JPH03279234A - Production of parent material of preform of optical fiber - Google Patents

Production of parent material of preform of optical fiber

Info

Publication number
JPH03279234A
JPH03279234A JP8215290A JP8215290A JPH03279234A JP H03279234 A JPH03279234 A JP H03279234A JP 8215290 A JP8215290 A JP 8215290A JP 8215290 A JP8215290 A JP 8215290A JP H03279234 A JPH03279234 A JP H03279234A
Authority
JP
Japan
Prior art keywords
glass
burner
optical fiber
burners
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8215290A
Other languages
Japanese (ja)
Other versions
JP2622182B2 (en
Inventor
Kiyoshi Yokogawa
清 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2082152A priority Critical patent/JP2622182B2/en
Publication of JPH03279234A publication Critical patent/JPH03279234A/en
Application granted granted Critical
Publication of JP2622182B2 publication Critical patent/JP2622182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To uniform outer diameter of parent material of preform of optical fiber by arranging plural burners of the same dimension at equal intervals at the outer periphery of core glass rod for optical fiber and making the shape of piled material uniform according to piling schedule by control. CONSTITUTION:Three or more oxyhydrogen flame burners 2 of the same dimension are arranged in series at the outer periphery of a glass rod 1 for optical fiber. Then a gaseous glass raw material is sent to the burners 2, hydrolyzed by flame, generated fine particles are piled on the glass rod 1 to form a porous glass preform 4. The outer diameters of the preform 4 along the whole length are measured by an outer diameter by a measuring device 6 of outer diameter, the average outer diameter is obtained, simultaneously the whole weight is measured, difference between given preset outer diameter and the weight is detected, a gas condition of each burner 2 is always compensated and controlled by using a control mechanism A attached to a gas main valve 5 and control mechanisms B fixed to each burner 2 based on the difference.

Description

【発明の詳細な説明】 (a業上の利用分野) 本発明は光ファイバプリフォーム母材の製造方法、特に
は光ファイバーの構造特性を低下させることなく、大型
の光ファイバプリフォーム母材を高速で生産することの
できる光ファイバプリフォーム母材の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of application in industry) The present invention relates to a method for manufacturing an optical fiber preform base material, and in particular to a method for manufacturing an optical fiber preform base material at high speed without deteriorating the structural characteristics of the optical fiber. The present invention relates to a method for manufacturing an optical fiber preform base material that can be produced in the following manner.

(従来の技術) 光ファイバプリフォームの製造については開発の初期に
おいてはコア(芯)用ガラスにガラス管を被覆するとい
う方法(特公昭41−11071号公報参照)で行なわ
れていたが、近年における特性、精度の著しい向上とプ
リフォームサイズの大型化に伴なって気体ガラス原料を
酸水素火炎バーナーに導入し、その火炎加水分解で生成
したガラス微粒子を回転しているコア用ガラス棒の外周
に吹きつけ、該バーナーまたはコア用ガラス棒のいずれ
か一方(以下説明を簡単にするためにバーナー移動で説
明する)を軸方向に平行に往復運動させることによって
該ガラス微粒子をコア用ガラス棒上に一層づつ積層させ
て多孔質ガラス母材を形成させ、ついでこれを加熱し脱
水、透明ガラス化して光ファイバプリフォームとする方
法(特開昭49−84258号公報参照)に移行してき
ている。
(Prior art) In the early stages of development, optical fiber preforms were manufactured by coating a glass tube with core glass (see Japanese Patent Publication No. 11071/1971), but in recent years With the remarkable improvement in properties and precision and the increase in preform size, gaseous glass raw materials are introduced into an oxyhydrogen flame burner, and the glass particles generated by flame hydrolysis are rotated around the outer periphery of the glass rod for the core. The glass fine particles are sprayed onto the core glass rod by reciprocating either the burner or the core glass rod (to simplify the explanation below, it will be explained by moving the burner) in parallel to the axial direction. There has been a transition to a method in which a porous glass preform is formed by laminating layers one by one, which is then heated, dehydrated, and made into transparent glass to form an optical fiber preform (see Japanese Patent Application Laid-Open No. 49-84258).

しかして、この種の光ファイバプリフォームの製造方法
については垂直方向に連続して堆積する方法(特開昭5
5−11[1638号公報参照)、多孔質ガラス母材に
複数本のバーナーから組成の異なるガラス形成原料を供
給すると共に8棒をバーナーに対して相対的に往復運動
させ、1回の移動ごとにガラス形成原料の組成を変える
ことによって、半径方向に所望の屈折率分布を有するプ
リフォームを得るという方法も提案されているしく特開
昭57−183330号公報参照)、8棒を回転させる
と共に長手方向に運動させ、ガラス粒子の生成に振動運
動を与える方法(特開昭56−120528号、特開昭
58−9835号公報参照)、製造しようとするコア用
ガラス棒の長さしとほぼ等しい長さの横幅をもつ薄型の
酸水素火炎バーナー、または多数の酸水素火炎バーナー
を横に一列に並べてバーナー列を作り、移動を行なわな
いでガラス微粒子をコア用ガラス棒に吹きつける方法(
特開昭53−70449号公報参照)、さらに光ファイ
バ母材ではないが複数のバーナーに供給されるガス量を
調整するか、バーナー面とガラス微粒子の堆積面との距
離を調整し、あるいは耐熱性基体の回転数を調整してガ
ラス微粒子の堆積密度を半径方向に沿って変化させて多
孔質ガラス母材のひび割れを防止する方法(特開昭64
−9821号公報参照)も知られている。
However, regarding the manufacturing method of this type of optical fiber preform, there is a method of continuous deposition in the vertical direction (Japanese Patent Application Laid-Open No.
5-11 (see Publication No. 1638), glass forming raw materials with different compositions are supplied to the porous glass base material from multiple burners, and eight rods are reciprocated relative to the burners, with each movement A method has also been proposed in which a preform having a desired refractive index distribution in the radial direction is obtained by changing the composition of the glass forming raw materials (see Japanese Patent Application Laid-open No. 183330/1983), by rotating the 8 rods and A method of applying vibrational motion to the generation of glass particles by moving in the longitudinal direction (see JP-A-56-120528 and JP-A-58-9835), the length of which is approximately the same as the length of the glass rod for the core to be manufactured. A method of forming burner rows by arranging thin oxyhydrogen flame burners with equal widths or a large number of oxyhydrogen flame burners in a line horizontally, and blowing glass fine particles onto the glass rod for the core without moving them (
(Refer to Japanese Patent Application Laid-open No. 53-70449), and further adjust the amount of gas supplied to multiple burners, which are not optical fiber base materials, adjust the distance between the burner surface and the surface on which glass fine particles are deposited, or adjust the heat resistance. A method for preventing cracks in a porous glass base material by adjusting the rotational speed of a porous substrate to vary the deposition density of glass particles along the radial direction (Japanese Unexamined Patent Application Publication No. 64
-9821) is also known.

