JPH03277947A - Method for detecting acidic gas or basic gas - Google Patents

Method for detecting acidic gas or basic gas

Info

Publication number
JPH03277947A
JPH03277947A JP7681590A JP7681590A JPH03277947A JP H03277947 A JPH03277947 A JP H03277947A JP 7681590 A JP7681590 A JP 7681590A JP 7681590 A JP7681590 A JP 7681590A JP H03277947 A JPH03277947 A JP H03277947A
Authority
JP
Japan
Prior art keywords
gas
crystal
light
particles
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7681590A
Other languages
Japanese (ja)
Other versions
JP2911533B2 (en
Inventor
Yoshibumi Hirano
平野 義文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYAGI OKI DENKI KK
Oki Electric Industry Co Ltd
Original Assignee
MIYAGI OKI DENKI KK
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYAGI OKI DENKI KK, Oki Electric Industry Co Ltd filed Critical MIYAGI OKI DENKI KK
Priority to JP7681590A priority Critical patent/JP2911533B2/en
Publication of JPH03277947A publication Critical patent/JPH03277947A/en
Application granted granted Critical
Publication of JP2911533B2 publication Critical patent/JP2911533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to detect plural kinds of acidic gases or plural kinds of basis gases simultaneously in a short time by passing sample gas through the atmosphere of ammonia or hydrogen chloride, forming crystal particles, and detecting the particles with a light-scattering type dust monitor. CONSTITUTION:Sample gas containing hydrogen chloride gas is introduced into a crystal-particle forming container 2 wherein aqueous ammonia solution and ammonia atmosphere are sealed and contained through a sample gas intro ducing pipe 1. The gas is made to react, and ammonium chloride is formed. The ammonium chloride becomes crystal particles which are floated and dis persed in the gas. The gas passes through a crystal-particle gas pipe 4 and enters into a light irradiation chamber 9 in a dust monitor 3. In the chamber 9, a powerful light irradiation area 6 is formed by using a light source lamp 5. When the gas containing the crystal particle passes, the light is irregularly reflected. The irregularly reflected light is converted into the potential with a photodiode 7. The generated potential is measured, and the acidic gas in the sample is detected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸性ガス又は塩基性ガス、特に強酸性ガス又
は強塩基性ガスの検出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for detecting acidic or basic gases, particularly strongly acidic or strongly basic gases.

(従来の技術) 従来、塩素ガスを検出する方法としては、例えば特開昭
58−223053号に記載されるものがあった。この
方法はセラミック板中にヒータを内蔵した小型の基板を
使用し、その全面に半導体結晶を塗装焼成してなる素子
によって、塩素ガスを検出するものである。その他に塩
素ガスを検出する方法としては、ガスを吸収したサンプ
ル液の吸光度を測定する方法、ガス検知管の着色層の長
さを測定する方法等があるが、何れの検出方法も対象と
するガスは酸性ガスに限られ、塩基性ガスをも検出でき
る汎用性のあるものではなかった。
(Prior Art) Conventionally, as a method for detecting chlorine gas, there is a method described in, for example, Japanese Patent Application Laid-Open No. 58-223053. This method uses a small ceramic board with a built-in heater, and detects chlorine gas using an element whose entire surface is coated with semiconductor crystals and fired. Other methods for detecting chlorine gas include measuring the absorbance of a sample liquid that has absorbed gas, and measuring the length of the colored layer of a gas detection tube, but both detection methods are covered. The gas used was limited to acidic gases, and it was not versatile enough to detect basic gases as well.

(発明が解決しようとする課題) ところで、半導体製造現場等の超清浄性が必要とされる
空間では、浮遊微粒子だけが問題とされるのではなく、
酸性又は塩基性の薬品性ガス雰囲気も半導体の品質に悪
影響を与えるので、これらのガスを厳しく管理する必要
がある。そのためには複数の薬品性ガス(即ち、複数種
の酸性ガス又は複数種の塩基性ガス)を同時に短時間で
検出しなければならないにもかかわらず、従来技術では
検出可能なガスの種類が極めて限られており、また同一
装置で性質の異なるガス(即ち、酸性ガスと塩基性ガス
)を検出可能なものはなく、ガス雰囲気の管理に満足で
きるものはなかった。
(Problem to be solved by the invention) By the way, in spaces where ultra-cleanliness is required, such as semiconductor manufacturing sites, floating particles are not the only problem;
Acidic or basic chemical gas atmospheres also have an adverse effect on the quality of semiconductors, so these gases must be strictly controlled. To achieve this, it is necessary to simultaneously detect multiple chemical gases (i.e., multiple types of acidic gases or multiple types of basic gases) in a short period of time, but with conventional technology, the types of gases that can be detected are extremely limited. There is no device that can detect gases with different properties (that is, acidic gas and basic gas) with the same device, and there is no device that can satisfy the gas atmosphere management.

