JPH03277994A - Tank-shaped fast breeder - Google Patents

Tank-shaped fast breeder

Info

Publication number
JPH03277994A
JPH03277994A JP2076594A JP7659490A JPH03277994A JP H03277994 A JPH03277994 A JP H03277994A JP 2076594 A JP2076594 A JP 2076594A JP 7659490 A JP7659490 A JP 7659490A JP H03277994 A JPH03277994 A JP H03277994A
Authority
JP
Japan
Prior art keywords
sodium
core
reactor vessel
coolant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2076594A
Other languages
Japanese (ja)
Inventor
Fumio Otsuka
文夫 大塚
Susumu Ninomiya
進 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2076594A priority Critical patent/JPH03277994A/en
Publication of JPH03277994A publication Critical patent/JPH03277994A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To suppress the disturbance of the surface of sodium in a vessel and to prevent the involution of the cover gas from the surface by providing a flow path deflecting part prescribing the flow in the vicinity of the surface of a cooling material between a circulation pump and a heat exchanger. CONSTITUTION:A cooling material is sent in the core 8 of a reactor vessel 1 by the circulation pump 4 provided so as to pierce the roof slab 3 closing the opening part of the reactor vessel 1 to be circulated. A heat exchanger 6 performs the heat exchange with the cooling material to the take out heat to the outside of the vessel 1. Flow path deflecting plates 15 are inserted between the pump 4, the heat exchanger 6 and a core upper mechanism 10 through the slab 3 and immersed in the lower part of liquid sodium 2 being the cooling material from the surface 13 thereof. The flow of sodium 2 passing through the gap between the pump 4 and the heat exchanger 6 in the vicinity of the surface 13 of sodium 12 to go toward the mechanism 10 is bent in a definite direction by the deflecting plates 15. Therefore, a stable swirl is generated around the mechanism 10 and the generation of a vortex in the surface 13 is suppressed and the involution of cover gas is prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子炉容器内の冷却材液面の変動。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention deals with fluctuations in the coolant liquid level within the reactor vessel.

波立ちを抑制し、ガス巻込みの防止、原子炉容器と炉内
機器に加わる撮画および熱応力を低減したタンク型高速
増殖炉に関する。
This invention relates to a tank-type fast breeder reactor that suppresses ripples, prevents gas entrainment, and reduces imaging and thermal stress applied to the reactor vessel and internal equipment.

(従来の技術) 一般に高速増殖炉は大略的に原子炉容器の上部開口をル
ーフスラブで閉塞し、多数本の燃料集合体を植設した炉
心を原子炉容器下部の炉心支持機構によって原子炉容器
の中央に配置するとともに、この炉心の上部に炉心上部
機構をルーフスラブを貫通して設け、さらに炉心上部機
構の外周に循環ポンプと中間熱交換器とを複数ルーフス
ラブから垂下した配置構成となっている。また、高速増
殖炉の冷却材には液体金属ナトリウムが使用されており
、炉心は循環ポンプによって送り込まれた低温のナトリ
ウムで冷却される。炉心を冷却して高温になったナトリ
ウムは熱交換器で2次冷却材と熱交換し冷却されたのち
、再び循環ポンプによって炉心に送り込まれる。
(Prior art) In general, in a fast breeder reactor, the upper opening of the reactor vessel is roughly closed with a roof slab, and the reactor, in which a large number of fuel assemblies are installed, is supported by a core support mechanism in the lower part of the reactor vessel. At the same time, a core upper mechanism is installed in the upper part of the core, penetrating the roof slab, and a plurality of circulation pumps and intermediate heat exchangers are arranged around the outer periphery of the core upper mechanism, hanging from the roof slab. ing. In addition, liquid metallic sodium is used as a coolant in fast breeder reactors, and the reactor core is cooled with low-temperature sodium pumped in by circulation pumps. The sodium, which has cooled to a high temperature after cooling the reactor core, is cooled by exchanging heat with the secondary coolant in a heat exchanger, and then pumped into the reactor core again by a circulation pump.

第6図および第7図に従来の実施例を示すタンク型高速
増殖炉の縦断面を示している。なお、第7図は第6図の
■−■矢視方向の横断面を示している。
FIGS. 6 and 7 show longitudinal sections of tank-type fast breeder reactors showing conventional examples. Note that FIG. 7 shows a cross section taken in the direction of the arrows ■-■ in FIG. 6.

第6図および第7図において、原子炉容器l内には冷却
材である液体ナトリウム2が収納され、原子炉容器1の
上端開口はルーフスラブ3によって閉塞されている。ル
ーフスラブ3にはこのルーフスラブ3を貫通して循環ポ
ンプ4と上部に二次ナトリウムの入口5aおよび出口5
bを備えた熱交換器6とが挿入され、それぞれの下部は
隔壁7によって支持されている。
In FIGS. 6 and 7, liquid sodium 2, which is a coolant, is stored in a reactor vessel 1, and the upper opening of the reactor vessel 1 is closed by a roof slab 3. The roof slab 3 is provided with a circulation pump 4 passing through the roof slab 3, and a secondary sodium inlet 5a and outlet 5 at the top.
A heat exchanger 6 with a heat exchanger 6 is inserted, the lower part of each of which is supported by a partition wall 7.