(発明が解決しようとする課題) しかし、これら従来の公知の方法で光ファイバプリフォ
ーム母材を製造しようとすると、特開昭49−8425
8号公報に開示されている方法ではバーナーが一本であ
るためにガラス微粒子の堆積速度が遅いし、長尺、大径
のものを製造する場合には熱量が不足し、堆積シリカ層
が機械的強度の弱いものとなるのでひび割れが発生する
という不利があり、特開昭56−120528号、特開
昭57−183330号、特開昭58−9835号公報
などに開示されている方法にはコア層、クラッド層が一
工程で得られるという利点があるものの、コア層、クラ
ッド層とも密度の低いものとなるので大型化するときの
取扱いが困難となるし設備が大型化し、コアの屈折率分
布が不明のま\これに厚いクラッド層が付着されるので
製品が目標値と外れたものになるという欠点があり、さ
らに特開昭53−70449号公報に開示されている方
法ではバーナーのスリットから噴出するガスがコア用ガ
ラス棒の全長上で同一の条件にするということが保証で
きないので、各バーナーおよびバーナー間で堆積ムラが
生じ、現実的には得られるプリフォーム母材の堆積厚さ
の精度がねる(なり、特開昭64−9821号公報に開
示されている方法では堆積速度が早く、大型のものが作
れるという利点はあるものの、長さ方向に一定の振幅で
往復するのでこれにはバーナーの停止点と移動部が常に
同一位置でくり返されるために堆積ムラが生じ、得られ
る堆積体は表面に凹凸をもつものとなるし、芯材として
のアルミニウムが金属不純物としてシリカ層にドープさ
れるという欠点があるので光ファイバ母材の製造用には
利用できない。
(Problems to be Solved by the Invention) However, when trying to manufacture an optical fiber preform base material using these conventional known methods,
In the method disclosed in Publication No. 8, since there is only one burner, the deposition rate of glass fine particles is slow, and when manufacturing long and large diameter items, there is insufficient heat, and the deposited silica layer is damaged by the machine. However, the methods disclosed in JP-A-56-120528, JP-A-57-183330, JP-A-58-9835, etc. Although it has the advantage that the core layer and cladding layer can be obtained in one process, both the core layer and cladding layer have low density, making it difficult to handle when increasing the size, requiring larger equipment, and increasing the refractive index of the core. Since the distribution is unknown, a thick cladding layer is attached to this layer, which has the disadvantage that the product deviates from the target value.Furthermore, in the method disclosed in Japanese Patent Application Laid-open No. 70449/1983, the slit of the burner Since it cannot be guaranteed that the gas ejected from the core glass rod will be under the same conditions over the entire length of the core glass rod, uneven deposition will occur between each burner and between the burners, and in reality, the deposition thickness of the preform base material that can be obtained may vary. Although the method disclosed in Japanese Unexamined Patent Publication No. 64-9821 has the advantage of a fast deposition rate and the ability to produce large-sized products, this method requires a constant amplitude of reciprocation in the length direction. Since the burner stop point and the moving part are always at the same position repeatedly, uneven deposition occurs, and the resulting deposit has an uneven surface.Aluminum as a core material has a silica layer as a metal impurity. It cannot be used for manufacturing optical fiber preforms because it has the disadvantage of being doped.

(課題を解決するための手段) 本発明はこのような不利を解決した光ファイバプリフォ
ーム母材の製造方法に関するものであり、これは気体状
ガラス原料を酸水素火炎バーナーに導入し、その火炎加
水分解によって生成したガラス微粒子を回転している光
ファイバ用コアガラス棒の外周に一層づつ積層させて光
ファイバ用多孔質ガラス母材を製造する方法において、
3ヶ以上の複数の同一寸法設計のバーナーを用い、これ
を該ガラス棒の全長にわたって、等間隔に配置し、全バ
ーナーの合計ガス条件を制御すると共に各バーナー毎の
ガス条件も制御することを特徴とするものである。
(Means for Solving the Problems) The present invention relates to a method for manufacturing an optical fiber preform base material that solves the above-mentioned disadvantages. In a method of manufacturing a porous glass preform for an optical fiber by laminating glass particles produced by hydrolysis layer by layer on the outer periphery of a rotating core glass rod for an optical fiber,
By using three or more burners of the same dimensional design and arranging them at equal intervals over the entire length of the glass rod, the total gas condition of all burners is controlled, and the gas condition of each burner is also controlled. This is a characteristic feature.