本発明は、上記問題点を除去し、複数種の酸性ガス又は
複数種の塩基性ガスを同時に短時間に検出することがで
きる酸性ガス又は塩基性ガスの検出方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for detecting acidic gases or basic gases that can eliminate the above-mentioned problems and simultaneously detect multiple types of acidic gases or multiple types of basic gases in a short time. .

(課題を解決するための手段) 本発明は、上記目的を達成するために、酸性ガス又は塩
基性ガスの検出方法において、サンプルガスをアンモニ
ア又は塩化水素雰囲気に通して結晶微粒子を生成させる
工程と、前記結晶微粒子をダストモニタに導き、該結晶
微粒子を検出する工程とを施すようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for detecting acidic gas or basic gas, which includes a step of passing a sample gas through an ammonia or hydrogen chloride atmosphere to generate crystalline fine particles. , the step of guiding the crystalline fine particles to a dust monitor and detecting the crystalline fine particles.

また、前記結晶微粒子の検出は、 (1)結晶微粒子に光を照射し、その乱反射光をフォト
ダイオードにより行う。
Further, the detection of the crystalline fine particles is as follows: (1) The crystalline fine particles are irradiated with light, and the diffusely reflected light is detected by a photodiode.

(2)結晶微粒子をフィルタで捕集し、顕微鏡により行
うか、或いはフィルタの重量増加で行うようにしたもの
である。
(2) Fine crystal particles are collected with a filter and the detection is performed using a microscope or by increasing the weight of the filter.

(作用) 本発明によれば、上記のように構成することにより、サ
ンプルガスが酸性であれば、アンモニア雰囲気に通すと
反応が起こり、塩化合物結晶微粒子が生成される0例え
ば、サンプルガスが塩化水素の場合、 HCI+NHaOH−−ラNHaCI+HzOの反応に
よりNH,CIの結晶微粒子が生成される。
(Function) According to the present invention, with the above configuration, if the sample gas is acidic, a reaction occurs when it is passed through an ammonia atmosphere, and fine salt compound crystal particles are generated. In the case of hydrogen, crystal fine particles of NH and CI are generated by the reaction HCI+NHaOH--RaNHaCI+HzO.

また、サンプルガスが塩基性であれば、塩化水素雰囲気
に通すと、同様に反応が起こり塩化合物結晶微粒子が生
成される0反応式は上記式と同様である。
Further, if the sample gas is basic, when it is passed through a hydrogen chloride atmosphere, a similar reaction occurs and salt compound crystal fine particles are produced.The reaction formula is the same as the above formula.

これらの結晶微粒子は、ガスに浮遊しており、これらの
結晶微粒子を含んだガスを、光散乱式ダストモニタにて
検出する。光散乱式ダストモニタは強力光照射エリアに
サンプルガスを通し、ガス中の結晶微粒子により乱反射
した光の強度を、電位差に変換するもので、結晶微粒子
存在の有無を電気的に測定できる。また、ダストモニタ
での結晶微粒子の検出は、光散乱式以外にフィルタを用
いて結晶微粒子を捕集し、顕微鏡で検出したり、フィル
タの重量増加で検出することもできる。
These crystal fine particles are suspended in the gas, and the gas containing these crystal fine particles is detected by a light scattering type dust monitor. A light scattering type dust monitor passes a sample gas through an area irradiated with intense light and converts the intensity of the light diffusely reflected by fine crystal particles in the gas into a potential difference, making it possible to electrically measure the presence or absence of fine crystal particles. In addition to the light scattering method, crystal fine particles can be detected with a dust monitor by using a filter to collect the crystal fine particles and detecting them with a microscope, or by detecting by increasing the weight of the filter.

