JPH03277701A - Method for sintering green compact using atmospheric sintering furnace - Google Patents

Method for sintering green compact using atmospheric sintering furnace

Info

Publication number
JPH03277701A
JPH03277701A JP7833490A JP7833490A JPH03277701A JP H03277701 A JPH03277701 A JP H03277701A JP 7833490 A JP7833490 A JP 7833490A JP 7833490 A JP7833490 A JP 7833490A JP H03277701 A JPH03277701 A JP H03277701A
Authority
JP
Japan
Prior art keywords
crucible
sintering
gas
atmospheric gas
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7833490A
Other languages
Japanese (ja)
Inventor
Jiro Kotani
小谷 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP7833490A priority Critical patent/JPH03277701A/en
Publication of JPH03277701A publication Critical patent/JPH03277701A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly and efficiently execute sintering of a green compact by supplying atmospheric gas to the green compacts through a gas permeable heat insulating material in a chamber, heater and a gas permeable crucible and exhausting the gas outside through a pipe having gas venting hole. CONSTITUTION:Plural steps of graphite-made supplying table 9 are set in the gas permeable graphite crucible 4 arranging plural holes 6 in the chamber 1, and the green compacts 10 are laid on the supporting tables 9. Successively, the atmospheric gas is supplied to the arrow mark 11 direction from an opening part 8 and heated with the heater 3 after passing through the gas permeable heat insulating material 2 and supplied into the crucible 4 through the holes 6 to execute the sintering to the green compacts 10. The atmospheric gas after sintering the green compacts 10 is caused to flow into the pipe 5 through the small holes 7 and exhausted to the outer part. By this method, uneven heating of the atmospheric gas in the crucible 4 is not developed and the green compact can be uniformly and efficiently sintered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、雰囲気焼結炉を用いて圧粉体を焼結する方
法に関するものであり、さらに詳しくは、雰囲気焼結炉
を用いて圧粉体を焼結する際の雰囲気ガスの供給方法に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for sintering a green compact using an atmosphere sintering furnace, and more specifically, a method for sintering a green compact using an atmosphere sintering furnace. The present invention relates to a method for supplying atmospheric gas when sintering powder.

〔従来の技術〕[Conventional technology]

一般に、炭化タングステン(以下、WCと記す)、サー
メット、セラミックスなどからなる切削工具、例えばス
ローアウェイチップ、ミニチュアドリルなどを製造する
に際しては、それらの原料粉末を所定量配合し、混合し
、プレス成形して圧粉体を作製し、この圧粉体を所定の
雰囲気で焼結することにより製造されている。
Generally, when manufacturing cutting tools made of tungsten carbide (hereinafter referred to as WC), cermet, ceramics, etc., such as indexable tips and miniature drills, a predetermined amount of these raw material powders is blended, mixed, and then press-formed. It is manufactured by producing a powder compact and sintering this powder compact in a predetermined atmosphere.

上記圧粉体を所定の雰囲気で焼結するために用いる焼結
炉としては、例えば第1図または第2図の断面図に示さ
れる構造の雰囲気焼結炉か用いられている。
As a sintering furnace used to sinter the powder compact in a predetermined atmosphere, an atmosphere sintering furnace having a structure shown in the cross-sectional view of FIG. 1 or 2, for example, is used.

上記第1図および第2図にみられるように、グラファイ
ト製支持台9の上に圧粉体lOを並べ、この圧粉体10
が並べられたグラファイト製支持台9を複数段に重ねて
ルツボ4内に装入する。このルツボは第1図に示される
ように孔6が多数設けられた通気性グラファイトルツボ
4であってもよ(、また第2図に示されるような通気性
多孔質グラファイトルツボ4′であってもよい。
As shown in FIGS. 1 and 2 above, the green compacts 10 are arranged on the graphite support 9, and
Graphite support stands 9 arranged in rows are stacked in multiple stages and charged into the crucible 4. This crucible may be an air permeable graphite crucible 4 provided with a number of holes 6 as shown in FIG. 1 (or may be an air permeable porous graphite crucible 4' as shown in FIG. Good too.