すなわち、本発明者らは光ファイバの構造特性を低下さ
せることなく、大型の光ファイバプリフォーム母材を高
速で生産する方法について種々検討した結果、従来公知
の多数個のバーナーを使用する場合には各バーナーおよ
びバーナー間でガラス微粒子の堆積ムラが生じる。これ
を緩和するためにバーナーを移動させると停止点と移動
点でガラス微粒子の堆積ムラが生じる。得られる多孔質
ガラス母材は表面が凹凸をもつものになるのであるが、
本発明にしたがってここに使用する複数個のバーナーを
同一寸法のものに特定すると共にこのバーナー間隔を等
間隔とし、しかもこの全バーナーの合計ガス量と各バー
ナー毎のガス条件を個別に制御することとし、別途に外
径測定機により計測した多孔質ガラス母材の直径、堆積
中のガラス微粒子の積算重量とに応じてこのバーナーに
供給される気体状ガラス原料としてのけい素化合物の供
給量を制御するようにすれば、均一な外径を有する多孔
質ガラス母材を得ることができるので、これより目的と
する光ファイバーブリファーム母材を容易に得ることが
できることを見出して、本発明を完成させた。
That is, the present inventors have studied various methods for producing large optical fiber preform base materials at high speed without deteriorating the structural characteristics of optical fibers. In this case, uneven deposition of glass particles occurs between each burner and between burners. If the burner is moved to alleviate this problem, the glass particles will be deposited unevenly between the stop point and the moving point. The resulting porous glass base material has an uneven surface;
According to the present invention, a plurality of burners used here are specified to be of the same size, and the burners are spaced at equal intervals, and the total gas amount of all burners and the gas conditions for each burner are individually controlled. Then, the amount of silicon compound supplied as a gaseous glass raw material to this burner is determined according to the diameter of the porous glass base material, which is measured separately using an outside diameter measuring device, and the cumulative weight of the glass particles being deposited. The present invention was completed based on the discovery that if controlled, a porous glass base material with a uniform outer diameter could be obtained, and the desired optical fiber brifirm base material could be easily obtained from this. I let it happen.

以下にこれをさらに詳述する。This will be explained in further detail below.

(作用) 本発明による光ファイバプリフォーム母材の製造は気体
状ガラス原料を酸水素火炎で加水分解して生成させたガ
ラス微粒子をコア用ガラス棒上に堆積させて多孔質ガラ
ス母材を作る際に同−設計寸法のバーナーの複数個を等
間隔で配置すると共に、系内に気体状ガラス原料の火炎
加水分解で発生したシリカ微粒子のコアガラス棒への堆
積によって作られた多孔質ガラス母材の直径を測定する
機器およびその重量を測定する装置を設け、さらにはこ
れに設置される複数本のバーナー列およびバーナー元栓
部に制御弁を設けてこの系に供給される気体状ガラス原
料の供給量を制御するようにされる。
(Function) In the production of the optical fiber preform base material according to the present invention, a porous glass base material is created by depositing glass fine particles produced by hydrolyzing a gaseous glass raw material with an oxyhydrogen flame on a glass rod for a core. At the same time, a plurality of burners with the same design dimensions are arranged at equal intervals, and a porous glass matrix made by depositing silica fine particles generated by flame hydrolysis of gaseous glass raw material on a core glass rod is placed in the system. A device for measuring the diameter of the glass material and a device for measuring its weight are installed, and a control valve is installed at the multiple burner rows and the burner main stopper to control the gaseous glass raw material supplied to this system. The amount of supply is controlled.

ここに使用されるコア用ガラス棒は目的とする光ファイ
バプリフォーム母材のコア部となるものであることから
公知のVAD法、OVD法、MCVD法などで作られた
グレーデツトインテックス型またはシングルモード型な
どのプロファイルをもち、一定のクラッド層が存在し、
ガラス化後の屈折率、寸法などの構造パラメーターが測
定確認されたものが望ましい。コア用ガラス棒の全長は
外径変動が5%以下となるように仕上げたのち表面を洗
浄し、ファイヤーポリッシュしたものとすることが好ま
しい。
The core glass rod used here is a graded intex type or a graded intex type made by the known VAD method, OVD method, MCVD method, etc., since it becomes the core part of the target optical fiber preform base material. It has a profile such as a single mode type, and has a certain cladding layer.
It is desirable that structural parameters such as refractive index and dimensions after vitrification have been measured and confirmed. It is preferable that the entire length of the glass rod for the core is finished so that the outer diameter variation is 5% or less, and then the surface is cleaned and fire polished.

このコア用ガラス棒に対するガラス微粒子の堆積は堆積
速度を高めるためには原料ガスをできるだけ多く送る必
要があり、そのためにはガスの濃度を高めるか、大量送
付のために高速噴射させるか、またはバーナーを太くす
るか、あるいはバーナーの数を多くすればよいが、−本
のバーナーでは限界があるので、本発明では少なくとも
3本以上の複数のバーナーとする方法がとられている。
In order to increase the deposition rate of the glass particles on the core glass rod, it is necessary to send as much raw material gas as possible.To do this, it is necessary to increase the concentration of the gas, to inject it at high speed to send a large amount, or to use a burner. It is possible to increase the thickness of the burner or increase the number of burners, but since there is a limit to the number of burners, the present invention adopts a method of using a plurality of burners of at least three burners.