ガス検出装置内のアンモニアは、サンプルガス中に含ま
れる多種の強酸性ガスと反応する。またガス検出装置内
の塩化水素は、サンプルガス中に含まれる多種の強塩基
性ガスと反応して、それぞれ塩化合物の結晶微粒子を生
成するので、ダストモニタでの結晶微粒子検出の有無に
より、複数の薬品性ガスの有無を検出することが可能と
なる。
Ammonia in the gas detection device reacts with various types of strong acid gases contained in the sample gas. In addition, hydrogen chloride in the gas detection device reacts with various types of strong basic gases contained in the sample gas, producing crystalline particles of each salt compound. It becomes possible to detect the presence or absence of chemical gas.

(実施例) 以下、本発明の実施例について図面を参照しながら詳細
に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

図は本発明の実施例で使用されるガス検出装置の構成図
であり、サンプルガスから結晶微粒子を生成させる部分
と、その結晶微粒子を光散乱方式で検出するダストモニ
タ部分とからなる。特に、塩素ガスを検出する場合の使
用例を示している。
The figure is a configuration diagram of a gas detection device used in an embodiment of the present invention, which consists of a part that generates crystal fine particles from a sample gas and a dust monitor part that detects the crystal fine particles using a light scattering method. In particular, an example of use in detecting chlorine gas is shown.

回において、2は内部がアンモニア水溶液とアンモニア
雰囲気が密閉収容された結晶微粒子生成容器であり、サ
ンプルガス導入管1と結晶微粒子ガス管4が設けられて
いる。サンプルガス導入管1の入口がガス吸入口となっ
ている。3は結晶微粒子を含んだガス中の結晶微粒子の
存在を検出するダストモニタである。ダストモニタ3内
は、サンプルガスを照射する光源ランプ5と、乱反射し
た光を検出するフォトダイオード7が付帯した密閉状態
の光照射室9を内蔵している。光照射室9は結晶微粒子
ガス管4によって結晶微粒子生成容器2と接続され、更
に、排気ポンプ8を有する排気管が設けられている。
2, a crystal fine particle generation container 2 has an aqueous ammonia solution and an ammonia atmosphere sealed therein, and is provided with a sample gas introduction tube 1 and a crystal fine particle gas tube 4. The inlet of the sample gas introduction tube 1 serves as a gas inlet. 3 is a dust monitor that detects the presence of crystalline particles in a gas containing crystalline particles. The dust monitor 3 contains a light source lamp 5 for irradiating sample gas and a closed light irradiation chamber 9 equipped with a photodiode 7 for detecting diffusely reflected light. The light irradiation chamber 9 is connected to the crystal fine particle production container 2 by a crystal fine particle gas pipe 4, and is further provided with an exhaust pipe having an exhaust pump 8.

サンプルガス存在域に置かれたガス吸入口から吸入され
た塩化水素ガスを含むサンプルガスは、サンプルガス導
入管lを通して、内部にアンモニア水溶液とアンモニア
雰囲気が密閉収容された結晶微粒子生成容器2に導入さ
れる。この容器中で酸である塩化水素ガスと、アルカリ
であるアンモニア雰囲気が反応し、塩化合物である塩化
アンモニウム(NH,CI)が生成される。塩化アンモ
ニウムは結晶微粒子となっており、ガスに浮遊分散して
いる。この浮遊結晶微粒子を含んだガスは、結晶微粒子
生成容器2の結晶微粒子ガス管4を通り、ダストモニタ
3内の光照射室9に取り入れられる。
The sample gas containing hydrogen chloride gas inhaled from the gas inlet placed in the sample gas presence area is introduced through the sample gas introduction pipe l into the crystal fine particle generation container 2 in which an ammonia aqueous solution and an ammonia atmosphere are sealed. be done. In this container, hydrogen chloride gas, which is an acid, and an ammonia atmosphere, which is an alkali, react to generate ammonium chloride (NH, CI), which is a salt compound. Ammonium chloride is in the form of crystalline particles and is suspended and dispersed in the gas. The gas containing the suspended crystal particles passes through the crystal particle gas pipe 4 of the crystal particle generation container 2 and is introduced into the light irradiation chamber 9 in the dust monitor 3.