さらに、原子炉容器1の中央には多数本の燃料集合体を
植設した炉心8が炉心支持機構9によって配設されてい
る。この炉心8の上部にはルーフスラブ3を貫通して炉
心上部機構lOが配置されている。
Further, in the center of the reactor vessel 1, a reactor core 8 in which a large number of fuel assemblies are installed is arranged by a core support mechanism 9. A core upper mechanism IO is disposed in the upper part of the core 8, passing through the roof slab 3.

このような構成による冷却材の流れは@環ポンプ4によ
って炉心8へ送り込まれた低温ナトリウム2bにより炉
心8を冷却する。炉心8を冷却して高温となった高温ナ
トリウム2aは炉心上部機構lOの下端に沿って矢印で
示したごとく斜め上方へ放射状に流れ、一部は熱交換器
6の入口窓11から熱交換器6内に導かれ、熱交換器6
内に組込まれた図示していない多数本の伝熱管部を通っ
て二次ナトリウムと熱交換して低温となり、熱交換器6
の出口12から流出する。出口12から流出した低温ナ
トリウム2bは循環ポンプ4に導かれて再び炉心8へと
送り込まれる。
The flow of coolant with this configuration cools the core 8 by the low-temperature sodium 2b sent into the core 8 by the ring pump 4. The high-temperature sodium 2a, which has become hot by cooling the core 8, flows radially upward obliquely as shown by the arrow along the lower end of the upper core mechanism 1O, and a part of the sodium flows from the inlet window 11 of the heat exchanger 6 to the heat exchanger. 6 into the heat exchanger 6
It exchanges heat with the secondary sodium through a large number of heat exchanger tubes (not shown) built into the heat exchanger 6, and the temperature becomes low.
It flows out from the outlet 12 of. The low temperature sodium 2b flowing out from the outlet 12 is guided by the circulation pump 4 and sent into the reactor core 8 again.

このように炉心8の熱は熱交換器6によって二次ナトリ
ウムへと伝えられるが、高温ナトリウム2aの流れはか
なり複雑な流れ方をする。すなわち、炉心8を通過した
ナトリウム2aは前述したように炉心上部機構lOに沿
って矢印で示したごとく斜め上方へ放射状に流れ、一方
は熱交換器6の入口窓11へ向かう流れとなり、他方は
原子炉容器lの壁面および循環ポンプ4の壁面にぶつか
り、主流は上昇流となる。この主流はナトリウム液面1
3の近傍では第6図および第7図に示すような複雑な表
面流れとなる。なお、循環ポンプ4の壁面に当った流れ
はその壁面に沿ってナトリウム液面13に向う上昇流と
なる。
In this way, the heat of the core 8 is transferred to the secondary sodium by the heat exchanger 6, but the flow of the high-temperature sodium 2a is quite complicated. That is, as described above, the sodium 2a that has passed through the core 8 flows diagonally upward radially as shown by the arrows along the upper core mechanism 1O, with one direction flowing toward the inlet window 11 of the heat exchanger 6, and the other flowing toward the inlet window 11 of the heat exchanger 6. The main flow hits the wall of the reactor vessel l and the wall of the circulation pump 4, and becomes an upward flow. This mainstream is sodium liquid level 1
In the vicinity of 3, the surface flow becomes complicated as shown in FIGS. 6 and 7. Note that the flow hitting the wall of the circulation pump 4 becomes an upward flow toward the sodium liquid level 13 along the wall.

(発明が解決しようとする課題) しかして、その複雑な表面流れによってナトリウム液面
13は乱されて変動し波立ちが発生する。
(Problem to be Solved by the Invention) However, due to the complicated surface flow, the sodium liquid level 13 is disturbed and fluctuated, causing ripples.

特に第6図および第7図に示したような循環ポンプ4お
よび熱交換器6の配置が対称になっている場合ではナト
リウム液面13の近傍を流れる高温ナトリウム2aは原
子炉容器1の側から炉心上部機構lOへ向う流れも対称
的な流れになる。
In particular, when the circulation pump 4 and heat exchanger 6 are arranged symmetrically as shown in FIGS. The flow toward the upper core mechanism IO also becomes a symmetrical flow.

すなわち、第6図および第7図に示すように循環ポンプ
4と熱交換器6の間隙を通る高温ナトリウム2aの流れ
は炉心上部機構10にぶつかり左右に分かれようとする
流れになる。従って、この流れは隣接した循環ポンプ4
と熱交換器6を通ってきた流れとぶつかり合うことにな
り、この部分で大きな液面変動および旋回渦が発生する
That is, as shown in FIGS. 6 and 7, the flow of high-temperature sodium 2a passing through the gap between the circulation pump 4 and the heat exchanger 6 hits the core upper mechanism 10 and becomes a flow that tends to split into left and right sides. Therefore, this flow is transferred to the adjacent circulation pump 4.
The liquid collides with the flow that has passed through the heat exchanger 6, and large liquid level fluctuations and swirling vortices occur in this area.

そのナトリウム液面13の大きな乱れおよび旋回渦の発
生によりカバーガス14を微細な気泡としてナトリウム
液面13から流れに巻込む恐れがある。
The large turbulence of the sodium liquid level 13 and the generation of swirling vortices may cause the cover gas 14 to be drawn into the flow from the sodium liquid level 13 in the form of fine bubbles.

仮に、流れの中にカバーガス14の巻き込みを生じた場
合には、カバーガス14は循環ポンプ4に導かれ、熱交
換器6を介して炉心8に送り込まれる。
If the cover gas 14 is entrained in the flow, the cover gas 14 is guided to the circulation pump 4 and sent into the reactor core 8 via the heat exchanger 6.

炉心8へ送り込まれたカバーガス14は炉心8によって
加熱され体積膨張し、炉心8とナトリウム2との接触を
一部妨げることになる。
The cover gas 14 sent into the reactor core 8 is heated by the reactor core 8 and expands in volume, thereby partially preventing contact between the reactor core 8 and the sodium 2 .

そこで、カバーガス14.例えばアルゴンがガスではナ
トリウムに比べ熱伝達率が1/1000以下と非常に悪
いために、カバーガス14が通過する部分に於いて炉心
8は過熱状態となり、炉心8が溶融して重大事故を起こ
す可能性がある。
Therefore, cover gas 14. For example, when argon is a gas, the heat transfer coefficient is very poor, less than 1/1000 compared to sodium, so the core 8 becomes overheated in the area where the cover gas 14 passes, causing the core 8 to melt and cause a serious accident. there is a possibility.

また、ナトリウム液面13は180℃程度のカバーガス
14によって覆われている。ナトリウム液面13に炉上
部機構、循環ポンプ4、熱交換器6および炉容器1など
炉内機器の壁面には、高温(500℃以上)のナトリウ
ム2aとカバーガス14の温度差によって通常でも急激
な温度勾配が生じ、熱応力が発生している。前述したよ
うに高温ナトリウム2aの流れによってナトリウム液面
13が変動することになり、熱疲労によって構造材の健
全性を損なう課題がある。
Further, the sodium liquid surface 13 is covered with a cover gas 14 having a temperature of about 180°C. Even under normal conditions, the sodium liquid level 13 is exposed to the walls of in-furnace equipment such as the upper furnace mechanism, circulation pump 4, heat exchanger 6, and furnace vessel 1 due to the temperature difference between the high-temperature (500°C or higher) sodium 2a and the cover gas 14. A temperature gradient occurs and thermal stress occurs. As described above, the sodium liquid level 13 fluctuates due to the flow of the high-temperature sodium 2a, which poses a problem of impairing the integrity of the structural material due to thermal fatigue.

以上のように上部プレナム内において、ナトリウム液面
13を乱し、カバーガス14を主流に巻き込み炉心8の
健全性を損なう課題がある。また、液面13の変動によ
り発生する繰返し熱応力による熱疲労により構造材の健
全性を損なう課題もある。
As described above, there is a problem in that the sodium liquid level 13 is disturbed in the upper plenum, the cover gas 14 is drawn into the mainstream, and the integrity of the core 8 is impaired. Further, there is also the problem that the soundness of the structural material is impaired due to thermal fatigue due to repeated thermal stress caused by fluctuations in the liquid level 13.

本発明は上記課題を解決するためになされたもので、上
部ブレナム内での液面変動、波立ち旋回渦を抑制し、カ
バーガスの巻き込みを防止することによって炉心の溶融
事故を未然に防止し、またナトリウム液面に接する炉内
機器に発生する繰返し熱応力を防止し、炉心および構造
材の健全性を確保して信頼性の大きいタンク型高速増殖
炉を提供することにある。
The present invention has been made to solve the above problems, and it prevents core melting accidents by suppressing liquid level fluctuations and ripples and swirling vortices in the upper brenum, and preventing entrainment of cover gas. It is also an object of the present invention to provide a highly reliable tank-type fast breeder reactor that prevents repeated thermal stress from occurring in reactor equipment that comes into contact with the sodium liquid level and ensures the integrity of the reactor core and structural materials.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 第1の発明は液体金属の冷却材を収納し液面を有する原
子炉容器の上部開口を閉塞するために配設されるルーフ
スラブと、前記原子炉容器内に設けられた炉心に冷却材
を送り込み該原子炉容器内の冷却材を循環するための前
記ルーフスラブを貫通して設けられた循環ポンプと、前
記冷却材と熱交換して前記原子炉容器外へ熱を取出す熱
交換器とを具備してなるタンク型高速増殖炉において、
前記循環ポンプと前記熱交換器との間に前記ルーフスラ
ブの上部から挿入し前記冷却材液面の下部まで達し、前
記液面近傍の流れを規制する流路偏向板を設けてなるこ
とを特徴とする。
(Means for Solving the Problems) A first invention provides a roof slab disposed to close an upper opening of a reactor vessel which houses a liquid metal coolant and has a liquid surface, and a roof slab provided inside the reactor vessel. A circulation pump is installed through the roof slab to feed coolant into the reactor core installed in the reactor vessel and circulate the coolant inside the reactor vessel, and a circulation pump is installed through the roof slab to circulate the coolant inside the reactor vessel, and a circulation pump that exchanges heat with the coolant to circulate the coolant outside the reactor vessel. In a tank-type fast breeder reactor equipped with a heat exchanger for extracting heat from
A flow path deflection plate is provided between the circulation pump and the heat exchanger, inserted from the upper part of the roof slab, reaching the lower part of the coolant liquid level, and regulating the flow near the liquid level. shall be.

第2の発明は液体金属の冷却材を収納し液面を有する原
子炉容器の上部開口を閉塞するために配設されるルーフ
スラブと、前記原子炉容器内に設けられた炉心に冷却材
を送り込み該原子炉容器内の冷却材を循環するための前
記ルーフスラブを貫通して設けられた循環ポンプと、前
記冷却材と熱交換して前記原子炉容器外へ熱を取出す熱
交換器とを具備してなるタンク型高速増殖炉において、
前記循環ポンプの外周部に炉心から流出した冷却材の流
路を偏向、流速を抑制する流路偏向板を設けてなること
を特徴とする。
The second invention includes a roof slab disposed to close an upper opening of a reactor vessel that houses a liquid metal coolant and has a liquid level, and a roof slab that is arranged to close an upper opening of a reactor vessel that houses a liquid metal coolant and that supplies a coolant to a core provided in the reactor vessel. a circulation pump provided through the roof slab for circulating coolant inside the reactor vessel; and a heat exchanger for exchanging heat with the coolant and extracting heat to the outside of the reactor vessel. In a tank-type fast breeder reactor equipped with
The circulation pump is characterized in that a flow path deflecting plate is provided on the outer circumferential portion of the circulation pump to deflect the flow path of the coolant flowing out from the core and suppress the flow velocity.

(作 用) 第1の発明において、液面近傍のナトリウムの流れは循
環ポンプと熱交換器の間隙を通り、流路偏向板により一
定方向に曲げられ、炉心上部機構に沿った流れが形成さ
れ、常に安定した旋回流れが炉心上部機構の囲りに形成
される。従って、向い合う流れおよびぶつかり合う流れ
がなくなり、ナトリウム液面の変動波立ち旋回渦の発生
を抑制できカバーガスの巻込みを防止できる。さらに、
ナトリウム液面も安定して液面変動および波立ちによる
構造材への繰返し熱応力を低減できる。
(Function) In the first invention, the flow of sodium near the liquid surface passes through the gap between the circulation pump and the heat exchanger, is bent in a certain direction by the flow path deflection plate, and a flow is formed along the upper core mechanism. , a constantly stable swirling flow is formed around the upper core mechanism. Therefore, opposing flows and colliding flows are eliminated, and the generation of fluctuating undulations and swirling vortices in the sodium liquid level can be suppressed, and entrainment of the cover gas can be prevented. moreover,
The sodium liquid level is also stable, reducing repeated thermal stress on structural materials due to liquid level fluctuations and ripples.

第2の発明において、炉心から流出したナトリウムは炉
心上部機構の下端に沿って斜め上方に流れ、一方は熱交
換器の入口窓に向う流れとなり、他方は循環ポンプの外
壁へ向かい循環ポンプの外壁に沿って流れる。そして、
循環ポンプの外壁の周方向に設けられた流路偏向板によ
ってナトリウム液面に向う流れを偏向分散する。これに
よってナトリウム液面に向かう流速が抑制され、ナトリ
ウム液面の変動、波立ちが抑制でき、カバーガスの巻き
込みを防止できる。またナトリウム液面も安定して液面
変動および波立ちによる構造材への繰返し熱応力を低減
できる。
In the second invention, the sodium flowing out from the core flows obliquely upward along the lower edge of the upper core mechanism, one flow toward the inlet window of the heat exchanger, and the other flow toward the outer wall of the circulation pump. flows along. and,
The flow toward the sodium liquid surface is deflected and dispersed by a flow path deflection plate provided in the circumferential direction of the outer wall of the circulation pump. This suppresses the flow velocity toward the sodium liquid level, suppresses fluctuations and ripples in the sodium liquid level, and prevents entrainment of the cover gas. In addition, the sodium liquid level is stable, reducing repeated thermal stress on structural materials due to liquid level fluctuations and ripples.

(実施例) 本発明の第1の実施例を第1図および第2図を参照して
説明する。
(Example) A first example of the present invention will be described with reference to FIGS. 1 and 2.

本発明に係るタンク型高速増殖炉を示す第1図において
、原子炉容器1内に・は冷却材である液体ナトリウム2
が収納され、原子炉容器lの上端開口はルーフスラブ3
によって閉塞されている。ルーフスラブ3にはルーフス
ラブ3を貫通して循環ポンプ4と上部に二次ナトリウム
の入口5aおよび出口5bを備えた熱交換器6とが挿入
され、それぞれの下部は隔壁7によって支持されている
In FIG. 1 showing a tank-type fast breeder reactor according to the present invention, inside a reactor vessel 1, there is liquid sodium 2, which is a coolant.
is housed, and the upper opening of the reactor vessel l is the roof slab 3.
is blocked by. A circulation pump 4 and a heat exchanger 6 having an inlet 5a and an outlet 5b for secondary sodium at the upper part are inserted through the roof slab 3, and the lower part of each is supported by a partition wall 7. .

原子炉容器1の中央には多数本の燃料集合体を植設した
炉心8が炉心支持機構9によって配設されている。この
炉心8の上部にはルーフスラブ3を貫通して炉心上部機
構lOが配置されている。
A reactor core 8 in which a large number of fuel assemblies are installed is disposed in the center of the reactor vessel 1 by a core support mechanism 9. A core upper mechanism IO is disposed in the upper part of the core 8, passing through the roof slab 3.

このような構成による冷却材の流れは循環ポンプ4によ
って炉心8へ送り込まれた低温ナトリウム2bにより炉
心8を冷却する。炉心8を冷却して高温となった高温ナ
トリウム2aは炉心上部機構lOの下端に沿って矢印で
示したごとく斜め上方へ放射状に流れ、熱交換器6の入
口窓11から熱交換器6内に導かれ、熱交換器6内に組
込まれた図示していない多数本の伝熱管部を通って二次
ナトリウムと熱交換して低湿となり、熱交換器6の出口
12から流出する。出口12から流出した低温ナトリウ
ム2bは循環ポンプ4に導かれて再び炉心8へと送り込
まれる。
The flow of coolant with this configuration cools the core 8 by the low-temperature sodium 2b sent into the core 8 by the circulation pump 4. The high-temperature sodium 2a, which has become hot by cooling the core 8, flows radially upward obliquely as shown by the arrow along the lower end of the upper core mechanism IO, and flows into the heat exchanger 6 from the inlet window 11 of the heat exchanger 6. It passes through a large number of heat exchanger tubes (not shown) incorporated in the heat exchanger 6, exchanges heat with the secondary sodium, becomes low in humidity, and flows out from the outlet 12 of the heat exchanger 6. The low temperature sodium 2b flowing out from the outlet 12 is guided by the circulation pump 4 and sent into the reactor core 8 again.

循環ポンプ4と熱交換器6と炉心上部機構10との間に
はルーフスラブ3の上部から挿入され、冷却材のナトリ
ウム液面13の下部まで没入する流路偏向板15が設け
られている。
A flow path deflection plate 15 is provided between the circulation pump 4, the heat exchanger 6, and the upper core mechanism 10, which is inserted from the top of the roof slab 3 and immersed below the sodium liquid level 13 of the coolant.

しかして、ナトリウム液面13の近傍で原子炉容器1の
側から循環ポンプ4と熱交換器6の間隙を通って、炉心
上部機構lOへ向うナトリウムの流れは循環ポンプ4と
熱交換器6と炉心上部機構10の間に設けられた流路偏
向板15により第2図に示すように一定方向へ曲げられ
る。
Therefore, the flow of sodium from the side of the reactor vessel 1 near the sodium liquid level 13 toward the upper core mechanism IO through the gap between the circulation pump 4 and the heat exchanger 6 is caused by the circulation pump 4 and the heat exchanger 6. The flow path deflecting plate 15 provided between the upper core mechanism 10 bends the flow path in a certain direction as shown in FIG.

従って、炉心上部機構lOの囲りでは常に安定した旋回
流れが発生し、流れのぶつかりおよび向い合う流れに伴
なう不安定な流れがなくなり、ナトリウム液面13の変
動、波立ち旋回渦の発生が抑制され、カバーガス14の
巻込みを防止できる。さらにこれらの効果により構造材
に加わる繰返し熱応力を防止できる。
Therefore, a stable swirling flow is always generated around the upper core mechanism 1O, and unstable flows due to collisions of flows and opposing flows are eliminated, and fluctuations in the sodium liquid level 13 and generation of rippled swirling vortices are prevented. This can prevent the cover gas 14 from being involved. Furthermore, these effects can prevent repeated thermal stress from being applied to the structural material.

つぎに本発明の第2の実施例を第3図、第4図および第
5図を参照して説明する。
Next, a second embodiment of the present invention will be described with reference to FIGS. 3, 4, and 5.