第1図および第2図に示されるように、ルツボ4または
4′は周囲をヒーター3で包囲され、このヒーター3は
グラファイト繊維からなる通気性断熱材2で包囲されて
いる。上記グラファイト繊維からなる断熱材2は通気性
にすぐれたものであることが必要であり、これら断熱材
2はチャンバー1の内側に取付けられている。
As shown in FIGS. 1 and 2, the crucible 4 or 4' is surrounded by a heater 3, which is surrounded by an air-permeable heat insulating material 2 made of graphite fibers. The heat insulators 2 made of graphite fibers need to have excellent air permeability, and these insulators 2 are attached to the inside of the chamber 1.

一方、ルツボ4の内部中心部には、多数の小孔7をもつ
バイブ5が取付けられており、このバイブは、ルツボ4
、断熱材2およびチャンバー1を貫通して外界に通じて
いる。上記多数の小孔7をもつバイブ5は、第2図に示
されるように中央部に複数本取付けられてもよい。また
上記バイブ5は無数の通気孔(図示せず)を有する多孔
質グラファイトで製造してもよい。
On the other hand, a vibrator 5 having a large number of small holes 7 is attached to the center of the crucible 4.
, passes through the heat insulating material 2 and the chamber 1 and communicates with the outside world. A plurality of the vibrators 5 having a large number of small holes 7 may be attached to the central portion as shown in FIG. 2. Further, the vibrator 5 may be made of porous graphite having numerous ventilation holes (not shown).

上記圧粉体lOを所定の雰囲気で焼結するためには、第
1図および第2図の断面図で示されるように、バイブ5
から所定の雰囲気ガスを点線矢印12で示されるように
供給し、ルツボ4内においてバイブ5の小孔7または通
気孔(図示せず)からルツボ4,4′に供給し、ルツボ
4,4′内部を雰囲気ガスで充満させた状態て圧粉体1
0を焼結する。
In order to sinter the powder compact lO in a predetermined atmosphere, a vibrator 5 is used as shown in the cross-sectional views of FIGS. 1 and 2.
A predetermined atmospheric gas is supplied from the crucible 4 as shown by the dotted arrow 12, and is supplied to the crucibles 4, 4' from the small hole 7 or the ventilation hole (not shown) of the vibrator 5 in the crucible 4. Green compact 1 with the inside filled with atmospheric gas
Sinter 0.

上記雰囲気ガスは、所定の流量でルツボ4内に供給され
続け、ルツボ4内は常に一定の組成からなる雰囲気ガス
を所定の濃度で保持される。一方、ルツボ4内で反応し
、消費されて成分組成の変化した雰囲気ガスは、ルツボ
4の孔6または多孔質通気孔を通り、さらに断熱材2を
通って、チャンバー1に取付けられている開口部8から
点線矢印12で示されるように排気される。
The atmospheric gas is continuously supplied into the crucible 4 at a predetermined flow rate, and the atmospheric gas having a constant composition is always maintained at a predetermined concentration inside the crucible 4. On the other hand, the atmospheric gas whose component composition has changed due to reaction and consumption within the crucible 4 passes through the holes 6 or porous ventilation holes of the crucible 4, and further passes through the heat insulating material 2, and then passes through the openings attached to the chamber 1. Air is exhausted from the section 8 as indicated by a dotted arrow 12.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記従来の方法で雰囲気焼結炉に雰囲気ガス
を流しなから圧粉体10を焼結し、切削工具を作製し、
この切削工具を用いて切削試験してみると、圧粉体10
の支持台9表面における配置位置の相違によって、得ら
れた切削工具の切削性能にバラツキが生じるという問題
点が生じたのである。
However, in the conventional method described above, the green compact 10 is sintered without flowing atmospheric gas into the atmosphere sintering furnace, and a cutting tool is manufactured.
When a cutting test was conducted using this cutting tool, it was found that the green compact 10
Due to the difference in the arrangement position on the surface of the support base 9, a problem arose in that the cutting performance of the obtained cutting tool varied.

その原因としては、 (1)中心部のバイブ5から供給される雰囲気ガスは、
開口部8に近い方向の断熱材2に向って流れやすいため
、開口部8方向への雰囲気ガスの流速が速くなりやすく
、一方、排気口である開口部8と逆側の断熱材2を通っ
て流れる雰囲気ガスの流量は少なくなる。そのため、ル
ツボ4内部の雰囲気ガスの濃度にムラか生じる。
The reasons for this are: (1) The atmospheric gas supplied from the vibrator 5 in the center is
Because it tends to flow toward the insulating material 2 in the direction close to the opening 8, the flow rate of the atmospheric gas in the direction of the opening 8 tends to increase, and on the other hand, it passes through the insulating material 2 on the opposite side from the opening 8, which is the exhaust port. The flow rate of the atmospheric gas flowing through is reduced. Therefore, the concentration of the atmospheric gas inside the crucible 4 becomes uneven.

(2)冷たい雰囲気ガスがバイブ5を通って直接ルツボ
4,4′に導入されるため、バイブ5に近い内側とルツ
ボ4,4′の壁側とでは温度差が生じ、均熱が十分にと
れなくなり、支持台9に配置された圧粉体IOのバイブ
5側とルツボ4,4′の壁側とでは焼結条件が均一でな
くなる。
(2) Since the cold atmospheric gas is directly introduced into the crucibles 4, 4' through the vibrator 5, a temperature difference occurs between the inner side near the vibrator 5 and the wall side of the crucibles 4, 4', making it impossible to uniformly heat the crucibles. As a result, the sintering conditions are no longer uniform between the vibrator 5 side of the powder compact IO placed on the support stand 9 and the wall side of the crucibles 4 and 4'.

などが考えられる。etc. are possible.

上記(1)の原因を避けるためには、チャンバー1に多
数の排気口を取付けて、バイブ5から供給された雰囲気
ガスが放射状に均等に吸引されるように設計されるが、
排気口を溶接するための溶接部分が多くなり、コストを
引き上げるので好ましくなく、一方、上記(2)の原因
を解消する手段として予め雰囲気ガスを所定の温度に予
熱する方法がとられるが、予熱装置を別に設置する必要
があるために、製造コストが高くつくので好ましくない
In order to avoid the cause of (1) above, the chamber 1 is designed to have a large number of exhaust ports so that the atmospheric gas supplied from the vibrator 5 is evenly sucked in radially.
The number of welded parts for welding the exhaust port increases, which is undesirable as it increases the cost.On the other hand, as a means to eliminate the cause of (2) above, a method is used in which the atmospheric gas is preheated to a predetermined temperature, but preheating is not preferable. This is not preferable because it requires separate installation of the device, which increases manufacturing costs.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、第1図または第2図に示される
ような従来公知の雰囲気焼結炉を用い、均一で効率のよ
い焼結方法を開発すべく研究を行った結果、 上記従来公知の雰囲気焼結炉において、雰囲気ガスをチ
ャンバー1の開口部8から供給し、雰囲気焼結炉の中央
部に設けられたバイブ5から吸弓排田することにより、
ルツボ4内部の雰囲気ガス濃度を均一に保持し、この方
法で雰囲気ガスを供給しながら焼結して得られた切削工
具は、均等な切削性能を示すという知見を得たのである
Therefore, the present inventors conducted research to develop a uniform and efficient sintering method using a conventionally known atmosphere sintering furnace as shown in FIG. 1 or FIG. In a known atmosphere sintering furnace, atmospheric gas is supplied from the opening 8 of the chamber 1 and suction is discharged from the vibrator 5 provided in the center of the atmosphere sintering furnace.
It was found that the cutting tool obtained by maintaining the atmospheric gas concentration inside the crucible 4 uniformly and sintering while supplying the atmospheric gas using this method exhibits uniform cutting performance.

この発明は、かかる知見にもとづいてなされたものであ
って、 開口部を有するチャンバー、上記チャンバーの内部に設
けられた断熱材、上記断熱材の内部に設けられたルツボ
、上記ルツボと断熱材の間に設けられたヒーター、上記
ルツボの中央部に位置し上記ルツボ、断熱材およびチャ
ンバーを貫通して外部に通じているパイプからなる雰囲
気焼結炉を用いて、 雰囲気ガスを、上記チャンバーの開口部から供給し、上
記パイプから吸引排出することを特徴とする雰囲気焼結
炉を用いた圧粉体の焼結方法に特徴を有するものである
This invention was made based on this knowledge, and includes a chamber having an opening, a heat insulating material provided inside the chamber, a crucible provided inside the heat insulating material, and a connection between the crucible and the heat insulating material. Using an atmosphere sintering furnace consisting of a heater provided between the crucible and a pipe located in the center of the crucible and communicating with the outside through the crucible, the insulation material, and the chamber, atmospheric gas is introduced into the opening of the chamber. The present invention is characterized by a method for sintering a green compact using an atmospheric sintering furnace, which is characterized in that powder is supplied from the pipe and suctioned and discharged from the pipe.

この発明の焼結方法を実施する際の雰囲気ガスの流れは
次のようになる。
The flow of atmospheric gas when carrying out the sintering method of this invention is as follows.

まず、雰囲気ガスボンベ(図示せず)をチャンバー1の
開口部8に接続し、真空ポンプ(図示せず)をパイプ5
に接続し作動させると、雰囲気ガスは開口部8から供給
され、チャンバー1と断熱材2の間に形成される空間に
は雰囲気ガスが充満する。この充満した雰囲気ガスは実
線矢印11で示される方向に断熱材2を通って均一速度
で流れ込み、さらにルツボ4の孔5または多孔質連通孔
(図示せず)を通り、支持台9と支持台9の間を通って
ルツボ4のほぼ中央部に位置するパイプ5の小孔7に入
り、パイプ5から吸引排出される。
First, an atmospheric gas cylinder (not shown) is connected to the opening 8 of the chamber 1, and a vacuum pump (not shown) is connected to the pipe 5.
When connected to and operated, atmospheric gas is supplied from the opening 8, and the space formed between the chamber 1 and the heat insulating material 2 is filled with the atmospheric gas. This filled atmospheric gas flows at a uniform speed through the insulation material 2 in the direction shown by the solid arrow 11, and further passes through the holes 5 of the crucible 4 or the porous communication hole (not shown), and then flows between the support base 9 and the support base. 9, enters the small hole 7 of the pipe 5 located approximately in the center of the crucible 4, and is sucked and discharged from the pipe 5.

その際、雰囲気ガスは、ヒーター3て加熱された断熱材
2、ヒーター3およびヒーター3で加熱されたルツボ4
を通るために予熱され、従来のように雰囲気ガス予熱装
置を別に設ける必要がない。
At this time, the atmospheric gas includes the heat insulating material 2 heated by the heater 3, the heater 3, and the crucible 4 heated by the heater 3.
There is no need to provide a separate atmospheric gas preheating device as in the past.

また圧粉体10の雰囲気焼結に使用された雰囲気ガスは
均一な流速でパイプ5の小孔7に流れ込むので圧粉体I
Oの表面を流れる雰囲気ガス流量も均等になり、支持台
9の外周に配置された圧粉体10の焼結に消費されて低
濃度となった雰囲気ガスであってもパイプ5へ集中する
ために雰囲気ムラが生じにくい。
In addition, since the atmospheric gas used for the atmosphere sintering of the powder compact 10 flows into the small hole 7 of the pipe 5 at a uniform flow rate, the compact powder I
The flow rate of the atmospheric gas flowing on the surface of the O is also made uniform, and even the atmospheric gas that has become low in concentration due to being consumed in sintering the green compact 10 arranged around the outer periphery of the support base 9 concentrates on the pipe 5. Atmosphere unevenness is less likely to occur.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

原料粉末として、平均粒径:3.0tlnのWC粉末、
平均粒径:1.5μsのTiC粉末、平均粒径:1.5
%mのTiN粉末、平均粒径:1.5t!nのTaC粉
末、および平均粒径:1.0μsのCo粉末を用意し、
これら原料粉末をTiC粉末:8%、TiN粉末=2%
、TaC粉末=10%、Co粉末:10%、WC粉末:
残り(以上、重量%)となるように配合し、ポルミルに
て72時時間式混合した後、乾燥し、得られた混合粉末
をISO規格S N MG 1204011に規定する
形状をもった圧粉体にプレス成形し、この圧粉体をグラ
ファイト製リング状支持台上に並べ、第1図に示される
ように、雰囲気焼結炉に装入し、上記雰囲気焼結炉のチ
ャンバーの開口部8から窒素ガスを実線矢印11で示さ
れるように供給し、パイプ5から実線矢印11で示され
るように吸引排出しなから、ヒーター3により炉内温度
を1380℃に保持し、焼結してWCC超超硬合金製切
削工具製造した。
As raw material powder, WC powder with an average particle size of 3.0 tln,
TiC powder with average particle size: 1.5 μs, average particle size: 1.5
%m TiN powder, average particle size: 1.5t! Prepare TaC powder of n and Co powder of average particle size: 1.0 μs,
These raw material powders were TiC powder: 8%, TiN powder = 2%
, TaC powder = 10%, Co powder: 10%, WC powder:
The remaining (weight%) is mixed in a polmill for 72 hours, and then dried. The resulting mixed powder is made into a green compact having a shape specified in ISO standard SN MG 1204011. This green compact is arranged on a graphite ring-shaped support base, and as shown in FIG. Nitrogen gas is supplied as shown by the solid line arrow 11, and then suctioned and discharged from the pipe 5 as shown by the solid line arrow 11.The furnace temperature is maintained at 1380°C by the heater 3 and sintered to exceed the WCC. Manufactured cutting tools made of cemented carbide.

上記焼結して得られたWCC超超硬合金製切削工具うち
、グラファイト製リング状支持台の内周付近のパイプ5
に最も近い個所に配置し焼結して得られたWCC超超硬
合金切削工具実施例1)およびグラファイト製リング状
支持台の外周付近のルツボ4の内壁に最も近い個所に配
置し焼結して得られたWCC超超硬合金製切削工具実施
例2)を取出し、これらWCC超超硬合金製切削工具つ
いて、 被削材: J I S  SNCM439(HB: 2
80)切削速度: 150 m/1n 。
Among the WCC cemented carbide cutting tools obtained by sintering, pipe 5 near the inner periphery of the graphite ring-shaped support
A WCC cemented carbide cutting tool (Example 1) obtained by placing and sintering the cutting tool closest to The WCC cemented carbide cutting tools (Example 2) obtained by
80) Cutting speed: 150 m/1n.

送   リ: 0.3 mm/ rev 。Feed: 0.3 mm/rev.

切込み+2mm。Depth of cut +2mm.

切削時間: l011in 。Cutting time: l011in.

の条件で、鋼を乾式連続切削する切削試験を実施し、逃
げ面摩耗幅を測定し、それらの結果を第1表に示した。
A cutting test was carried out by dry continuous cutting of steel under the following conditions, and the flank wear width was measured. The results are shown in Table 1.

さらに比較の目的で、第1図に示される雰囲気焼結炉を
用い、第1図の点線矢印12で示されるように、パイプ
5から窒素ガスを供給し、開口部8から吸引排出する以
外は上記実施例1および2と全く同一条件でWCC超超
硬合金製切削工具焼結し、実施例1および2と同一個所
に配置され焼結されたWCC超超硬合金製切削工具従来
例1および2)を取出し、これらのWCC超超硬合金製
切削工具ついても同上条件で乾式連続切削試験を実施し
、同じく逃げ面摩耗幅を測定し、それらの結果を第1表
に示した。
Furthermore, for the purpose of comparison, we used the atmosphere sintering furnace shown in FIG. WCC cemented carbide cutting tools were sintered under exactly the same conditions as in Examples 1 and 2, and conventional examples 1 and sintered WCC cemented carbide cutting tools were placed and sintered in the same locations as in Examples 1 and 2. 2), and these WCC cemented carbide cutting tools were also subjected to a dry continuous cutting test under the same conditions as above, and the width of flank wear was similarly measured, and the results are shown in Table 1.

第1表の結果から、雰囲気ガスをパイプ5から開口部8
へ流す従来の焼結方法によると、従来例1および2に見
られるように、焼結時の圧粉体の配置位置の相違によっ
て、得られた切削工具の切削性能にバラツキが生じるが
、雰囲気ガスを開口部8からパイプ5へ流すこの発明の
焼結方法によると、焼結時の圧粉体の配置位置に関係な
く、得られた切削工具の切削性能にバラツキがないこと
がわかる。
From the results in Table 1, it is clear that the atmospheric gas is transferred from the pipe 5 to the opening 8.
According to the conventional sintering method in which the powder is poured into a It can be seen that according to the sintering method of the present invention in which gas is caused to flow from the opening 8 to the pipe 5, there is no variation in the cutting performance of the obtained cutting tool, regardless of the placement position of the green compact during sintering.

〔発明の効果〕〔Effect of the invention〕

上述のように、この発明によると、開口部からチャンバ
ー内に導入された雰囲気ガスは、ヒーターによって加熱
された断熱材、ヒーター、ヒーターによって加熱された
ルツボを通ってパイプに集まり排出されるため、雰囲気
ガスは十分に予熱され、雰囲気ガスのショートバスか起
こらず、雰囲気ガスの均熱ムラが生じない。さらに雰囲
気ガスは支持台周辺部の圧粉体の焼結に消耗され低濃度
となってもパイプへ雰囲気ガスが集中するために雰囲気
ムラが生じに<<、焼結された切削工具の切削性能にバ
ラツキが生しないなどの優れた効果がある。
As described above, according to the present invention, the atmospheric gas introduced into the chamber from the opening passes through the insulating material heated by the heater, the heater, and the crucible heated by the heater, collects in the pipe, and is discharged. The atmospheric gas is sufficiently preheated, no short bath of the atmospheric gas occurs, and uneven heating of the atmospheric gas does not occur. Furthermore, the atmospheric gas is consumed by the sintering of the green compact around the support base, and even if the concentration is low, the atmospheric gas concentrates on the pipe, resulting in uneven atmosphere.The cutting performance of the sintered cutting tool It has excellent effects such as no variation in the results.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来公知の雰囲気焼結炉の断面図を用いてこ
の発明の雰囲気ガスの流れを示す説明図、第2図は、他
の従来公知の雰囲気焼結炉の断面図を用いてこの発明の
雰囲気ガスの流れを示す説明図。 1:チャンバー     2;断熱材、3:ヒーター 
     4.4’  ニルツボ5:パイプ、 11:実線矢印 (本発明の雰囲気ガスの流れを示す。)、12:点線矢
印 (従来の雰囲気ガスの流れを示す。)。 出 願 人 二 三菱金属株式会社 代 理 人 昌 田 和 夫 外1名
FIG. 1 is an explanatory diagram showing the flow of atmospheric gas according to the present invention using a cross-sectional view of a conventionally known atmosphere sintering furnace, and FIG. FIG. 3 is an explanatory diagram showing the flow of atmospheric gas according to the present invention. 1: Chamber 2: Insulation material, 3: Heater
4.4' Nil pressure point 5: Pipe, 11: Solid arrow (indicates the flow of atmospheric gas according to the present invention), 12: Dotted arrow (indicates the flow of conventional atmospheric gas). Applicant 2: Mitsubishi Metals Co., Ltd. agent Kazuo Masada and one other person

Claims (1)

【特許請求の範囲】[Claims] (1)開口部を有するチャンバー、上記チャンバーの内
側に設けられた通気性断熱材、上記通気性断熱材の内部
に設けられた通気性ルツボ、上記通気性断熱材と通気性
ルツボの間に設けられたヒーター、および上記通気性ル
ツボの中央部に位置し、上記通気性ルツボ、通気性断熱
材およびチャンバーを貫いて外部に通じているパイプか
らなり、上記パイプの通気性ルツボ内に存在する部分に
は多数の小孔または通気孔を有する雰囲気焼結炉を用い
て圧粉体を焼結する方法において、 雰囲気ガスを、上記チャンバーの開口部から供給し、上
記パイプから吸引排出することを特徴とする雰囲気焼結
炉を用いた圧粉体の焼結方法。
(1) A chamber having an opening, a breathable heat insulating material provided inside the chamber, a breathable crucible provided inside the breathable heat insulating material, and a breathable crucible provided between the breathable heat insulating material and the breathable crucible. and a pipe located in the center of the gas-permeable crucible, penetrating the gas-permeable crucible, the gas-permeable insulation material, and the chamber to the outside, and a portion of the pipe existing within the gas-permeable crucible. A method of sintering a green compact using an atmosphere sintering furnace having a large number of small holes or ventilation holes, characterized in that an atmosphere gas is supplied from the opening of the chamber and is sucked and discharged from the pipe. A method for sintering a green compact using a sintering furnace with an atmosphere of
JP7833490A 1990-03-27 1990-03-27 Method for sintering green compact using atmospheric sintering furnace Pending JPH03277701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7833490A JPH03277701A (en) 1990-03-27 1990-03-27 Method for sintering green compact using atmospheric sintering furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7833490A JPH03277701A (en) 1990-03-27 1990-03-27 Method for sintering green compact using atmospheric sintering furnace

Publications (1)

Publication Number Publication Date
JPH03277701A true JPH03277701A (en) 1991-12-09

Family

ID=13659080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7833490A Pending JPH03277701A (en) 1990-03-27 1990-03-27 Method for sintering green compact using atmospheric sintering furnace

Country Status (1)

Country Link
JP (1) JPH03277701A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7384218B2 (en) 2004-12-16 2008-06-10 Mitsubishi Materials Corporation Clamping mechanism for cutting insert
US7479252B2 (en) 2003-03-28 2009-01-20 Mitsubishi Materials Corporation Method for manufacturing throwaway tip and apparatus for aligning green compact
CN101968308A (en) * 2010-11-24 2011-02-09 中国矿业大学 Crucible-lifting sintering furnace
JP2011508075A (en) * 2007-12-21 2011-03-10 サンドビック インテレクチュアル プロパティー アクティエボラーグ Sintering furnace and cutting tool manufacturing method
CN111952068A (en) * 2020-08-07 2020-11-17 邱芳 Pore size and pore diameter sintering equipment for neodymium iron boron magnet production and implementation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479252B2 (en) 2003-03-28 2009-01-20 Mitsubishi Materials Corporation Method for manufacturing throwaway tip and apparatus for aligning green compact
US7384218B2 (en) 2004-12-16 2008-06-10 Mitsubishi Materials Corporation Clamping mechanism for cutting insert
US7866924B2 (en) 2004-12-16 2011-01-11 Mitsubishi Materials Corporation Clamping mechanism for cutting insert
JP2011508075A (en) * 2007-12-21 2011-03-10 サンドビック インテレクチュアル プロパティー アクティエボラーグ Sintering furnace and cutting tool manufacturing method
EP2225061A4 (en) * 2007-12-21 2017-08-09 Sandvik Intellectual Property AB Sintering furnace and method of making cutting tools
CN101968308A (en) * 2010-11-24 2011-02-09 中国矿业大学 Crucible-lifting sintering furnace
CN111952068A (en) * 2020-08-07 2020-11-17 邱芳 Pore size and pore diameter sintering equipment for neodymium iron boron magnet production and implementation method thereof
CN111952068B (en) * 2020-08-07 2021-11-30 包头市英思特稀磁新材料股份有限公司 Pore size and pore diameter sintering equipment for neodymium iron boron magnet production and implementation method thereof

Similar Documents

Publication Publication Date Title
US4448747A (en) High density sintering method for powder molded products
EP1647790B1 (en) Method of manufacturing porous ceramic body
CN100537485C (en) Method for preparing silicon carbide nano-wire
JP4600901B2 (en) Tunnel kiln for firing ceramic honeycomb bodies
WO2007015550A1 (en) Jig for silicon carbide firing and method for producing porous silicon carbide body
CN1171137A (en) Pressure gredient CVI/CVD apparatus, process and product
HK1002001A1 (en) Dense self-sintered silicon carbide/carbon-graphite composite and process for producing same
CN114956826B (en) (TiNbCrWTA) C x High-entropy ceramic and preparation method thereof
CA2411114A1 (en) Burning furnace, burnt body producing method, and burnt body
CN101165871A (en) Substrate supporting member
JPH03277701A (en) Method for sintering green compact using atmospheric sintering furnace
RU2465981C2 (en) Method of fabricating electrode for surface electric-discharge processing and electrode for surface electric-discharge processing
JPH0219400B2 (en)
KR101151209B1 (en) Machinable ceramic composite material with black color and manufacturing method of the same
JP2011246316A (en) Method for firing ceramic and ceramic firing device
CN112877771A (en) Crucible and method for single crystal growth
JP2003282462A (en) Shower plate and method of manufacturing the same, and shower head using the same
JP4593062B2 (en) Aluminum nitride sintered body and method for producing the same
JP4111676B2 (en) Method for producing porous silicon carbide sintered body
JP2002193670A (en) Burning method for silicon carbide compact
JP2525427B2 (en) Ceramic substrate firing method and apparatus
JPH06105154B2 (en) Continuous firing furnace
CN112157265A (en) Method and equipment for preparing metal fiber porous material by resistance sintering
JP4376479B2 (en) Method for producing Si-SiC composite material
Kriegesmann RECRYSTALLISED SILICON CARBIDE: PROCESSING AND ASPECTS AND SINTERING BEHAVIOUR