光照射室9内には光源ランプ5の照射により、強力光照
射エリア6が形成されており、結晶微粒子を含んだガス
がこのエリア6を通過すると光が乱反射する。この乱反
射した光がフォトダイオード7によって電位に換夏され
、この発生した電位を測定することによって、サンプル
ガス中の酸性ガスの存在を検出することができる0強力
光照射エリア6を通過したガスは、排気ポンプ8によっ
て排気管から外部に排出される。この方法によれば、サ
ンプルガス中の塩素ガスを0.1 pp−レベルまで瞬
時に検出することができる。他の強酸性ガスであっても
アンモニアと塩化合物を生成するものであれば、同様に
検出することができる。
A strong light irradiation area 6 is formed in the light irradiation chamber 9 by irradiation with the light source lamp 5, and when gas containing crystal fine particles passes through this area 6, the light is diffusely reflected. This diffusely reflected light is converted into a potential by the photodiode 7, and by measuring the generated potential, the presence of acidic gas in the sample gas can be detected. , is discharged to the outside from the exhaust pipe by the exhaust pump 8. According to this method, chlorine gas in the sample gas can be instantly detected down to the 0.1 pp-level. Other strongly acidic gases that generate salt compounds with ammonia can be similarly detected.

以上の実施例は、塩素ガスを検出する場合を説明したが
、結晶微粒子生成容器2内に塩酸を入れておけば、サン
プルガス中のアンモニアがo、1pp−レベルまで検出
することができる。この場合も上記の実施例と同様に他
の強塩基性ガスでも塩化水素と塩化合物を生成するもの
であれば検出することができる。
Although the above embodiment describes the case of detecting chlorine gas, if hydrochloric acid is placed in the crystal fine particle generation container 2, ammonia in the sample gas can be detected down to the o, 1 pp- level. In this case as well, similar to the above embodiment, other strongly basic gases can be detected as long as they produce hydrogen chloride and salt compounds.

また、以上の実施例ではダストモニタ部分を結晶微粒子
を光散乱方式で検出する手段で説明したが、生成した結
晶微粒子をフィルタで捕集し、フィルタ上の結晶微粒子
を顕微鏡で検出したり、或いはフィルタの重量増加で検
出することもできる。
In addition, in the above embodiment, the dust monitor part was explained as a means for detecting crystal fine particles using a light scattering method, but it is also possible to collect the generated crystal fine particles with a filter and detect the crystal fine particles on the filter with a microscope. It can also be detected by an increase in the weight of the filter.

更に、検査されるべき対象ガス中の浮遊微粒子の影響を
減じる必要が有る場合には、サンプルガス導入管1にフ
ィルタを設けてもよい。
Furthermore, if it is necessary to reduce the influence of suspended particles in the target gas to be tested, the sample gas introduction tube 1 may be provided with a filter.

更にまた、本発明に係るガス検出装置を並列に設置して
、一方の結晶微粒子生成容器2に塩酸を入れ、他方の結
晶微粒子生成容器2にアンモニア水を入れておけば、同
一の検出装置を並列に設置するという簡単な構成で性質
の異なる複数のガスの検出を同時に行うことができる。
Furthermore, if the gas detection devices according to the present invention are installed in parallel, and one crystalline particle generation container 2 is filled with hydrochloric acid and the other crystalline particle generation container 2 is filled with aqueous ammonia, the same detection device can be used. With a simple configuration of parallel installation, multiple gases with different properties can be detected simultaneously.

なお、本発明は上記実施例に限定されるものではなく、
本発明の趣旨に基づいて種々の変形が可能であり、これ
らを本発明の範囲から排除するものではない。
Note that the present invention is not limited to the above embodiments,
Various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

(発明の効果) 以上、詳細に説明したように、本発明によれば、次のよ
うな効果を奏することができる。
(Effects of the Invention) As described above in detail, according to the present invention, the following effects can be achieved.

(1)サンプルガスに含まれる複数種の酸性ガス又は複
数種の塩基性ガスの検出を同時に短時間で行うことがで
きる。
(1) Multiple types of acidic gases or multiple types of basic gases contained in the sample gas can be detected simultaneously in a short time.

(2)酸性又は塩基性ガスを含む雰囲気の検出を同一の
検出装!で行うことができる。
(2) Detect atmospheres containing acidic or basic gases with the same detection device! It can be done with

(3)サンプルガスはダストモニタを通るため、酸性又
は塩基性ガスの検出のみならず、サンプルガス中の浮遊
微粒子の検出もできるので、サンプルガスの統括した清
浄度のモニタに適用できる。
(3) Since the sample gas passes through the dust monitor, it is possible to detect not only acidic or basic gases but also suspended particles in the sample gas, so it can be applied to comprehensively monitor the cleanliness of the sample gas.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例に使用されるガスの検出装置の構成
図である。 1・・・サンプルガス導入管、2・・・結晶微粒子生成
容器、3・・・ダストモニタ、4・・・結晶微粒子ガス
管、5・・・光源ランプ、6・・・強力光照射エリア、
7・・・フォトダイオード、8・・・排気ポンプ、9・
・・光照射室。
The figure is a configuration diagram of a gas detection device used in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Sample gas introduction pipe, 2... Crystal fine particle generation container, 3... Dust monitor, 4... Crystal fine particle gas tube, 5... Light source lamp, 6... Strong light irradiation area,
7... Photodiode, 8... Exhaust pump, 9.
...Light irradiation room.

Claims (3)

【特許請求の範囲】[Claims] (1) (a)サンプルガスをアンモニア又は塩化水素雰囲気に
通して結晶微粒子を生成させる工程と、(b)前記結晶
微粒子をダストモニタに導き、該結晶微粒子を検出する
工程とを有する酸性ガス又は塩基性ガスの検出方法。
(1) An acidic gas or Basic gas detection method.
(2)前記結晶微粒子の検出は、結晶微粒子に光を照射
し、その乱反射光をフォトダイオードにより行うことを
特徴とする請求項1記載の酸性ガス又は塩基性ガスの検
出方法。
(2) The method for detecting acidic gas or basic gas according to claim 1, wherein the detection of the crystalline particles is performed by irradiating the crystalline particles with light and using a photodiode to diffusely reflect the light.
(3)前記結晶微粒子の検出は、結晶微粒子をフィルタ
で捕集し、顕微鏡により行うか、或いはフィルタの重量
増加で行うことを特徴とする請求項1記載の酸性ガス又
は塩基性ガスの検出方法。
(3) The method for detecting acidic gas or basic gas according to claim 1, wherein the detection of the crystalline particles is performed by collecting the crystalline particles with a filter and using a microscope, or by increasing the weight of the filter. .
JP7681590A 1990-03-28 1990-03-28 Acid gas, basic gas or gas detection method Expired - Fee Related JP2911533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7681590A JP2911533B2 (en) 1990-03-28 1990-03-28 Acid gas, basic gas or gas detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7681590A JP2911533B2 (en) 1990-03-28 1990-03-28 Acid gas, basic gas or gas detection method

Publications (2)

Publication Number Publication Date
JPH03277947A true JPH03277947A (en) 1991-12-09
JP2911533B2 JP2911533B2 (en) 1999-06-23

Family

ID=13616169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7681590A Expired - Fee Related JP2911533B2 (en) 1990-03-28 1990-03-28 Acid gas, basic gas or gas detection method

Country Status (1)

Country Link
JP (1) JP2911533B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066564A (en) * 1998-05-06 2000-05-23 International Business Machines Corporation Indirect endpoint detection by chemical reaction
US6126848A (en) * 1998-05-06 2000-10-03 International Business Machines Corporation Indirect endpoint detection by chemical reaction and chemiluminescence
US6176765B1 (en) 1999-02-16 2001-01-23 International Business Machines Corporation Accumulator for slurry sampling
US6180422B1 (en) 1998-05-06 2001-01-30 International Business Machines Corporation Endpoint detection by chemical reaction
US6194230B1 (en) 1998-05-06 2001-02-27 International Business Machines Corporation Endpoint detection by chemical reaction and light scattering
US6228769B1 (en) 1998-05-06 2001-05-08 International Business Machines Corporation Endpoint detection by chemical reaction and photoionization
US6228280B1 (en) 1998-05-06 2001-05-08 International Business Machines Corporation Endpoint detection by chemical reaction and reagent
US6251784B1 (en) 1998-12-08 2001-06-26 International Business Machines Corporation Real-time control of chemical-mechanical polishing processing by monitoring ionization current
CN108613953A (en) * 2018-04-23 2018-10-02 杭州凯基科技有限公司 Sample crystal grain detecting system and method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066564A (en) * 1998-05-06 2000-05-23 International Business Machines Corporation Indirect endpoint detection by chemical reaction
US6126848A (en) * 1998-05-06 2000-10-03 International Business Machines Corporation Indirect endpoint detection by chemical reaction and chemiluminescence
US6180422B1 (en) 1998-05-06 2001-01-30 International Business Machines Corporation Endpoint detection by chemical reaction
US6194230B1 (en) 1998-05-06 2001-02-27 International Business Machines Corporation Endpoint detection by chemical reaction and light scattering
US6228769B1 (en) 1998-05-06 2001-05-08 International Business Machines Corporation Endpoint detection by chemical reaction and photoionization
US6228280B1 (en) 1998-05-06 2001-05-08 International Business Machines Corporation Endpoint detection by chemical reaction and reagent
US6419785B1 (en) 1998-05-06 2002-07-16 International Business Machines Corporation Endpoint detection by chemical reaction
US6440263B1 (en) 1998-05-06 2002-08-27 International Business Machines Corporation Indirect endpoint detection by chemical reaction and chemiluminescence
US6251784B1 (en) 1998-12-08 2001-06-26 International Business Machines Corporation Real-time control of chemical-mechanical polishing processing by monitoring ionization current
US6176765B1 (en) 1999-02-16 2001-01-23 International Business Machines Corporation Accumulator for slurry sampling
CN108613953A (en) * 2018-04-23 2018-10-02 杭州凯基科技有限公司 Sample crystal grain detecting system and method
CN108613953B (en) * 2018-04-23 2021-02-26 杭州兴浩晖生物科技有限公司 Sample crystal particle detection system and method

Also Published As

Publication number Publication date
JP2911533B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
JPH03277947A (en) Method for detecting acidic gas or basic gas
Kowal-Fouchard et al. Structural identification of europium (III) adsorption complexes on montmorillonite
JP3899057B2 (en) Method for optically measuring black carbon in the atmosphere and apparatus for carrying out this method
WO2003010511A2 (en) Low resolution surface enhanced raman spectroscopy on sol-gel substrates
JPS60105946A (en) Infrared gas analyzer
de Oliveira et al. A flow-cell optosensor for lead based on immobilized dithizone
Nebiker et al. Photoacoustic gas detection for fire warning
CN113896901B (en) Lead halide-based metal organic framework material, preparation and application thereof, ammonia gas sensor and intelligent sensing device
Courbat et al. A colorimetric CO sensor for fire detection
Grosjean et al. Portable generator for on-site calibration of peroxyacetyl nitrate analyzers
JPH06503429A (en) spark excitation fluorescence sensor
Suto et al. Detection of sulfuric acid aerosols by ultraviolet scattering
Horowitz et al. The role of oxygen dimer in oxygen photolysis in the Herzberg continuum: a temperature dependence study
JPS6156944A (en) Method and apparatus for chemiluminescence analysis
CN104677863B (en) A kind of organic phosphorus detection method based on the resonance in vitro such as local surface
JP2002517740A (en) Method and apparatus for identifying process chamber clean or wafer etching endpoints
Nordal et al. Photoacoustic spectroscopy on ammonium sulphate and glucose powders and their aqueous solutions using a Co2 laser
JPH0421133B2 (en)
Robinson et al. Detection of gaseous organic compounds by their infra-red emission stimulated by a laser beam
Niessner et al. Aerosol photoemission for quantification of polycyclic aromatic hydrocarbons in simple mixtures adsorbed on carbonaceous and sodium chloride aerosols
CN212228739U (en) Ammonia gas sensor based on perovskite quantum dots
Spencer et al. Surface-enhanced Raman as a water monitor for warfare agents
US10908092B2 (en) Process for making cyano functionalized gold nanoparticles
JP5255062B2 (en) Apparatus for the detection of chemical or biological substances and method for cleaning the equipment
Rajendran et al. Acoustic precipitation of aerosol under standing-wave condition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees