JPH03277538A - Heat insulating material - Google Patents

Heat insulating material

Info

Publication number
JPH03277538A
JPH03277538A JP2080246A JP8024690A JPH03277538A JP H03277538 A JPH03277538 A JP H03277538A JP 2080246 A JP2080246 A JP 2080246A JP 8024690 A JP8024690 A JP 8024690A JP H03277538 A JPH03277538 A JP H03277538A
Authority
JP
Japan
Prior art keywords
carbon fiber
heat insulating
fibers
carbon
felt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2080246A
Other languages
Japanese (ja)
Inventor
Hirobumi Kutoku
久徳 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2080246A priority Critical patent/JPH03277538A/en
Publication of JPH03277538A publication Critical patent/JPH03277538A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain heat insulating material which is excellent in shape retaining properties, heat insulating properties and cushioning properties and capable of preventing contamination of the material to be heat-treated by constituting the heat insulating material of felt having specified bulk density wherein carbon fiber of felt made of the same is mechanically joined and the interval of carbon fibers is joined by carbon fiber formed into carbon fiber of a fusion state. CONSTITUTION:Heat insulating material is obtained by laminating felt made of carbon fiber and a carbonaceous sheet by a carbonaceous binder. The said heat insulating material is constituted of felt having 0.1-0.3g/cm<3> bulk density wherein carbon fiber of felt made of the same is mechanically joined and also the interval of carbon fibers is joined by carbon fiber formed into carbon fiber of a fusion state. When bulk density is made smaller than 0.1g/cm<3>, heat insulating properties and hardness are made small. When bulk density exceeds 0.3g/cm<3>, cushioning properties are generally made easy to be deteriorated. Thickness of felt made of carbon fiber is ordinarily regulated to about 5-60mm.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高温熱処理時に好適に使用される断熱材に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat insulating material suitably used during high temperature heat treatment.

C従来の技術と発明が解決しようとする課題]炭素繊維
フェルトは、セラミックス焼成炉、真空蒸着炉、半導体
単結晶成長炉等の高温炉における断熱材や断熱緩衝材な
どとして使用されている。
C. Prior Art and Problems to be Solved by the Invention Carbon fiber felt is used as a heat insulating material or a heat insulating buffer material in high-temperature furnaces such as ceramic firing furnaces, vacuum evaporation furnaces, and semiconductor single crystal growth furnaces.

また一般に、炭素繊維フェルトの高密度が大きくなるに
つれて、高温域における断熱性が大きくなる。しかしな
がら、炭素繊維フェルト単体では、高密度が0.07g
/cut程度と小さいため、低温域における断熱性はよ
いものの、高温断熱性か十分てない。従って、高温域で
の高温断熱性を高めるには、炭素繊維フェルトを圧縮す
る必要がある。
Generally, the higher the density of carbon fiber felt, the greater the heat insulation properties in a high temperature range. However, the high density of carbon fiber felt alone is 0.07g.
/cut, so the heat insulation properties are good in the low temperature range, but the high temperature heat insulation properties are not sufficient. Therefore, it is necessary to compress carbon fiber felt in order to improve high-temperature insulation properties in a high-temperature range.

また加熱炉への装着等を容易にするために、適度な硬度
を付与し形状保持性を高めることと、被熱処理物の汚染
を防止するために、炭素フェルトの毛羽をなくすことか
必要とされる。
In addition, it is necessary to provide appropriate hardness to improve shape retention in order to facilitate installation in a heating furnace, and to eliminate fuzz in carbon felt to prevent contamination of objects to be heat treated. Ru.

一方、実公昭58−29129号公報には、炭素繊維フ
ェルトと黒鉛シートとを炭素質の結合剤で接着した断熱
材が開示されている。この断熱材は、炭素繊維フェルト
と黒鉛シートの双方に樹脂を含浸して、加圧成形し、成
形物を炭化処理することにより、製造している。
On the other hand, Japanese Utility Model Publication No. 58-29129 discloses a heat insulating material in which a carbon fiber felt and a graphite sheet are bonded together using a carbonaceous binder. This heat insulating material is manufactured by impregnating both carbon fiber felt and graphite sheet with resin, pressure molding, and carbonizing the molded product.

しかしながら、この断熱材は、含浸樹脂に起因して種々
の問題が生じる。例えば、含浸工程で、樹脂の含浸むら
が生し易いので、均一性、断熱性が低下する。また炭化
した含浸樹脂で一体化しているため、断熱材は、弾力性
及び緩衝性に乏しく硬質であり、加工時や炉への装着時
に欠損し易いさらには、含浸樹脂に起因して、炭化及び
その後の加工時に粉が多量に発生し、発生した粉は、高
温炉内の被加熱処理物を汚染する。また樹脂を含浸した
後、焼成するので、断熱材に反りか生じ易くなる。
However, various problems arise with this heat insulating material due to the impregnated resin. For example, in the impregnation process, uneven resin impregnation tends to occur, resulting in a decrease in uniformity and heat insulation properties. In addition, since it is integrated with carbonized impregnated resin, the heat insulating material is hard with poor elasticity and cushioning properties, and is easily damaged during processing or when installed in a furnace. A large amount of powder is generated during subsequent processing, and the generated powder contaminates the object to be heated in the high-temperature furnace. Furthermore, since the insulation material is baked after being impregnated with resin, the insulation material is likely to warp.

従って、本発明の目的は、形状保持性、断熱性緩衝性に
優れると共に、欠落や反りかなく、被加熱処理物の汚染
を防止できる断熱材を提供することにある。
Accordingly, an object of the present invention is to provide a heat insulating material that has excellent shape retention, heat insulation and cushioning properties, is free from chipping and warping, and can prevent contamination of objects to be heated.