これらのバーナー2・・・は第1図に示されているよう
にコア用ガラス棒1に対向して直列に並置され、これら
はバーナー台に固定されてコア用ガラス棒に平行にバー
ナー列またはコア用ガラス棒のどちらか一方を往復運動
するようにされている。このバーナー2・・・には基本
ガスとして水素ガス、酸素ガス、キャリアーガス(例え
ば酸素ガス)に同伴された四塩化けい素などの各送入バ
イブからのガスが送入さね、これが火炎3を形成し、こ
の火炎加水分解で発生したガラス微粒子かコア用ガラス
棒1の上に堆積して多孔質ガラス母材4が形成されるの
であるが、多孔質ガラス母材4の表面を凹凸の少ないも
のとするということから、ここに使用されるバーナー2
・・・はすべで同一のディメンションで設計された例え
は石英製の同心円状多重管バーナーとし、各バーナーに
よる堆積条件を同一のものとすることから、これらのバ
ーナーはそれぞれ独立にガス条件がコントロールできる
制御機構Bを備えたものとされるし、これらの全バーナ
ーのガス条件を制御するためにこめバーナーの元栓部5
にも制御機構Aが設けられている。また、これらのバー
ナー2・・・はそのバーナー出口とガラス微粒子堆積面
との距離がいずれのバーナーも同一となるように設置す
ることが好ましいが、この各バーナー間の間隙は隣接す
る火炎同志の干渉効果を低減させるということから火炎
3の堆積体表面での炎の拡がりの1.5倍〜2.5倍の
範囲で等間隔となるようにすればよい。炎の拡りは衝突
面の径、ガスの線速C距離に依存し、堆積の進行に伴な
って拡大していくが、堆積効率は太い径のほうがよいの
で、バーナー間隔は太い堆積径を基準として決めるのが
よい。
As shown in FIG. 1, these burners 2 are arranged in series facing the core glass rod 1, and these burners are fixed to a burner stand and are arranged in burner rows or parallel to the core glass rod. Either one of the core glass rods is moved back and forth. Gases such as hydrogen gas, oxygen gas, and silicon tetrachloride accompanied by a carrier gas (for example, oxygen gas) are fed into this burner 2 as basic gases from each feeding vibe, and this causes the flame 3 The glass particles generated by this flame hydrolysis are deposited on the core glass rod 1 to form the porous glass base material 4, but the surface of the porous glass base material 4 is made uneven. Burner 2 is used here because the number of burners is small.
...is an example of a concentric multi-tube burner made of quartz that is designed with the same dimensions, and the deposition conditions for each burner are the same, so the gas conditions of each of these burners can be controlled independently. In order to control the gas conditions of all these burners, the main valve part 5 of the rice burner is installed.
A control mechanism A is also provided. In addition, it is preferable that these burners 2... be installed so that the distance between the burner outlet and the glass particle deposition surface is the same for each burner, but the gap between each burner is the same as that between the adjacent flames. In order to reduce the interference effect, the intervals may be set at equal intervals within a range of 1.5 to 2.5 times the spread of the flame 3 on the surface of the deposit. The spread of the flame depends on the diameter of the collision surface and the linear velocity C distance of the gas, and it expands as the deposition progresses, but the deposition efficiency is better with a larger diameter, so the burner interval should be set to a larger diameter. It is best to use this as a standard.

このような装置でコア用ガラス棒を回転させ、全バーナ
ーに着火し、バーナー列とガラス棒を相対的に往復運動
させて、気体状ガラス原料の火炎加水分解で発生したガ
ラス微粒子をコア用ガラス棒に堆積させて多孔質ガラス
母材を作ると、各バーナーが同一寸法のものとされてい
るのでコア用ガラス棒に堆積されるガラス微粒子の量は
各部位において略々同量となるはずであるが、各バーナ
ーの寸法精度、ガス条件の精度を厳密には同一とするこ
とが難しく、さらに詳細に調べると、反応炉内の気流の
向き、強さ、炎の干渉程度、温度分布、コアガラス棒の
位置による熱履歴差などが堆積径の拡大に伴なって次第
に変えてゆき、相互に影響し合い、堆積条件を全長に沿
って最後まで均一に保持することが難しいことから、得
られる多孔質ガラス母材の形状、直径、重量は各部位に
よって大きく異なるものになる。
With such a device, the glass rod for the core is rotated, all the burners are ignited, and the burner row and the glass rod are reciprocated relative to each other, so that the glass fine particles generated by the flame hydrolysis of the gaseous glass raw material are removed from the glass for the core. When depositing on a rod to create a porous glass base material, the amount of glass particles deposited on the core glass rod should be approximately the same at each location, since each burner is of the same size. However, it is difficult to strictly ensure the same dimensional accuracy and gas condition accuracy for each burner, and a more detailed examination reveals that the direction and strength of the airflow in the reactor, degree of flame interference, temperature distribution, core This is achieved because differences in thermal history due to the position of the glass rod gradually change as the deposition diameter increases, and they influence each other, making it difficult to maintain uniform deposition conditions along the entire length. The shape, diameter, and weight of the porous glass base material vary greatly depending on the location.

したがって、本発明ではこの製造中の多孔質ガラス母材
の各部位の直径を直径測定器6を移動させて形状を測定
すると共にその重量を測定し、各層の平均見かけ比重を
算出し、この結果から全バーナーのガス条件をガス元栓
5に設けられている制御機構Aと各バーナー毎に取りつ
けられている制御機構Bを用いて常に修正制御すればこ
の多孔質ガラス母材の最終直径が均一で目的とする重量
をもつものとすることができるということを見出した。
Therefore, in the present invention, the diameter of each part of the porous glass base material being manufactured is measured by moving the diameter measuring device 6, and its weight is also measured, and the average apparent specific gravity of each layer is calculated. If the gas conditions of all the burners are constantly corrected and controlled using the control mechanism A installed on the gas main valve 5 and the control mechanism B installed on each burner, the final diameter of this porous glass base material can be made uniform. It has been discovered that it is possible to make the material have the desired weight.

この反応装置は排気口、給気口、バーナー差し込み口お
よび主回転伝達部の一部を除いて密閉しておくことがよ
く、これによればゴミの付着、バーナー炎のゆれが防止
され、排ガスの管理ができるので、気泡のない多孔質ガ
ラス母材を容易に得ることができるという有利性が与え
られる。
This reactor is often sealed except for the exhaust port, air supply port, burner insertion port, and part of the main rotation transmission part.This prevents dust from adhering to the burner flame and fluctuating the burner flame, and prevents the exhaust gas from fluctuating. can be controlled, giving the advantage that a porous glass base material free of bubbles can be easily obtained.

なお、このようにして得られた多孔質ガラス母材はつい
で公知の方法で透明ガラス化して光ファイバプリフォー
ム母材とされるのであるが、この透明ガラス化は電気炉
中において必要に応じ添加される塩素ガス、5OC12
,5iC14、フッ素ガスなどを含むヘリウム、アルゴ
ン、窒素ガスなどの不活性ガス雰囲気中で1,000℃
以上に加熱して脱水、透明ガラス化すればよく、このよ
うにして得られた光ファイバプリフォーム母材はガラス
旋盤または電気炉で延伸加工し、プリフォームアナライ
ザーによフてプロファイル検定およびデイメンジョンを
確認し最終製品とされる。
The porous glass preform obtained in this way is then made into a transparent vitrification by a known method to form an optical fiber preform preform. Chlorine gas, 5OC12
, 5iC14, 1,000℃ in an inert gas atmosphere such as helium, argon, or nitrogen gas containing fluorine gas, etc.
The optical fiber preform base material obtained in this way is stretched in a glass lathe or electric furnace, and then profile tested and dimensioned using a preform analyzer. The product is confirmed as a final product.

(実施例) つぎに本発明の実施例、比較例をあげる。(Example) Next, examples of the present invention and comparative examples will be given.

実施例、比較例 排気口を有する密閉式反応炉内に第1図に示したように
外径24.4mm、長さ800mmLのコア用ガラス棒
としての石英ガラスpJ1を取りつけ、この石英棒の側
面に対向して同一寸法に設計された外径40mmの同心
円筒状四重管バーナー2を6本100mm間隔の等間隔
で設置した。これらのバーナー2にはそれぞれ気体状ガ
ス原料としての四塩化けい素の供給量をコントロールす
るためのマスフローコントローラ(制御装置81〜B、
)が付けられ、ガスの元栓5にはバーナー系全体のガス
量をコントロールする大型のマスフローコントローラ(
制御装置A)が設けられており、これらのバーナーは同
時に左右に往復運動することができ、コア用ガラス棒1
との距離も調節できるようにされている。
Examples and Comparative Examples As shown in Fig. 1, a quartz glass pJ1 serving as a core glass rod with an outer diameter of 24.4 mm and a length of 800 mm L was installed in a closed reactor having an exhaust port, and the side surface of this quartz rod was Six concentric cylindrical quadruple tube burners 2 having an outer diameter of 40 mm and designed to have the same dimensions were installed facing each other at equal intervals of 100 mm. Each of these burners 2 is equipped with a mass flow controller (control device 81 to B,
), and the gas main valve 5 is equipped with a large mass flow controller (
A control device A) is provided which allows these burners to reciprocate from side to side at the same time, with the glass rod for the core 1
The distance between the two can also be adjusted.

多孔質ガラス母材の製造はコア用ガラス棒1を30rp
mで回転させ、バーナー列にガスを流して点火し、これ
を100mmの距離に100mm 7分の速度で左右に
運動させることによって行なわれたが、各バーナーに供
給されるガスは堆積径の増大と共に増加させ、最終的に
は5jCj2 < 2.9 j27分、H2SO,4J
2’/分、0. 241/分として5iCIl 4の火
炎加水分解で発生したシリカ微粒子をコア用ガラス棒上
に堆積させた。
To manufacture the porous glass base material, the glass rod 1 for the core was heated at 30 rpm.
This was done by rotating the burner at a speed of 100 mm, igniting it by flowing gas through the burner row, and moving it from side to side at a speed of 100 mm over a distance of 100 mm.The gas supplied to each burner was and finally 5jCj2 < 2.9 j27min, H2SO,4J
2'/min, 0. Silica particles generated by flame hydrolysis of 5iClI4 at 241/min were deposited onto a glass core rod.

シリカ微粒子の堆積で得られた多孔質ガラス母材4につ
いてはその全長にわたる外径を外径測定器6で計測する
と共に平均外径を求め、さらにその全重量を重量測定装
置(図示せず)で測定し、予しめ設定しである所定の外
径と重量とのその時点における差異を検出し、この差異
を最小値とするために全5iCf4の供給量を制御装置
Aで、また各部位における堆積径の差異を最小値とする
ために各バーナーにおける5iCI14の供給量を制御
装置Bで制御すると共に堆積径の増加に伴なってバーナ
ーと多孔質ガラス母材との距離を最適堆積距離に合わせ
ながら合成したところ、4.26時間後に1112mm
の直径をもつ、外径が均一で重量が8.608kgであ
る多孔質ガラス母材が得られたので、ついでこれを電気
炉内でヘリウムガス雰囲気下に1.550℃に4時間加
熱して透明ガラス化したところ、外径が86.6mmで
あるシングルモート用の光ファイバプリフォームが得ら
れた。
The outer diameter of the porous glass base material 4 obtained by depositing silica particles is measured over its entire length with an outer diameter measuring device 6, and the average outer diameter is determined, and the total weight is measured using a weight measuring device (not shown). , the difference between the predetermined outer diameter and weight at that point in time is detected, and in order to minimize this difference, the total amount of 5iCf4 supplied is controlled by the control device A, and at each location. In order to minimize the difference in deposition diameter, the amount of 5iCI14 supplied to each burner is controlled by controller B, and as the deposition diameter increases, the distance between the burner and the porous glass base material is adjusted to the optimal deposition distance. After 4.26 hours, it was 1112mm
A porous glass base material with a uniform outer diameter and a weight of 8.608 kg was obtained, which was then heated at 1.550°C in an electric furnace under a helium gas atmosphere for 4 hours. When it was made into transparent glass, a single-mode optical fiber preform with an outer diameter of 86.6 mm was obtained.

