnetic flow meter having processing means resolving output data into a non-flow waveform component
JP5877259B1 (en) Electromagnetic flow meter signal extraction method
JPH0718902B2 (en) Electrical conductivity detector
JPH03279869A (en) Direct current measuring method
CN105044455B (en) The frequency of AC signal and the measuring method of phase
JP3329215B2 (en) AC signal measuring device
US9759751B1 (en) Line cycle correlated spectral analysis for power measurement systems
JP2570422B2 (en) DC current measurement method
JP3271323B2 (en) Time measurement circuit
JP3085496B2 (en) Sampling type measuring device
DK1464930T3 (en) Electromagnetic flow meter
JP2616277B2 (en) Method and apparatus for measuring AC current and DC current included in AC current
JPS6346648B2 (en)
JP2005189030A (en) Sampling type measuring instrument
JP2580755B2 (en) Mass flow meter
JPH0740052B2 (en) Frequency detector
CN117871939A (en) Sagnac interference type optical fiber current sensor signal demodulation method, device and storage medium
CN117824758A (en) Flow calculation method for measuring transient flow of vortex shedding flowmeter
JPH055504Y2 (en)
JPS5926072A (en) High precision phase difference measuring device
JPH04297131A (en) Pwm system a/d converter
JP2003254999A (en) Ac current measuring circuit
JPS5843698B2 (en) Kouriyuden Atsuhisokuteisouchi