本発明によるタンク型高速増殖炉を示す第3図において
原子炉容器内には冷却材である液体ナトリウム2が収納
され、原子炉容器1の上端開口はルーフスラブ3によっ
て閉塞されている。ルーフスラブ3には、ルーフスラブ
3を貫通して循環ポンプ4と上部に二次ナトリウムの入
口5aおよび出口5bを備えた熱交換器6が挿入され、
それぞれの下部は隔壁7によって支持されている。
In FIG. 3, which shows a tank-type fast breeder reactor according to the present invention, liquid sodium 2 as a coolant is housed in the reactor vessel, and the upper opening of the reactor vessel 1 is closed by a roof slab 3. A circulation pump 4 and a heat exchanger 6 having an inlet 5a and an outlet 5b for secondary sodium in the upper part are inserted into the roof slab 3 through the roof slab 3,
The lower part of each is supported by a partition wall 7.

さらに原子炉容器1の中央には、多数本の燃料集合体を
植設した炉心8が炉心支持機構9によって配設されてい
る。そして、この炉心8の上部には炉心上部機構10が
配置されている。
Further, in the center of the reactor vessel 1, a reactor core 8 in which a large number of fuel assemblies are installed is arranged by a core support mechanism 9. A core upper mechanism 10 is disposed above the core 8.

このような構成による冷却材の流れは、循環ポンプ4に
よって炉心8へ送り込まれた低温ナトリウム2bにより
炉心8を冷却する。炉心8を冷却して高温となった高温
ナトリウム2aは炉心上部機構10の下端に沿って矢印
で示したごとく斜め上方へ放射状に流れ一部は熱交換器
人口窓11から熱交換器6内に導かれ、熱交換器6内に
組込まれた図示していない多数本の伝熱管部を通って二
次ナトリウムと熱交換して低温となり、熱交換器6の出
口12から流出する。出口12から流出した低温ナトリ
ウム2bは循環ポンプ4に導かれて再と炉心8へと送り
込まれる。@環ポンプ4の外壁にはナトリウム液面13
に向かうナトリウムの上昇流を抑制し、流路を変えるた
めの流路偏向板17が設けられている。
The flow of coolant with this configuration cools the core 8 by the low temperature sodium 2b sent into the core 8 by the circulation pump 4. The high-temperature sodium 2a, which has reached a high temperature by cooling the reactor core 8, flows diagonally upward radially along the lower end of the core upper mechanism 10 as shown by the arrow, and a portion of the sodium 2a flows into the heat exchanger 6 through the heat exchanger artificial window 11. It passes through a large number of heat exchanger tubes (not shown) incorporated in the heat exchanger 6, exchanges heat with the secondary sodium, becomes low temperature, and flows out from the outlet 12 of the heat exchanger 6. The low-temperature sodium 2b flowing out from the outlet 12 is guided to the circulation pump 4 and sent into the reactor core 8 again. @ Sodium liquid level 13 on the outer wall of the ring pump 4
A flow path deflecting plate 17 is provided to suppress the upward flow of sodium toward the flow path and change the flow path.

なお、この流路偏向板17は複数段を軸方向に沿って設
けることもできる。
Note that this flow path deflection plate 17 can also be provided in multiple stages along the axial direction.

すなわち、炉心8から循環ポンプ4の流れの状態を矢印
で示した第3図において、循環ポンプ4の外壁面でかつ
ナトリウム液面13の直下に位置する部分に流路偏向板
17が複数設けられている。この流路偏向板17は、第
4図および第5図に示すように多数のフローホール16
を有する多孔板で形成されている。
That is, in FIG. 3, which shows the state of flow from the core 8 to the circulation pump 4 with arrows, a plurality of flow path deflection plates 17 are provided on the outer wall surface of the circulation pump 4 and located directly below the sodium liquid level 13. ing. This flow path deflecting plate 17 has a large number of flow holes 16 as shown in FIGS. 4 and 5.
It is made of a perforated plate with

このように構成された本発明によるタンク型高速増殖炉
の作用を説明する。炉心8から流出した高温のナトリウ
ム2aは、炉心上部機構lOの下端に沿って斜め上方に
流れ、一方は熱交換器6の入口窓11に向う流れとなる
。他方は循環ポンプ4の外壁へ向い循環ポンプ4の外壁
に沿って流れ循環ポンプ4の外壁の周方向に設けられた
流路偏向板17によってナトリウム液面13に向う流れ
を偏向分散してナトリウム液面13に向う流速が抑制さ
れ、ナトリウム液面13の変動、波立ちが抑制できる。
The operation of the tank-type fast breeder reactor according to the present invention configured as described above will be explained. The high-temperature sodium 2a flowing out from the core 8 flows obliquely upward along the lower end of the core upper mechanism IO, and one side flows toward the inlet window 11 of the heat exchanger 6. The other side flows toward the outer wall of the circulation pump 4 and flows along the outer wall of the circulation pump 4, and the flow toward the sodium liquid level 13 is deflected and dispersed by the flow path deflection plate 17 provided in the circumferential direction of the outer wall of the circulation pump 4, and the sodium liquid is The flow velocity toward the surface 13 is suppressed, and fluctuations and ripples in the sodium liquid level 13 can be suppressed.

したがって、高温ナトリウム2aの流れは第3図の矢印
で示すごとく循環ポンプ4に沿ってナトリウム液面13
に向う流れは流路偏向板17によって抑制され、流れ方
向が偏向される。そのため、ナトリウム液面13の変動
、波立ちが抑制でき、ナトリウム液面13の乱れによっ
て生じるナトリウム液面13からのカバーガス14の巻
込みを防止できる。また、流路偏向板17によってナト
リウム液面13の変動。
Therefore, the high temperature sodium 2a flows along the circulation pump 4 as shown by the arrow in FIG.
The flow toward is suppressed by the channel deflecting plate 17, and the flow direction is deflected. Therefore, fluctuations and ripples in the sodium liquid level 13 can be suppressed, and entrainment of the cover gas 14 from the sodium liquid level 13 caused by disturbances in the sodium liquid level 13 can be prevented. In addition, the sodium liquid level 13 fluctuates due to the channel deflection plate 17.

波立ちによって構造材に発生する繰返しの熱応力を防止
できる。
It is possible to prevent repetitive thermal stress caused in structural materials due to ripples.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、流路偏向板を設けたことによって原子
炉容器内のナトリウム液面の乱れを抑制し、ナトリウム
液面からのカバーガスの巻き込みを防止し、炉心の溶融
事故を未然に防止し、炉心の健全性を確保できる。また
、ナトリウム液に接する構造材に発生する繰返しの熱応
力による熱疲労を低減し、構造材の健全性も確保できる
According to the present invention, by providing a flow path deflection plate, turbulence of the sodium liquid level in the reactor vessel is suppressed, and entrainment of cover gas from the sodium liquid level is prevented, thereby preventing core melting accidents. This will ensure the integrity of the reactor core. In addition, thermal fatigue due to repeated thermal stress generated in structural materials that come into contact with sodium liquid can be reduced, and the integrity of the structural materials can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るタンク型高速増殖炉の第1の実施
例を示す縦断面図、第2図は第1図における■−■矢視
方向に沿って切断して示す横断面図、第3図は本発明の
第2の実施例を示す縦断面図、第4図は第3図における
偏向板を部分的に拡大して示す平面図、第5図は第4図
の縦断面図、第6図は従来のタンク型高速増殖炉を示す
縦断面図、第7図は第6図における■−■矢視方向に沿
って切断して示す横断面図である。 1・・・原子炉容器      2・・・液体ナトリウ
ム2a・・・高温ナトリウム    2b・・・低温ナ
トリウム3・・・ルーフスラブ     4・・・循環
ポンプ5a・・・二次ナトリウムの入口 5b・・・二
次ナトリウムの出口6・・・熱交換器       7
・・・隔壁8・・・炉心         9・・・炉
心支持機構lO・・・炉心上部機構     13・・
・ナトリウム液面14・・・カバーガス      1
5.17・・・流路偏向板16・・・フローホール 竿 3 図 第 図 第 図 第 乙 図
FIG. 1 is a longitudinal cross-sectional view showing a first embodiment of a tank-type fast breeder reactor according to the present invention, and FIG. 2 is a cross-sectional view taken along the direction of the ■-■ arrow in FIG. 1. FIG. 3 is a longitudinal sectional view showing a second embodiment of the present invention, FIG. 4 is a partially enlarged plan view of the deflection plate in FIG. 3, and FIG. 5 is a longitudinal sectional view of FIG. 4. , FIG. 6 is a longitudinal cross-sectional view showing a conventional tank-type fast breeder reactor, and FIG. 7 is a cross-sectional view taken along the direction of arrows -■ in FIG. 6. 1... Reactor vessel 2... Liquid sodium 2a... High temperature sodium 2b... Low temperature sodium 3... Roof slab 4... Circulation pump 5a... Secondary sodium inlet 5b... Secondary sodium outlet 6...heat exchanger 7
... Partition wall 8 ... Core 9 ... Core support mechanism lO ... Core upper mechanism 13 ...
・Sodium liquid level 14...Cover gas 1
5.17...Flow path deflection plate 16...Flow hole rod 3

Claims (2)

【特許請求の範囲】[Claims] (1)液体金属の冷却材を収納し液面を有する原子炉容
器の上部開口を閉塞するために配設されるルーフスラブ
と、前記原子炉容器内に設けられた炉心に冷却材を送り
込み該原子炉容器内の冷却材を循環するための前記ルー
フスラブを貫通して設けられた循環ポンプと、前記冷却
材と熱交換して前記原子炉容器外へ熱を取出す熱交換器
とを具備してなるタンク型高速増殖炉において、前記循
環ポンプと前記熱交換器との間に前記ルーフスラブの上
部から挿入し前記冷却材液面の下部まで達し、前記液面
近傍の流れを規制する流路偏向板を設けてなることを特
徴とするタンク型高速増殖炉。
(1) A roof slab is installed to store liquid metal coolant and close the upper opening of the reactor vessel, which has a liquid level, and a roof slab is installed to close the upper opening of the reactor vessel, which houses liquid metal coolant and has a liquid surface. A circulation pump provided through the roof slab for circulating coolant in the reactor vessel, and a heat exchanger for exchanging heat with the coolant and extracting heat to the outside of the reactor vessel. In a tank-type fast breeder reactor comprising: a flow path inserted from the top of the roof slab between the circulation pump and the heat exchanger and reaching below the coolant liquid level to regulate the flow near the liquid level; A tank-type fast breeder reactor characterized by being equipped with a deflection plate.
(2)液体金属の冷却材を収納し液面を有する原子炉容
器の上部開口を閉塞するために配設されるルーフスラブ
と、前記原子炉容器内に設けられた炉心に冷却材を送り
込み該原子炉容器内の冷却材を循環するための前記ルー
フスラブを貫通して設けられた循環ポンプと、前記冷却
材と熱交換して前記原子炉容器外へ熱を取出す熱交換器
とを具備してなるタンク型高速増殖炉において、前記循
環ポンプの外周部に炉心から流出した冷却材の流路を偏
向、流速を抑制する流路偏向板を設けてなることを特徴
とするタンク型高速増殖炉。
(2) A roof slab is installed to store liquid metal coolant and close the upper opening of the reactor vessel, which has a liquid level, and a roof slab is installed to block the upper opening of the reactor vessel, which contains liquid metal coolant and has a liquid surface, and a roof slab that is installed to block the upper opening of the reactor vessel, which contains liquid metal coolant, and which supplies the coolant to the reactor core installed in the reactor vessel. A circulation pump provided through the roof slab for circulating coolant in the reactor vessel, and a heat exchanger for exchanging heat with the coolant and extracting heat to the outside of the reactor vessel. A tank-type fast breeder reactor comprising: a flow path deflecting plate for deflecting the flow path of the coolant flowing out from the core and suppressing the flow velocity on the outer periphery of the circulation pump; .
JP2076594A 1990-03-28 1990-03-28 Tank-shaped fast breeder Pending JPH03277994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076594A JPH03277994A (en) 1990-03-28 1990-03-28 Tank-shaped fast breeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076594A JPH03277994A (en) 1990-03-28 1990-03-28 Tank-shaped fast breeder

Publications (1)

Publication Number Publication Date
JPH03277994A true JPH03277994A (en) 1991-12-09

Family

ID=13609640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076594A Pending JPH03277994A (en) 1990-03-28 1990-03-28 Tank-shaped fast breeder

Country Status (1)

Country Link
JP (1) JPH03277994A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100177860A1 (en) * 2009-01-14 2010-07-15 Korea Atomic Energy Research Institute Fully passive decay heat removal system for sodium-cooled fast reactors that utilizes partially immersed decay heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100177860A1 (en) * 2009-01-14 2010-07-15 Korea Atomic Energy Research Institute Fully passive decay heat removal system for sodium-cooled fast reactors that utilizes partially immersed decay heat exchanger
US8670518B2 (en) * 2009-01-14 2014-03-11 Korea Atomic Energy Research Institute Fully passive decay heat removal system for sodium-cooled fast reactors that utilizes partially immersed decay heat exchanger

Similar Documents

Publication Publication Date Title
JPH08160179A (en) Liquid-metal cooling-type nuclear reactor
JPH03277994A (en) Tank-shaped fast breeder
JPH04294295A (en) Tank type fast breeder reactor
JP2972162B2 (en) Furnace wall cooling protection structure of fast reactor
JP7394041B2 (en) Reactor
JPH07104091A (en) Vessel wall cooling structure for reactor vessel
EP0905713A1 (en) An in-vessel structure for fast reactors
JPH0587963A (en) Tank type fast breeder reactor
US4676947A (en) Device for thermal protection of a component of a fast-neutron nuclear reactor
JP3110901B2 (en) Fast breeder reactor
JP4220845B2 (en) Reactor internal structure
JPS62159089A (en) Core support mechanism for tank type fast breeder reactor
JPS6410797B2 (en)
JPH01245192A (en) Core upper mechanism of fast breeder
JPH1114781A (en) Reactor vessel wall cooling mechanism
JPH0472596A (en) Fast breeder reactor
JPS62273495A (en) Heat exchanger for tank type fast breeder reactor
JPS63295991A (en) Tank type fast breeder
JPH042991A (en) Tank type fast breeder reactor
JPS5810680A (en) Upper core mechanism
JPH0348795A (en) Device for decreasing temperature fluctuation of fast breeder
JPS60235091A (en) Cover plug for core of fast neutron reactor
JPS6128891A (en) Fast breeder reactor
JPH01227992A (en) Fuel assembly
JPS5811892A (en) Reactor container