なお、このようにして得た光ファイバプリフォームを1
,950℃で線引きして直径125μmのシングルモー
ド光ファイバを線引きし、これらについてその10ケ所
からカットオフ波長(λC)を求めたところ、このもの
は平均λc =1.216 μmで、バラツキは最大5
2nmであった。
In addition, the optical fiber preform obtained in this way was
, a single mode optical fiber with a diameter of 125 μm was drawn at 950°C, and the cutoff wavelength (λC) was determined from 10 points. The average λc = 1.216 μm, and the maximum variation 5
It was 2 nm.

しかし、比較のために第1図に示した装置において、全
5iCj2.4供給量を制御する制御装置Aは用いたが
、各バーナーの5iCJ24量をコントロールする制御
装置Bは用いないこととして実施例と同じ操作を行なっ
て最大外径170mmの多孔質ガラス母材を製造したと
ころ、このものは外径が全長にわたって最大148〜1
70mmの変動が生じ、予測されるクラッド厚さは規格
を大幅に外れたものとであるために、光ファイバブリフ
ォルムとして修正不可能であり、製造には不適格なもの
であった。
However, for comparison, in the apparatus shown in FIG. 1, the control device A that controls the total amount of 5iCJ2.4 supplied was used, but the control device B that controlled the amount of 5iCJ24 of each burner was not used. When a porous glass base material with a maximum outer diameter of 170 mm was produced by the same operation as above, this material had an outer diameter of 148 to 1 mm over the entire length.
Since a variation of 70 mm occurred and the predicted cladding thickness was significantly out of specification, it could not be corrected as an optical fiber foam and was unsuitable for manufacturing.

(発明の効果) 本発明による光ファイバプリフォーム母材の製法は前記
したように気体状ガラス原料の火炎加水分解で発生した
ガラス微粒子をコア用ガラス棒に堆積して多孔質ガラス
母材を製造するときに、コ4゜ ア用ガラス棒に対向してその全長にわたり複数個の同一
寸法のバーナーを一定間隔で配置し、全バーナーの合計
ガス条件と各バーナー面のガス条件を制御するというも
のであるが、これによれば長時間の運転後には得られる
多孔質ガラス母材の表面における凹凸が平均的に均一化
され、構造特性を低下させることなく、大型の光ファイ
バプリファーム母材を生産性よく容易に得ることができ
るという有利性が与えられる。
(Effects of the Invention) As described above, the method for producing an optical fiber preform base material according to the present invention deposits glass particles generated by flame hydrolysis of a gaseous glass raw material on a glass rod for a core to produce a porous glass base material. In this method, a plurality of burners of the same size are placed at regular intervals across the entire length of the glass rod for the core 4°, and the total gas condition of all burners and the gas condition of each burner surface are controlled. However, according to this method, the unevenness on the surface of the porous glass base material obtained after long-time operation is evened out, and it is possible to form large optical fiber prefarm base materials without deteriorating the structural characteristics. It has the advantage of being easily obtainable with good productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に使用される多孔質ガラス母材製
造装置の縦断面図を示したものである。 1・・・コア用ガラス棒 2・・・バーナー3・・・バ
ーナー火炎 4・・・多孔質ガラス母材 5・・・バーナー元栓
FIG. 1 shows a longitudinal sectional view of a porous glass preform manufacturing apparatus used in the method of the present invention. 1... Glass rod for core 2... Burner 3... Burner flame 4... Porous glass base material 5... Burner main stopper

Claims (1)

【特許請求の範囲】 1、気体状ガラス原料を酸水素火炎バーナーに導入し、
その火炎加水分解で生成したガラス微粒子を回転してい
る光ファイバ用コアガラス棒の外周に一層づつ積層させ
て光ファイバ用多孔質ガラス母材を製造する方法におい
て、3個以上の複数の同一寸法のバーナーを用い、これ
を該ガラス棒の全長にわたって等間隔に配置し、全バー
ナーの合計ガス条件を堆積スケジュールに沿って制御す
ると共に各バーナー毎のガス条件を堆積体の形状が均一
化できるように個別に制御することを特徴とする光ファ
イバプリフォーム母材の製造方法。 2、堆積中の多孔質ガラス母材の重量と平均外径を測定
し、堆積スケジュールに合わせるように全バーナーの合
計ガス条件をフィードバック制御する請求項1に記載し
た光ファイバプリフォーム母材の製造方法。 3、堆積中の多孔質ガラス母材の外径を全長にわたり測
定し、複数の点において平均外径との差異を検出し、こ
れが所定の値以下となるように各バーナーのガス条件を
フィードバック制御する請求項1または2に記載した光
ファイバプリフォーム母材の製造方法。
[Claims] 1. Introducing a gaseous glass raw material into an oxyhydrogen flame burner,
A method of manufacturing a porous glass base material for optical fibers by laminating glass fine particles produced by flame hydrolysis layer by layer on the outer periphery of a rotating core glass rod for optical fibers, in which three or more pieces of the same size burners are arranged at regular intervals along the entire length of the glass rod, and the total gas conditions of all burners are controlled in accordance with the deposition schedule, and the gas conditions of each burner are adjusted so that the shape of the deposited body is uniform. 1. A method for manufacturing an optical fiber preform base material, which is characterized by individually controlling: 2. Manufacturing the optical fiber preform preform according to claim 1, wherein the weight and average outer diameter of the porous glass preform during deposition are measured, and the total gas conditions of all burners are feedback-controlled to match the deposition schedule. Method. 3. Measure the outer diameter of the porous glass base material being deposited over its entire length, detect the difference from the average outer diameter at multiple points, and feedback control the gas conditions of each burner so that this is below a predetermined value. The method for manufacturing an optical fiber preform base material according to claim 1 or 2.
JP2082152A 1990-03-29 1990-03-29 Manufacturing method of optical fiber preform base material Expired - Fee Related JP2622182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2082152A JP2622182B2 (en) 1990-03-29 1990-03-29 Manufacturing method of optical fiber preform base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2082152A JP2622182B2 (en) 1990-03-29 1990-03-29 Manufacturing method of optical fiber preform base material