[発明の構成] 本発明者らは、炭素繊維、炭素繊維化可能な繊維又はこ
れらの混合繊維(以下、特に断りがない限り、これらを
炭素繊維等と総称する)と、炭素繊維化可能な熱融着性
繊維(以下、熱融着性繊維という)とを混紡し、機械的
に接合した後、焼成した。かくして、樹脂を含浸するこ
となく、高密度を高めることかできると共に、適度な硬
度を有し、弾力性及び緩衝性に優れた均一な炭素繊維フ
ェルトが得られることを見いたし、本発明を完成した。
[Structure of the Invention] The present inventors have discovered carbon fibers, fibers that can be made into carbon fibers, or mixed fibers thereof (hereinafter, unless otherwise specified, these are collectively referred to as carbon fibers, etc.), and fibers that can be made into carbon fibers. Heat-fusible fibers (hereinafter referred to as heat-fusible fibers) were blended, mechanically bonded, and then fired. In this way, they discovered that it was possible to obtain a uniform carbon fiber felt that had a high density, moderate hardness, and excellent elasticity and cushioning properties without being impregnated with resin, and completed the present invention. did.

すなわち、本発明は、炭素繊維フェルトと炭素材質シー
トとを、炭素質結合剤で積層した断熱材であって、上記
炭素繊維フェルトか、炭素繊維が機械的に接合している
と共に、炭素繊維間が、融着状態で炭素繊維化された炭
素繊維で接合した高密度0.1〜0.3g/c+aのフ
ェルトで構成されている断熱材により、上記課題を解決
するものである。
That is, the present invention provides a heat insulating material in which a carbon fiber felt and a carbon material sheet are laminated with a carbonaceous binder, in which the carbon fiber felt or the carbon fibers are mechanically bonded, and the carbon fibers are bonded together. However, the above-mentioned problem is solved by a heat insulating material made of felt having a high density of 0.1 to 0.3 g/c+a bonded with carbon fibers that are fused together.

なお、本明細書における用語の定義は次の通りである。The definitions of terms used in this specification are as follows.

炭素繊維とは炭化又は黒鉛化した繊維を言う。Carbon fiber refers to carbonized or graphitized fiber.

炭化とは、炭素繊維化可能な繊維や熱融着性繊維等を、
例えば、450〜1500℃程度の温度で焼成処理する
ことを言う。黒鉛化とは、例えば1500〜3000℃
程度の温度で焼成処理することを言い、黒鉛の結晶構造
を有していないときでも黒鉛化の概念に含める。
Carbonization refers to fibers that can be made into carbon fibers, heat-fusible fibers, etc.
For example, it refers to firing treatment at a temperature of about 450 to 1500°C. Graphitization means, for example, 1500 to 3000°C
It refers to firing treatment at a temperature of about 100%, and is included in the concept of graphitization even when it does not have the crystal structure of graphite.

耐炎化処理とは、ピッチ系繊維以外の繊維を、例えば、
酸素存在下、200〜・450℃程度の温度で加熱して
表面に耐熱層を形成し、焼成時の溶融を防止する処理を
言う。不融化処理とは、例えば、ピッチ系繊維を、酸素
存在下、200〜450℃程度の温度で加熱して表面に
耐熱層を形成し、焼成時の溶融を防止する処理を言う。
Flame-retardant treatment refers to the treatment of fibers other than pitch-based fibers, such as
This is a process in which a heat-resistant layer is formed on the surface by heating at a temperature of about 200 to 450°C in the presence of oxygen to prevent melting during firing. The infusible treatment is, for example, a treatment in which pitch-based fibers are heated at a temperature of about 200 to 450° C. in the presence of oxygen to form a heat-resistant layer on the surface to prevent melting during firing.

炭素繊維フェルトの炭素繊維としては、例えば、ポリア
クリロニトリル系、レーヨン系、フェノール樹脂系、セ
ルロース系、ピッチ系などの炭素繊維か例示される。こ
れらの炭素繊維は、一種又は二種以上の混合繊維として
使用できる。
Examples of the carbon fibers of the carbon fiber felt include polyacrylonitrile-based, rayon-based, phenol resin-based, cellulose-based, and pitch-based carbon fibers. These carbon fibers can be used alone or as a mixed fiber of two or more.

炭素繊維は、機械的絡み合いにより接合し、フェルトを
構成している。そして、互いに絡み合った炭素繊維間は
、従来のように含浸樹脂ではなく、融着状態で炭素繊維
化された炭素繊維によって接合している。従って、従来
のように、樹脂の含浸むらなとに起因する均−性及び断
熱性の低下がなく、弾力性及び緩衝性に優れると共に、
反りがなく、焼成や加工時に粉の発生量が著しく少ない
Carbon fibers are joined by mechanical entanglement to form felt. The intertwined carbon fibers are not joined by an impregnated resin as in the conventional case, but by carbon fibers that are fused into carbon fibers. Therefore, there is no deterioration in uniformity and heat insulation properties caused by uneven resin impregnation as in the past, and it has excellent elasticity and cushioning properties.
There is no warpage, and the amount of powder generated during firing and processing is extremely small.

また固体熱伝導に寄与する含浸樹脂の焼成物を含まない
ので、樹脂を含浸し、焼成した同一高密度の断熱材に比
較して、断熱性か優れている。さらに、炭素繊維間か、
融着状態で炭素繊維化された炭素繊維で三次元的に接合
しているため、適度な硬度、形状保持性を有すると共に
、加工時や炉への装着時に欠落することかない。炭素繊
維フェルトの硬度は、接合密度や繊維の混合割合なとを
調整することにより制御できる。
Furthermore, since it does not contain a fired product of impregnated resin that contributes to solid heat conduction, it has superior heat insulation properties compared to the same high-density heat insulating material impregnated with resin and fired. Furthermore, between carbon fibers,
Because it is three-dimensionally bonded with carbon fibers that are fused together, it has appropriate hardness and shape retention, and will not break off during processing or when installed in a furnace. The hardness of carbon fiber felt can be controlled by adjusting the bonding density and fiber mixing ratio.

炭素繊維フェルトの高密度は、0.]〜0,3g / 
cnf程度である。高密度か0.1g/cIIi未満で
あると、断熱性、硬度か小さく、0.3g/cmを越え
ると、一般に緩衝性なとが低下し易い。炭素繊維フェル
トの厚みは、通常5〜60mm程度である。
The high density of carbon fiber felt is 0. ]~0.3g/
It is about cnf. If the density is less than 0.1 g/cIIi, the heat insulation properties and hardness will be low, and if it exceeds 0.3 g/cm, the cushioning properties will generally tend to decrease. The thickness of carbon fiber felt is usually about 5 to 60 mm.

本発明の断熱材は、上記炭素繊維フェルトと炭素材質シ
ートとを、炭素質結合剤で積層し、一体化している。
In the heat insulating material of the present invention, the carbon fiber felt and the carbon material sheet are laminated and integrated using a carbonaceous binder.

炭素材質シートとしては、炭化又は黒鉛化可能なシート
を不活性ガス又は真空中で焼成した炭素シート、好まし
くは黒鉛シートなとが例示される。
Examples of the carbon material sheet include a carbon sheet obtained by firing a carbonizable or graphitizable sheet in an inert gas or vacuum, preferably a graphite sheet.

上記炭素材質シートは、適宜の厚みを有していてもよい
が、通常0.1−〜1 mm程度、好ましくは0゜2〜
0.75mm程度である。黒鉛シートは、例えば、黒鉛
を硫酸などの強酸で処理して膨張させ、圧延等の方法で
シート状に成形した従来公知の材料である。
The carbon material sheet may have an appropriate thickness, but is usually about 0.1 to 1 mm, preferably about 0.2 to 1 mm.
It is about 0.75 mm. A graphite sheet is a conventionally known material, for example, made by treating graphite with a strong acid such as sulfuric acid to expand it and forming it into a sheet shape by a method such as rolling.

炭素材質シートは、気密性に優れるので、この炭素材質
シートを前記炭素繊維フェルトと積層する場合には、防
粉性、耐風性、耐久性及び形状保持性をさらに高めるこ
とができる。
Since the carbon material sheet has excellent airtightness, when this carbon material sheet is laminated with the carbon fiber felt, dustproof properties, wind resistance, durability, and shape retention can be further improved.

炭素質結合剤は炭化又は黒鉛化可能な樹脂やピッチで形
成できる。該樹脂としては、例えば、フェノール樹脂、
フラン樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエス
テル、ジアリルフタレート樹脂、エポキシ樹脂、ポリイ
ミド、熱硬化性アクリル樹脂などの熱硬化性樹脂、ポリ
エチレン、ポリプロピレン、エチレン−プロピレン共重
合体、エチレン−酢酸ビニル共重合体、エチレン−アク
リル酸共重合体、ポリスチレン、アクリル樹脂、飽和ポ
リエステル、ポリアミド等の熱可塑性樹脂が例示される
。これらの樹脂のうち、接着性に優れるフェノール樹脂
、フラン樹脂なとの熱硬化性樹脂が好ましい。これらの
樹脂及びピッチは、種又は二種以上使用できる。
The carbonaceous binder can be formed from a carbonized or graphitized resin or pitch. Examples of the resin include phenol resin,
Furan resin, urea resin, melamine resin, unsaturated polyester, diallyl phthalate resin, epoxy resin, polyimide, thermosetting resin such as thermosetting acrylic resin, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer Examples include thermoplastic resins such as polymers, ethylene-acrylic acid copolymers, polystyrene, acrylic resins, saturated polyesters, and polyamides. Among these resins, thermosetting resins such as phenol resins and furan resins, which have excellent adhesive properties, are preferred. These resins and pitches can be used in one species or in combination of two or more.

なお、炭素質結合剤は、炭素繊維フェルトと炭素材質シ
ートとの接着強度を高めるため、少なくとも炭素質充填
剤を含むのか好ましい。この炭素質充填剤は、炭素材質
シートと当接する炭素繊維フェルトの表面に存在する空
隙部を充填し、接合面積を大きくするようである。
Note that the carbonaceous binder preferably contains at least a carbonaceous filler in order to increase the adhesive strength between the carbon fiber felt and the carbon material sheet. This carbonaceous filler seems to fill the voids present on the surface of the carbon fiber felt that comes into contact with the carbon material sheet, thereby increasing the bonding area.

炭素質充填剤は、例えば、メソカーボンマイクロピース
なとの炭素質小球体、コークスブリース、炭化又は黒鉛
化可能な充填剤、例えば、ピッチの破砕品を不融化処理
したバルクメソフェーズカボン、石炭などを500℃程
度の低温で乾留し、粉砕した低温か焼コークスなとてあ
ってもよい。
Carbonaceous fillers include, for example, carbonaceous small spheres such as mesocarbon micropieces, coke breath, fillers that can be carbonized or graphitized, such as bulk mesophase carbon obtained by infusibility treatment of crushed pitch products, coal, etc. It may also be low-temperature calcined coke that is carbonized at a low temperature of about 500°C and pulverized.

これらの炭素質充填剤の中で、メソカーボンマイクロビ
ーズが好ましい。このメソカーボンマイクロビーズは真
球状であり、コーティング剤中に均一に分散し易い。な
お、メソカーボンマイクロビズとは、コールタール、ピ
ッチの減圧蒸留残油などを約400〜500℃て熱処理
し、生成したメソフェース小球体をキノリンネ溶分とし
てピッチマトリックスから分離した粒径1〜80μm程
度の球状体を意味する。炭素質充填剤の粒径は、1〜2
00μm、好ましくは1〜80仰程度である。
Among these carbonaceous fillers, mesocarbon microbeads are preferred. These mesocarbon microbeads are perfectly spherical and are easily dispersed uniformly in the coating agent. Mesocarbon microbiz is a particle size of about 1 to 80 μm that is obtained by heat-treating coal tar, pitch vacuum distillation residual oil, etc. at about 400 to 500 °C, and separating the generated mesoface small spheres from the pitch matrix as a quinoline solution. means a spherical body. The particle size of the carbonaceous filler is 1 to 2
00 μm, preferably about 1 to 80 μm.

これらの炭素質充填剤は、一種又は二種以上混合して、
炭素質結合剤中に、通常5〜75重量%、好ましくは1
0〜50重量%含有される。
These carbonaceous fillers may be used singly or in combination of two or more,
Usually 5 to 75% by weight, preferably 1% by weight in the carbonaceous binder.
It is contained in an amount of 0 to 50% by weight.

さらに接合強度を高めるため、炭素質結合剤は、上記炭
素質充填剤に加えて、ミルド炭素繊維を含んでいてもよ
い。このミルド炭素繊維としては、通常、繊維長0.0
1〜1 mm程度の短繊維が使用できる。ミルド炭素繊
維は、通常5〜25重量%程度含有させることができる
In order to further increase the bonding strength, the carbonaceous binder may contain milled carbon fibers in addition to the carbonaceous filler described above. This milled carbon fiber usually has a fiber length of 0.0.
Short fibers of about 1 to 1 mm can be used. The milled carbon fiber can be contained usually in an amount of about 5 to 25% by weight.

上記炭素質結合剤は、炭素繊維フェルト全体に亘り含浸
状態で存在せず、炭素繊維フェルトと炭素材質シートと
の接合界面とその近傍に存在する。
The carbonaceous binder does not exist in an impregnated state throughout the carbon fiber felt, but exists at and near the bonding interface between the carbon fiber felt and the carbon material sheet.

すなわち、炭素繊維フェルトは、高密度か大きいので、
前記炭化又は黒鉛化可能な樹脂を含浸して成形する必要
がない。従って、焼成時やその後の加工時に粉が殆ど発
生せす、炭素繊維フェルI・の特性、例えば、前記緩衝
性、非欠損性などが損われない。
That is, carbon fiber felt is dense or large, so
There is no need to impregnate and mold the carbonized or graphitized resin. Therefore, hardly any powder is generated during firing or subsequent processing, and the properties of carbon fiber Fell I, such as the above-mentioned cushioning properties and non-defective properties, are not impaired.

本発明の断熱材において、炭素繊維フェルトと炭素材質
シートとを炭素質結合剤で積層する限り、その積層形態
は、特に制限されない。例えば、第1図に示されるよう
に、炭素繊維フェルト(1)の−方の面に炭素材質シー
ト(2)を炭素質結合剤(3)で積層した断熱材、第2
図に示されるように、炭素繊維フェルト(1)の両面に
炭素材質シート(2)を炭素質結合剤(3)で積層した
断熱材であってもよい。さらには、第3図に示されるよ
うに、炭素繊維フェルト(1)と炭素材質シート(2)
とを炭素質結合剤(3)で順次積層した断熱材であって
もよい。また第4図に示されるように、複数の炭素繊維
フェルト(1) (1)を炭素質結合剤(3)で積層し
、かつ積層された複数の炭素繊維フェルh (1) (
1)の少なくとも一方の面に炭素材質シート(2)を炭
素質結合剤(3)で積層してもよい。
In the heat insulating material of the present invention, the lamination form is not particularly limited as long as the carbon fiber felt and the carbon material sheet are laminated using a carbonaceous binder. For example, as illustrated in FIG.
As shown in the figure, the heat insulating material may be made by laminating carbon material sheets (2) on both sides of a carbon fiber felt (1) with a carbonaceous binder (3). Furthermore, as shown in FIG. 3, carbon fiber felt (1) and carbon material sheet (2)
It may also be a heat insulating material in which these are sequentially laminated with a carbonaceous binder (3). Further, as shown in FIG. 4, a plurality of carbon fiber felts (1) (1) are laminated with a carbonaceous binder (3), and a plurality of laminated carbon fiber felts h (1) (
A carbon material sheet (2) may be laminated on at least one surface of 1) with a carbonaceous binder (3).

また断熱材は、中空筒状てあってもよい。すなわち、第
5図に示されるように、内周面側の炭素材質シート(2
)と外周面側の炭素繊維フェル目1)とを炭素質結合剤
(3)で接合した断熱材であってもよく、第6図に示さ
れるように、筒状の炭素繊維フェルト(1)の内周面及
び外周面に、それぞれ炭素材質シート(2)を炭素質結
合剤(3)で積層した断熱材であってもよい。また第7
図に示されるように、筒状の炭素材質シート(2)の内
周面及び外周面に、それぞれ炭素繊維フェルト(1)(
1)を炭素質結合剤(3)で積層した断熱材であっても
よい。
Further, the heat insulating material may have a hollow cylindrical shape. That is, as shown in FIG. 5, the carbon material sheet (2
) and carbon fiber felt stitches 1) on the outer peripheral surface side may be bonded together with a carbonaceous binder (3), and as shown in FIG. 6, a cylindrical carbon fiber felt (1) It may be a heat insulating material in which a carbon material sheet (2) is laminated with a carbonaceous binder (3) on the inner peripheral surface and the outer peripheral surface, respectively. Also the 7th
As shown in the figure, carbon fiber felt (1) (
It may also be a heat insulating material in which 1) is laminated with a carbonaceous binder (3).

また複数の炭素繊維フェルトを使用する場合には、同−
又は異なる高密度の炭素繊維フェルトが使用できる。
Also, when using multiple carbon fiber felts, the same
Or different high density carbon fiber felts can be used.

本発明の断熱材は、炭素繊維フェルト及び炭素材質シー
トのうち、少なくとも一方の当接面に炭化又は黒鉛化可
能な樹脂などを塗布し、樹脂を硬化した後、炭化又は黒
鉛化処理することにより、得られる。上記樹脂やピッチ
の塗布量は、接着性を確保できる範囲、例えば、30〜
500 g / m程度である。樹脂の硬化は、接着強
度を高めるため、加圧しながら行なうのか好ましい。ま
た炭素質結合剤と炭素繊維フェルトとの接着強度を高め
るため、以下に説明する熱融着性繊維を含む焼成前の混
紡フェルトと炭素材質シートとを樹脂なとで積層した後
、硬化、炭化又は黒鉛化処理を行なってもよい。
The heat insulating material of the present invention can be produced by applying a carbonized or graphitizable resin to the abutting surface of at least one of the carbon fiber felt and the carbon material sheet, curing the resin, and then subjecting it to carbonization or graphitization. ,can get. The amount of the resin or pitch applied should be within a range that can ensure adhesion, for example, 30~
It is about 500 g/m. It is preferable to cure the resin while applying pressure in order to increase adhesive strength. In addition, in order to increase the adhesive strength between the carbonaceous binder and carbon fiber felt, the unfired blended felt containing heat-fusible fibers described below and a carbon material sheet are laminated with a resin ladle, and then hardened and carbonized. Alternatively, graphitization treatment may be performed.

以下に、本発明の断熱材に使用する炭素繊維フェルトの
製造方法について説明する。
Below, a method for producing carbon fiber felt used in the heat insulating material of the present invention will be explained.

上記炭素繊維フェルトは、樹脂の含浸工程を経ることな
く、前記炭素繊維等と、前記熱融着性繊維とを混紡する
混紡工程と、混紡繊維を機械的に接合する機械的接合工
程と、焼成工程とを経ることにより、製造できる。
The carbon fiber felt is produced by a blending process of blending the carbon fibers and the heat-fusible fibers without going through a resin impregnation process, a mechanical bonding process of mechanically bonding the blended fibers, and a baking process. It can be manufactured by going through the following steps.

混紡工程で使用する炭素繊維等のうち、炭素繊維化可能
な繊維としては、不融化処理したピ・ソチ系繊維、耐炎
化処理したポリアクリロニトリル系、レーヨン系、フェ
ノール樹脂系繊維、未処理のフェノール樹脂系繊維など
が例示される。これらの炭素繊維化可能な繊維も、一種
又は二種以上の混合繊維として使用できる。
Among the carbon fibers used in the blending process, fibers that can be made into carbon fibers include infusible pi-soti fibers, flame-retardant polyacrylonitrile fibers, rayon fibers, phenolic resin fibers, and untreated phenol fibers. Examples include resin fibers. These fibers that can be made into carbon fibers can also be used singly or as a mixed fiber of two or more.

熱融着性繊維は、高温処理により軟化又は溶融して炭素
繊維等と、又は熱融着性繊維と融着し、かつ焼成工程に
供することにより、炭素繊維化する。熱融着性繊維は、
通常、不融化又は耐炎化処理していない炭素繊維化可能
な繊維で構成されている。このような熱融着性繊維とし
ては、例えば、ポリアクリロニトリル繊維、レーヨン繊
維、ピッチ繊維などが挙げられる。これらの熱融着性繊
維は一種又は二種以上使用できる。
The heat-fusible fibers are softened or melted by high-temperature treatment, fused with carbon fibers, etc., or heat-fusible fibers, and then subjected to a firing process to form carbon fibers. Heat-fusible fibers are
Usually, it is composed of fibers that can be made into carbon fibers without being treated to be infusible or flameproof. Examples of such heat-fusible fibers include polyacrylonitrile fibers, rayon fibers, and pitch fibers. One or more types of these heat-fusible fibers can be used.

なお、フェノール樹脂系繊維を用いる場合には、焼成工
程での重量減少が少なく、高密度の大きな炭素繊維フェ
ルトが得られる。すなわち、フェノール樹脂系繊維を用
いると、焼成工程を経ても高密度が低下せず、むしろ大
きくなる。この理由としては、焼成工程で、フェノール
樹脂系繊維が、収縮しながら炭素繊維化し、他の炭素繊
維を引き締めるように働くためと考えられる。フェノー
ル樹脂系繊維としては、例えばノボラック型フェノール
樹脂からなるノボロイド繊維等が挙げられる。
In addition, when using phenolic resin fibers, there is little weight loss during the firing process, and a large carbon fiber felt with high density can be obtained. That is, when phenolic resin fibers are used, the density does not decrease even after the firing process, but rather increases. The reason for this is thought to be that during the firing process, the phenolic resin fibers shrink and become carbon fibers, which acts to tighten other carbon fibers. Examples of the phenolic resin fibers include novoloid fibers made of novolac type phenol resin.

炭素繊維等や熱融着性繊維の繊維径は、通常、5〜30
μm程度である。
The fiber diameter of carbon fiber etc. and heat-fusible fiber is usually 5 to 30.
It is about μm.

炭素繊維等と、熱融着性繊維との混紡割合は、通常、炭
素繊維等/熱融着性繊維=5/95〜9515、好まし
くは25/75〜75/25重量部程度である。熱融着
性繊維か5重量部未満であると、炭素繊維等を均一に接
合し、硬度を高めるのが困難であり、95重量部を越え
ると、焼成工程で重量減少が大きくなり、炭素繊維フェ
ルトの高密度を大きくするのか困難である。
The mixing ratio of carbon fiber etc. and heat fusible fiber is usually about 5/95 to 9515 parts by weight, preferably about 25/75 to 75/25 parts by weight of carbon fiber etc./heat fusible fiber. If the amount of heat-fusible fiber is less than 5 parts by weight, it will be difficult to uniformly bond carbon fibers and increase the hardness, and if it exceeds 95 parts by weight, the weight loss will be large during the firing process and It is difficult to increase the density of felt.

混紡繊維は、通常、シート状にした混紡ウェブ、又は複
数の混紡ウェブを積層した混紡ラップとした後、機械的
接合工程に供される。混紡ウェブ、混紡ラップは、従来
慣用の方=法、例えば紡績用カードを用いる方法等によ
り作製できる。
The blended fibers are usually formed into a blended web in the form of a sheet or a blended wrap made by laminating a plurality of blended webs, and then subjected to a mechanical bonding process. Blended webs and blended wraps can be produced by conventional methods, such as a method using a spinning card.

機械的接合工程では、混紡ウェブ又は混紡ラップを機械
的に接合圧縮し、フェルトの高密度を大きくする。この
工程で、炭素繊維等同士、熱融着性繊維同士の絡み合い
と、炭素繊維等と熱融着性繊維との絡み合いが生しる。
In the mechanical bonding process, the blended web or wrap is mechanically bonded and compressed to increase the density of the felt. In this step, entanglement occurs between carbon fibers, etc., between heat-fusible fibers, and between carbon fibers, etc. and heat-fusible fibers.

機械的接合手段としては、ステッチ法等であっても1よ
いが、二一ドルパンチ法が好ましい。ニードルパンチ法
によると、炭素繊維等と熱融着性繊維とを機械的に均一
に絡ませ、接合することかできる。またニードリングの
針密度等を調整することにより、フェルトの圧縮度、高
密度を容易に制御できる。
As the mechanical joining means, a stitch method or the like may be used, but a twenty-one dollar punch method is preferable. According to the needle punch method, carbon fibers and heat-fusible fibers can be mechanically evenly entangled and bonded. Furthermore, by adjusting the needle density of needling, etc., the degree of compression and high density of the felt can be easily controlled.

機械的接合工程では、(^)混紡割合が異なる複数の混
紡ウェブ又は混紡ラップを積層してニードリングする方
法、(B)同し混紡割合の混紡ウェブや混紡ラップを積
層してニードリングする際、厚み方向のニードリングの
針深度や針密度を調整する方法なとにより、厚み方向に
連続的又は段階的に高密度が分布したフェルトを得ても
よい。
In the mechanical joining process, (^) a method in which multiple blended webs or blended wraps with different blending ratios are stacked and needled; (B) a method in which blended webs or blended wraps with the same blending ratio are stacked and needled; A felt with high density distributed continuously or stepwise in the thickness direction may be obtained by adjusting the needle depth and needle density of needling in the thickness direction.

機械的接合工程により得られたフェルトの形状及び大き
さは、加熱炉の種類に応じて、例えば、平板状、円板状
などの板状、中空筒状などに形成できる。なお、中空筒
状フェルトは、例えば、混紡ウェブ又は混紡ラップを針
刺機の円筒状ベットに巻き付け、ニードリングすること
により作製できる。
The shape and size of the felt obtained by the mechanical joining process can be formed into, for example, a flat plate, a plate such as a disk, a hollow cylinder, etc., depending on the type of heating furnace. Note that the hollow cylindrical felt can be produced, for example, by winding a blended web or blended wrap around a cylindrical bed of a needling machine and needling it.

そして、機械的接合工程で得られたフェルトを焼成工程
で焼成することにより、炭素繊維フェルトが得られる。
Then, carbon fiber felt is obtained by firing the felt obtained in the mechanical joining process in a firing process.

焼成工程での炭化及び黒鉛化は、通常、真空下又は不活
性雰囲気中で行なわれる。
Carbonization and graphitization in the firing process are usually carried out under vacuum or in an inert atmosphere.

該不活性雰囲気の不活性ガスとしては、窒素、ヘリウム
、アルゴン等が例示される。
Examples of the inert gas in the inert atmosphere include nitrogen, helium, and argon.

[発明の効果コ 以上のように、本発明の断熱材は、炭素繊維フェルトの
特性が損われないので、形状保持性、断熱性、緩衝性に
優れると共に、欠落や反りがなく、被加熱処理物の汚染
を防止できる。
[Effects of the Invention] As described above, the heat insulating material of the present invention does not impair the properties of carbon fiber felt, so it has excellent shape retention, heat insulation, and cushioning properties, and does not have any chipping or warping, and can withstand heat treatment. Prevents contamination of objects.

[実施例コ 以下に、実施例に基づいて本発明をより詳細に説明する
[Examples] The present invention will be explained in more detail based on Examples below.

実施例 ピッチ系炭素繊維(■ドナツク製、商品名ドナカーボ5
201)と、フェノール樹脂系繊維(親日本カイノール
製、商品名カイノール)と、アクリロニトリル繊維(三
菱レーヨン轢製、商品名ボンネル、糸径3デニール)と
を、1:1:1の重量比で混紡し、紡績用カードを用い
て混紡ラップを形成した。次いて、ニードルパンチによ
り、厚み約35mm、高密度0.16g/cnfのフェ
ルトを作製した。そして、フェルトを、窒素ガス雰囲気
中で、1℃/分の昇温速度で昇温し、2000℃到達し
た後、同温度で3時間保持して焼成し、常温まで自然冷
却した。得られた炭素繊維フェルトは、厚み30mm、
高密度0.15g/ruf、曲げ強度0.03に9/m
jであった。さらに、この炭素繊維フェルトの2000
℃における熱伝導度を測定したところ、0. 75Kc
al /m−hr・”Cであった。
Example: Pitch-based carbon fiber (trade name: Dona Carbo 5, manufactured by Donatsuku Co., Ltd.)
201), phenolic resin fiber (manufactured by Kyinhon Kyinol, trade name: Kynol), and acrylonitrile fiber (manufactured by Mitsubishi Rayon Tsuki, trade name: Bonnel, thread diameter 3 denier) in a weight ratio of 1:1:1. A blended wrap was then formed using a spinning card. Next, felt with a thickness of about 35 mm and a high density of 0.16 g/cnf was produced by needle punching. Then, the felt was heated at a temperature increase rate of 1° C./min in a nitrogen gas atmosphere, and after reaching 2000° C., it was held at the same temperature for 3 hours to be fired, and then naturally cooled to room temperature. The obtained carbon fiber felt had a thickness of 30 mm,
High density 0.15g/ruf, bending strength 0.03 to 9/m
It was j. In addition, this carbon fiber felt has 2000
When the thermal conductivity at ℃ was measured, it was 0. 75Kc
al/m-hr・”C.

次いで、上記炭素繊維フェルトの一方の面に、レゾール
型フェノール樹脂100重量部、メソカーボンマイクロ
ビーズ(大阪瓦斯銖製、平均粒径40μm)100重量
部、炭素繊維のミルドファイバー(銖ドナツク製、商品
名ドナカーボS 241)100重量部及びメタノール
300重量部からなる接着樹脂液を、塗布量200 g
 / m’で塗布した後、厚み0.2mmの膨張黒鉛シ
ート(東洋炭素社製、商品名P F 35)を接着させ
た。また若干の荷重をかけながら、室温から3℃/分の
昇温速度で180℃に昇温し、同温度で1時間保持し、
フェノール樹脂を硬化させた。その後、上記黒鉛シト上
に、黒鉛板を載せて若干の荷重をかけながら、窒素雰囲
気中で、1℃/分の昇温速度て800℃に昇温した後、
3℃/分の昇温速度で2000℃に昇温し、同温度で1
時間保持し黒鉛化処理することにより、厚み30mmの
断熱材を得た。
Next, on one side of the carbon fiber felt, 100 parts by weight of resol-type phenolic resin, 100 parts by weight of mesocarbon microbeads (manufactured by Osaka Gassen, average particle diameter 40 μm), and milled carbon fibers (manufactured by Osaka Gas, commercial product) were applied. An adhesive resin liquid consisting of 100 parts by weight of Dona Carbo S 241) and 300 parts by weight of methanol was applied in an amount of 200 g.
/ m', an expanded graphite sheet (manufactured by Toyo Tanso Co., Ltd., trade name: PF 35) with a thickness of 0.2 mm was adhered. In addition, while applying a slight load, the temperature was raised from room temperature to 180 °C at a rate of 3 °C/min, and held at the same temperature for 1 hour.
Cured phenolic resin. Thereafter, a graphite plate was placed on the graphite sheet and the temperature was raised to 800°C at a rate of 1°C/min in a nitrogen atmosphere while applying a slight load.
The temperature was raised to 2000°C at a heating rate of 3°C/min, and 1
A heat insulating material with a thickness of 30 mm was obtained by holding it for a certain time and graphitizing it.

上記断熱材を加工しても、フェノール樹脂に起因する粉
の発生が殆どなく、炭素繊維フェルト層は、適度の弾力
性を有していると共に、黒鉛シートとの接着強度も実用
上全く問題のないものまであった。また断熱材は、均一
性に優れ、反りが生じることもなかった。
Even when the above-mentioned heat insulating material is processed, there is almost no generation of powder caused by the phenolic resin, and the carbon fiber felt layer has appropriate elasticity, and the adhesive strength with the graphite sheet does not pose any practical problems. There were even things that weren't there. Furthermore, the heat insulating material had excellent uniformity and did not warp.

さらに、この断熱材の2000℃における熱伝導度は、
0. 70.Kcal / m−hr・”Cであり、炭
素繊維フェルト単独の場合に比較して、断熱性が改善さ
れた。
Furthermore, the thermal conductivity of this insulation material at 2000°C is
0. 70. Kcal/m-hr·''C, and the heat insulation properties were improved compared to the case of carbon fiber felt alone.

比較例 実施例のフェノール樹脂系繊維を用いることなく、実施
例のピッチ系炭素繊維をニードルバンチすることにより
、厚み約35mm、高密度0.07g/−のフェルトを
作製した。
Comparative Example A felt having a thickness of about 35 mm and a high density of 0.07 g/- was produced by needle bunching the pitch-based carbon fiber of the example without using the phenolic resin fiber of the example.

そして、ピッチ系炭素繊維フェルトに、実施例で用いた
レゾール型フェノール樹脂100重量部メタノール10
0重量部の樹脂溶液を固形分換算で60重量%含浸した
。また実施例の黒鉛シートにも上記樹脂溶液を含浸した
Then, 100 parts by weight of the resol type phenol resin used in the example and 10 parts by weight of methanol were added to the pitch-based carbon fiber felt.
0 parts by weight of the resin solution was impregnated with 60% by weight in terms of solid content. The graphite sheet of the example was also impregnated with the resin solution.

そして、樹脂を含浸した炭素繊維フェルトと黒鉛シート
とを積層し、0.5ki/−で加圧して、実施例と同様
にして、硬化し、焼成することにより、厚み30 mm
の断熱材を作製した。
Then, resin-impregnated carbon fiber felt and graphite sheet were laminated, pressed at 0.5 ki/-, hardened and fired in the same manner as in the example, to a thickness of 30 mm.
A heat insulating material was fabricated.

得られた断熱材は、上記実施例の断熱材と比較して、焼
成時や加工時に、粉の発生が著しく多く、しかも炭素繊
維フェルト層は、硬質で、弾力性、緩衝性に乏しく、欠
落し易いものであった。
The resulting heat insulating material generated significantly more powder during firing and processing than the heat insulating material of the above example, and the carbon fiber felt layer was hard and had poor elasticity and cushioning properties, resulting in chipping. It was easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第7図は、それぞれ本発明の断熱材の一例を
示す断面斜視図である。 (1)・・・炭素繊維フェルト、 (2) ・・炭素材質シート、 (3)・・・炭素質結合剤
1 to 7 are cross-sectional perspective views each showing an example of the heat insulating material of the present invention. (1)...carbon fiber felt, (2)...carbon material sheet, (3)...carbonaceous binder

Claims (1)

【特許請求の範囲】[Claims] 炭素繊維フェルトと炭素材質シートとを、炭素質結合剤
で積層した断熱材であって、上記炭素繊維フェルトが、
炭素繊維が機械的に接合していると共に、炭素繊維間が
、融着状態で炭素繊維化された炭素繊維で接合した高密
度0.1〜0.3g/cm^3のフェルトで構成されて
いることを特徴とする断熱材。
A heat insulating material in which carbon fiber felt and a carbon material sheet are laminated with a carbonaceous binder, the carbon fiber felt comprising:
The carbon fibers are mechanically bonded, and the carbon fibers are made of high-density felt of 0.1 to 0.3 g/cm^3, which is bonded with carbon fibers that are fused into carbon fibers. A heat insulating material characterized by:
JP2080246A 1990-03-27 1990-03-27 Heat insulating material Pending JPH03277538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2080246A JPH03277538A (en) 1990-03-27 1990-03-27 Heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2080246A JPH03277538A (en) 1990-03-27 1990-03-27 Heat insulating material

Publications (1)

Publication Number Publication Date
JPH03277538A true JPH03277538A (en) 1991-12-09

Family

ID=13712965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2080246A Pending JPH03277538A (en) 1990-03-27 1990-03-27 Heat insulating material

Country Status (1)

Country Link
JP (1) JPH03277538A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157230A (en) * 2010-02-01 2011-08-18 Covalent Materials Corp Carbon fiber-reinforced carbon composite crucible and method for producing the crucible
JP2013136495A (en) * 2011-12-28 2013-07-11 Akechi Ceramics Co Ltd Method for producing dense carbon thin plate, and carbon thin plate
JP2016028880A (en) * 2014-07-18 2016-03-03 パナソニックIpマネジメント株式会社 Composite sheet and production method of the same, and electronic equipment using composite sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157230A (en) * 2010-02-01 2011-08-18 Covalent Materials Corp Carbon fiber-reinforced carbon composite crucible and method for producing the crucible
JP2013136495A (en) * 2011-12-28 2013-07-11 Akechi Ceramics Co Ltd Method for producing dense carbon thin plate, and carbon thin plate
JP2016028880A (en) * 2014-07-18 2016-03-03 パナソニックIpマネジメント株式会社 Composite sheet and production method of the same, and electronic equipment using composite sheet

Similar Documents

Publication Publication Date Title
EP1305268B1 (en) Carbon-matrix composites compositions and methods related thereto
JP5205671B2 (en) Heat resistant composite material
US5648027A (en) Porous carbonaceous material and a method for producing the same
US20120219778A1 (en) Composite material containing soft carbon fiber felt and hard carbon fiber felt
JP2678513B2 (en) Carbon fiber structure, carbon-carbon composite material, and methods for producing the same
JP2015174807A (en) Carbon fiber-based heat insulation material, and manufacturing method of the same
KR20160000077A (en) Carbon fiber insulator and preparing method for thereof
JP2607670B2 (en) Molded insulation
JPH03121398A (en) Heat insulating material
JPH03248838A (en) Heat insulation material
WO2020059819A1 (en) Carbon-fiber-molded heat insulator and manufacturing method thereof
JPH03277538A (en) Heat insulating material
WO2023008392A1 (en) Thermal insulation material and method for producing thermal insulation material
JP2019043099A (en) Carbon fiber sheet laminate and manufacturing method therefor
JPH03141170A (en) Heat-insulation material and production thereof
JPH0314665A (en) High density felt made of carbon fiber and its production
JP2594952B2 (en) Molded heat insulating material and its manufacturing method
JP2632955B2 (en) Manufacturing method of porous carbon plate
JPH04284363A (en) Manufacture of carbon plate
JPH07276549A (en) Heat insulation material
JPH03254933A (en) Heat insulating material
KR20170040529A (en) Carbon fiber felt and method for preparing thereof
JP3574831B2 (en) Porous carbon material for phosphoric acid type fuel cell and method for producing the same
JPH07291750A (en) Production of formed body for carbon/carbon composite material
JPH05283264A (en) Electrode and capacitor using it