Publications (2)

Publication Number Publication Date
JPH03279234A true JPH03279234A (en) 1991-12-10
JP2622182B2 JP2622182B2 (en) 1997-06-18

Family

ID=13766468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2082152A Expired - Fee Related JP2622182B2 (en) 1990-03-29 1990-03-29 Manufacturing method of optical fiber preform base material

Country Status (1)

Country Link
JP (1) JP2622182B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0719738A2 (en) * 1994-12-29 1996-07-03 Alcatel N.V. Process for making optical fibre preform employing plasma deposition
US5735928A (en) * 1993-06-18 1998-04-07 Tsl Group Plc Apparatus for manufacturing a vitreous silica article
EP0845441A1 (en) * 1996-11-27 1998-06-03 Shin-Etsu Chemical Co., Ltd. Apparatus and method for making an optical fiber preform
US6047564A (en) * 1996-07-18 2000-04-11 Heraeus Quarzglas Gmbh Method of producing quartz glass bodies
KR100314493B1 (en) * 1998-12-31 2001-12-28 김진찬 Fiber optic substrate heater
WO2002010079A1 (en) * 2000-07-31 2002-02-07 Shin-Etsu Chemical Co., Ltd. Glass base material producing device and glass base material producing method
JP2002121046A (en) * 2000-08-07 2002-04-23 Shin Etsu Chem Co Ltd Apparatus for grinding glass preform and method for producing glass preform
WO2003037809A1 (en) * 2001-11-01 2003-05-08 Sumitomo Electric Industries, Ltd. Method for producing optical fiber base material
EP1295854A3 (en) * 2001-09-20 2004-01-07 Sumitomo Electric Industries, Ltd. Method for producing a glass soot preform for optical fibres by vapour phase deposition
KR100426394B1 (en) * 2001-10-26 2004-04-08 엘지전선 주식회사 The controlling method and device of deposition paricle in farbricating large preform by outside vapor deposition
EP1414764A1 (en) * 2002-06-28 2004-05-06 LG Cable Ltd. Outside vapor deposition apparatus for making optical fiber preform and method for making optical fiber preform using the same
US6895783B2 (en) 2000-09-21 2005-05-24 Sumitomo Electric Industries, Ltd. Method of producing optical fiber preform
DE102012013134A1 (en) * 2012-07-03 2014-01-09 Heraeus Quarzglas Gmbh & Co. Kg Process for the production of cylinders made of quartz glass
CN107207319A (en) * 2015-01-08 2017-09-26 古河电气工业株式会社 The manufacture method of the glass granules accumulation body of gas diverter and use gas diverter
JP2020114801A (en) * 2015-01-13 2020-07-30 エイエスアイ/シリカ・マシナリー・エルエルシーAsi/Silica Machinery, Llc Improved particle vapor deposition system and method
CN116203911A (en) * 2023-05-05 2023-06-02 长飞光纤光缆股份有限公司 Optical fiber preform deposition workshop process test rod throwing scheduling method and system
CN117285244A (en) * 2023-11-23 2023-12-26 中国工程物理研究院激光聚变研究中心 Calibration model acquisition and calibration method for rare earth doped content and aluminum doped content
US11993532B2 (en) 2019-09-20 2024-05-28 Asi/Silica Machinery, Llc Enhanced particle deposition system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183330A (en) * 1981-04-30 1982-11-11 Nippon Sheet Glass Co Ltd Production of basic material for optical-communication glass fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183330A (en) * 1981-04-30 1982-11-11 Nippon Sheet Glass Co Ltd Production of basic material for optical-communication glass fiber

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5735928A (en) * 1993-06-18 1998-04-07 Tsl Group Plc Apparatus for manufacturing a vitreous silica article
EP0719738A2 (en) * 1994-12-29 1996-07-03 Alcatel N.V. Process for making optical fibre preform employing plasma deposition
FR2728888A1 (en) * 1994-12-29 1996-07-05 Alcatel Cable PROCESS FOR OBTAINING OPTICAL FIBER PREFORM USING PLASMA RECHARGE
EP0719738A3 (en) * 1994-12-29 1996-07-24 Alcatel Nv
US6047564A (en) * 1996-07-18 2000-04-11 Heraeus Quarzglas Gmbh Method of producing quartz glass bodies
EP0845441A1 (en) * 1996-11-27 1998-06-03 Shin-Etsu Chemical Co., Ltd. Apparatus and method for making an optical fiber preform
KR100314493B1 (en) * 1998-12-31 2001-12-28 김진찬 Fiber optic substrate heater
WO2002010079A1 (en) * 2000-07-31 2002-02-07 Shin-Etsu Chemical Co., Ltd. Glass base material producing device and glass base material producing method
US7823418B2 (en) 2000-07-31 2010-11-02 Shin-Etsu Chemical Co., Ltd. Method of making glass base material
JP2008208025A (en) * 2000-07-31 2008-09-11 Shin Etsu Chem Co Ltd Glass base material manufacturing device and glass base material manufacturing method
US7213416B2 (en) 2000-07-31 2007-05-08 Shin-Etsu Chemical Co., Ltd. Glass base material producing device
JP2002121046A (en) * 2000-08-07 2002-04-23 Shin Etsu Chem Co Ltd Apparatus for grinding glass preform and method for producing glass preform
JP4722337B2 (en) * 2000-08-07 2011-07-13 信越化学工業株式会社 Glass base material manufacturing apparatus and glass base material manufacturing method
US6895783B2 (en) 2000-09-21 2005-05-24 Sumitomo Electric Industries, Ltd. Method of producing optical fiber preform
US6837077B2 (en) * 2001-09-20 2005-01-04 Sumitomo Electric Industries, Ltd. Method for producing soot body
EP1295854A3 (en) * 2001-09-20 2004-01-07 Sumitomo Electric Industries, Ltd. Method for producing a glass soot preform for optical fibres by vapour phase deposition
KR100426394B1 (en) * 2001-10-26 2004-04-08 엘지전선 주식회사 The controlling method and device of deposition paricle in farbricating large preform by outside vapor deposition
WO2003037809A1 (en) * 2001-11-01 2003-05-08 Sumitomo Electric Industries, Ltd. Method for producing optical fiber base material
EP1414764A1 (en) * 2002-06-28 2004-05-06 LG Cable Ltd. Outside vapor deposition apparatus for making optical fiber preform and method for making optical fiber preform using the same
US7441417B2 (en) 2002-06-28 2008-10-28 Ls Cable Ltd. Outside vapor deposition apparatus for making optical fiber preform
DE102012013134A1 (en) * 2012-07-03 2014-01-09 Heraeus Quarzglas Gmbh & Co. Kg Process for the production of cylinders made of quartz glass
DE102012013134B4 (en) * 2012-07-03 2014-04-03 Heraeus Quarzglas Gmbh & Co. Kg Process for the production of cylinders made of quartz glass
CN107207319A (en) * 2015-01-08 2017-09-26 古河电气工业株式会社 The manufacture method of the glass granules accumulation body of gas diverter and use gas diverter
US10683230B2 (en) 2015-01-08 2020-06-16 Furukawa Electric Co., Ltd. Gas branching apparatus and method for manufacturing fine glass particle deposited body using the same
CN107207319B (en) * 2015-01-08 2020-10-09 古河电气工业株式会社 Gas flow divider and method for producing glass fine particle deposit using gas flow divider
JP2020114801A (en) * 2015-01-13 2020-07-30 エイエスアイ/シリカ・マシナリー・エルエルシーAsi/Silica Machinery, Llc Improved particle vapor deposition system and method
US11370691B2 (en) 2015-01-13 2022-06-28 Asi/Silica Machinery, Llc Enhanced particle deposition system and method
US11993532B2 (en) 2019-09-20 2024-05-28 Asi/Silica Machinery, Llc Enhanced particle deposition system and method
CN116203911A (en) * 2023-05-05 2023-06-02 长飞光纤光缆股份有限公司 Optical fiber preform deposition workshop process test rod throwing scheduling method and system
CN117285244A (en) * 2023-11-23 2023-12-26 中国工程物理研究院激光聚变研究中心 Calibration model acquisition and calibration method for rare earth doped content and aluminum doped content
CN117285244B (en) * 2023-11-23 2024-04-05 中国工程物理研究院激光聚变研究中心 Calibration model acquisition and calibration method for rare earth doped content and aluminum doped content

Also Published As

Publication number Publication date
JP2622182B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
JP2612949B2 (en) Manufacturing method of optical fiber preform base material
JP3131162B2 (en) Manufacturing method of optical fiber preform
JPH03279234A (en) Production of parent material of preform of optical fiber
CA1104825A (en) Method and apparatus for manufacturing a glass optical transmission fiber preform
US4265649A (en) Method for preparing a preform for optical waveguides
CN108017271B (en) OVD (over-the-counter lamp) strip-shaped blowlamp device, OVD rod making system and use method thereof
JP2003335541A (en) Method for manufacturing porous preform
EP1440949B1 (en) Method for producing optical fiber base material
KR100402847B1 (en) OVD apparatus for Optical fiber
JP4057304B2 (en) Manufacturing method of optical fiber preform
JPH0354129A (en) Preparation of optical fiber preform
JPH08325029A (en) Production of porous glass preform for optical fiber
JP2866436B2 (en) Method for producing porous preform preform for optical fiber
JPH0986948A (en) Production of porous glass base material for optical fiber
JP4169260B2 (en) Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends
JPH02307838A (en) Production of optical fiber preform
KR100566222B1 (en) Fabrication method of optical fiber preform and apparatus for optical fiber preforms
EP1705158A1 (en) Process for producing porous preform for optical fiber and glass preform
JPH05116980A (en) Production of performed base material for optical fiber
JP3826839B2 (en) Manufacturing method of glass base material
JP2846048B2 (en) Method for producing porous glass base material
JP3503134B2 (en) Manufacturing method of optical fiber preform
JP3953855B2 (en) Method for producing porous base material
JP2003002681A (en) Method and apparatus for producing optical fiber preform
JP2003054977A (en) Method for manufacturing optical fiber preform

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees