JPH0327624B2 - - Google Patents

Info

Publication number
JPH0327624B2
JPH0327624B2 JP2230988A JP2230988A JPH0327624B2 JP H0327624 B2 JPH0327624 B2 JP H0327624B2 JP 2230988 A JP2230988 A JP 2230988A JP 2230988 A JP2230988 A JP 2230988A JP H0327624 B2 JPH0327624 B2 JP H0327624B2
Authority
JP
Japan
Prior art keywords
minutes
stress corrosion
corrosion cracking
cracking resistance
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2230988A
Other languages
Japanese (ja)
Other versions
JPH01198456A (en
Inventor
Masakazu Hirano
Mitsuo Hino
Shoshi Koga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2230988A priority Critical patent/JPH01198456A/en
Publication of JPH01198456A publication Critical patent/JPH01198456A/en
Publication of JPH0327624B2 publication Critical patent/JPH0327624B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はアルミニウム合金の製造法に係り、特
に自動車、車両、機械等において負荷応力が比較
的高くかかる部品等の用途に好適で、耐応力腐食
割れ性に優れたアルミニウム合金の製造法に関す
る。 (従来の技術及び解決しようとする課題) 従来、自動車、車両、船舶などに用いられる
5000系アルミニウム合金として5052、5454、
5154、5086、5182、5083等の合金があるが、構造
材として66℃以上の腐食環境で使用する場合は、
Mg3.5%以上を含む合金である5086、5182、5083
等は応力腐食割れや剥離腐食の懸念があるとし
て、低Mg含有合金の5052、5154、5454等を使用
することが多かつた。 しかし、これらの低Mg含有アルミニウム合金
は強度が低いため、高Mg含有アルミニウム合金
に比べて使用板厚を厚くせざるを得ず、軽量化効
果が小さいことが欠点であつた。 また、自動車や車両の用途には、ボデイやシヤ
ーシーなど、アルミニウム合金薄板をプレス加工
して部品を製作するこが多いが、このプレス成形
性を良くするため、材料の組織は繊維組織より等
軸粒組織にコントロールされることが多い。しか
し、耐応力腐食割れ性の観点からすると等軸粒組
織の方が繊維組織より不利であることから、高い
負荷応力がかかる構造体には、使用温度が66℃を
越えなくても、高Mg含有アルミニウム合金で等
軸粒組織を有する材料の使用は控えられることが
多かつた。 本発明は、上記従来技術の欠点を解消し、3.5
%以上の高Mg含有アルミニウム合金で、しかも
プレス成形性を良くした等軸粒組織であつても、
66℃を超えると環境において優れた耐応力腐食割
れ性を発揮し得るアルミニウム合金の製造法を提
供することを目的とするものである。 (課題を解決するための手段) 前記目的を達成するため、本発明者は、高Mg
含有合金でありながら、耐応力腐食割れ性を抑制
し得る組成調整とプロセス条件を見い出すべく鋭
意研究を重ねた結果、適切量のCu、Agを添加す
ると共に、溶体化処理条件並びに溶体処理後の冷
却条件を規制し、且つ溶体化処理後に加熱処理を
施すことにより、可能であることを見い出し、本
発明をなしたものである。 すなわち、本発明に係る耐応力腐食割れ性に優
れたアルミニウム合金の製造法は、Mg3.5〜5.5
%、0.2%≦Cu+Ag≦1.0%を必須成分として含
み、必要に応じてMn:0.06〜0.3%、Cr:0.06〜
0.1%及びZr:0.06〜0.1%のうちの1種又は2種
以上を含むAl−Mg基合金につき、400℃を越え
る温度の場合は3分以下、300〜400℃間の温度の
場合は30分以上保持する条件の溶体化処理を施
し、溶体化処理後の100℃までの冷却を300℃/分
以上の冷却速度で行つて常温まで冷却し、更に70
〜200℃で15分〜24時間の加熱処理を施すことを
特徴とするものである。 以下に本発明を更に詳細に説明する。 本発明者は、種々実験の結果、Al−Mg基アル
ミニウム合金において耐応力腐食割れ性に優れた
成分としてCuとAgを見い出した。しかし、単に
これらCu、Agを添加した組成下では耐応力腐食
割れ性の改善は認められないことも判明した。 すなわち、これらの成分を含むAl−Mg基アル
ミニウム合金に対し、従来通り、耐応力腐食割れ
性に最も優れる焼鈍調質(300〜400℃で数時間加
熱し徐冷する処理)を施しても、添加しない場合
と同様に耐応力腐食割れ性に劣ることが判明し
た。そこで、熱処理条件について鋭意研究した結
果、CuやAgの元素を十分に溶体化し、その後加
熱してCuやAgの析出物をコントロールして析出
させることにより、耐応力腐食割れ性を著しく改
善できることが判つたのである。 まず、本発明の化学成分限定理由について説明
する。 Mgは強度を付与する元素であり、含有量が3.5
%未満では耐応力腐食割れ性(以下、耐SSC性と
略す)に優れるものの、伸びと強度が低くなり、
また、5.5%を超えると強度は高いが、本発明の
製造法でも耐SCC性が劣るようになる。したがつ
て、Mg量は3.5〜5.5%の範囲とする。 Cu及びAgは耐SCC性を改善する元素である。
しかし、Cu+Agの合計量が0.2%未満ではその効
果がなく、また1.0%を超えると一般食性が劣る
ようになると共に溶接割れ性が劣り、構造用材料
として不適となる。したがつて、Cu及びAgは合
計量で0.2%≦Cu+Ag≦1.0%の範囲となるよう
に添加する。 Mn、Cr及びZrは強度を向上すると共に組織を
微細化して耐応力腐食割れ性、成形性、耐溶接割
れ性を改善する元素であるが、その効果は著しく
ないため、必須成分とせず、任意成分とした。添
加するときは、Mn:0.06〜0.3%、Cr:0.06〜0.1
%、Zr:0.06〜0.1%の範囲で、これらの少なく
とも1種を添加する。なお、それぞれ、下限値を
割ると上記の効果がなく、また上限値を超えると
伸びが低下して成形性を劣るようになるので、好
ましくない。 なお、上記成分のAl−Mg基アルミニウム合金
には不純物が含まれるが、不純物は可及的に少な
いのが望ましい。例えば、Fe、Si、Znはそれぞ
れ0.5%以下、その他の元素は0.1%以下であれ
ば、特に本発明の効果を失うものではない。 次に、上記化学成分を有するアルミニウム合金
の熱処理条件について説明する。 溶体化処理ではCuとAgを十分に固溶する必要
があり、そのためには、300〜400℃間の加熱温度
の場合は30分以上、400℃を超える加熱温度の場
合は3分以下で保持する必要である。300℃未満
ではそれらが固溶せず、耐SCC性向上の効果がな
く、400℃超で3分を超えると十分固溶するもの
の、組織が粗大化するため、成形性や耐SCC性も
劣るようになる。 溶体化処理後の冷却は、100℃までの冷却を300
℃/分以上の冷却速度としないと、耐SCC性の改
善が認められない。 溶体処理化後の冷却を行つた後は、70〜200℃
で15分〜24hrの加熱処理を行う必要がある。70℃
未満ではCuやAgの析出が少なく、耐SCC性が劣
化し、かつ、一般耐食性も劣るようになる。加熱
時間についても同様であり、15分未満や24時間を
超える時間では耐SCC性が改善されない。 (実施例) 次に本発明の実施例を示す。 実施例 1 第1表に示す化学成分を有するアルミニウム合
金の500mm厚の鋳塊に520℃×2hrの均質化処理を
行つた後、520〜280℃間で板厚4mmまで熱間圧延
をし、続いて板厚1mmまで冷間圧延を行つた。 この板厚1mmのAlの合金板に第2表に示す条
件で溶体化処理、冷却、加熱処理を施した。熱処
理後、機械的性質、エリクセン値、耐SCC性、一
般食性、溶接割れ性及び組織を調査した。その結
果を第2表に併記する。 なお、各試験条件は次のとおりである。 耐SCC性については、材料に30%の冷間加工を
施し、次いで120℃×7日の熱処理を行つた後、
180°の曲げによる負荷応力をかけ、3.5%NaCl水
溶液中で試料を陽極に、鉛を陰極にして直流で
40mA/inch2の通電を行つて応力腐食割れを促
進させた。30分未満で割れた場合に×印、30〜
240分で割れた場合△印、240〜900分で割れた場
合に○印、900分を超えても割れない場合に◎印
をそれぞれ付して評価した。 一般耐食性は、JISに規定されている塩水噴霧
試験に準じて1ヶ月行い、評価した。 溶接割れ性は、フイツシユ・ボーン試験のなめ
づけテストにより評価した。 第2表より明らかなとおり、本発明例はいずれ
も耐応力腐食割れ性が特に優れており、等軸粒組
織でプレス成形性(張出し性)を良好である。 一方、比較例はいずれも耐応力腐食割れ性が劣
つている。特に本発明範囲内の組成の場合(No.16
〜No.19)であつても、耐応力腐食割れ性の改善は
認められない。
(Industrial Application Field) The present invention relates to a method for producing aluminum alloys, and is particularly suitable for use in parts such as automobiles, vehicles, machines, etc., which are subjected to relatively high stress loads, and is an aluminum alloy with excellent stress corrosion cracking resistance. Concerning the manufacturing method of alloys. (Conventional technology and problems to be solved) Traditionally used in automobiles, vehicles, ships, etc.
5052, 5454, as 5000 series aluminum alloys
There are alloys such as 5154, 5086, 5182, 5083, etc., but when used as a structural material in a corrosive environment of 66℃ or higher,
5086, 5182, 5083, which are alloys containing 3.5% or more of Mg
low Mg-containing alloys such as 5052, 5154, and 5454 were often used because of concerns about stress corrosion cracking and exfoliation corrosion. However, since these low-Mg-containing aluminum alloys have low strength, the plate thickness used must be thicker than that of high-Mg-containing aluminum alloys, and the drawback is that the weight reduction effect is small. In addition, for automobile and vehicle applications, parts such as bodies and chassis are often manufactured by pressing thin aluminum alloy sheets, but in order to improve press formability, the structure of the material is more equiaxed than a fibrous structure. It is often controlled by the grain structure. However, from the perspective of stress corrosion cracking resistance, an equiaxed grain structure is more disadvantageous than a fibrous structure. The use of materials with an equiaxed grain structure in containing aluminum alloys has often been discouraged. The present invention solves the above-mentioned drawbacks of the prior art and achieves 3.5
% or more, and has an equiaxed grain structure that improves press formability.
The purpose of the present invention is to provide a method for producing an aluminum alloy that can exhibit excellent stress corrosion cracking resistance in environments where the temperature exceeds 66°C. (Means for Solving the Problem) In order to achieve the above object, the present inventor has developed a high-Mg
As a result of intensive research to find composition adjustment and process conditions that can suppress stress corrosion cracking resistance even though it is an alloy containing We have discovered that this is possible by regulating the cooling conditions and performing heat treatment after solution treatment, and have accomplished the present invention. That is, the method for producing an aluminum alloy with excellent stress corrosion cracking resistance according to the present invention is based on Mg3.5 to 5.5.
%, 0.2%≦Cu+Ag≦1.0% as essential components, Mn: 0.06~0.3%, Cr: 0.06~
For Al-Mg-based alloys containing one or more of 0.1% and Zr: 0.06-0.1%, 3 minutes or less at temperatures exceeding 400℃, 30 minutes at temperatures between 300-400℃ After the solution treatment, the temperature is cooled to 100°C at a cooling rate of 300°C/min or more to room temperature, and then further cooled to room temperature for 70°C.
It is characterized by heat treatment at ~200°C for 15 minutes to 24 hours. The present invention will be explained in more detail below. As a result of various experiments, the present inventor discovered Cu and Ag as components having excellent stress corrosion cracking resistance in an Al-Mg-based aluminum alloy. However, it was also found that no improvement in stress corrosion cracking resistance was observed in compositions in which Cu and Ag were simply added. In other words, even if an Al-Mg-based aluminum alloy containing these components is subjected to conventional annealing treatment (heating at 300 to 400°C for several hours and slow cooling), which has the best stress corrosion cracking resistance, It was found that stress corrosion cracking resistance was inferior to the case without addition. Therefore, as a result of intensive research on heat treatment conditions, it was found that stress corrosion cracking resistance could be significantly improved by sufficiently solutionizing Cu and Ag elements and then heating to control and precipitate Cu and Ag precipitates. I found out. First, the reason for limiting the chemical components of the present invention will be explained. Mg is an element that gives strength, and the content is 3.5
%, the stress corrosion cracking resistance (hereinafter abbreviated as SSC resistance) is excellent, but the elongation and strength are low.
Moreover, if it exceeds 5.5%, the strength will be high, but the SCC resistance will be poor even with the manufacturing method of the present invention. Therefore, the Mg amount should be in the range of 3.5 to 5.5%. Cu and Ag are elements that improve SCC resistance.
However, if the total amount of Cu+Ag is less than 0.2%, it will not have this effect, and if it exceeds 1.0%, the general edibility will be poor and the weld cracking resistance will be poor, making it unsuitable as a structural material. Therefore, Cu and Ag are added so that the total amount falls within the range of 0.2%≦Cu+Ag≦1.0%. Mn, Cr, and Zr are elements that improve strength, refine the structure, and improve stress corrosion cracking resistance, formability, and weld cracking resistance, but their effects are not significant, so they are not required as essential components and are optional. as an ingredient. When adding, Mn: 0.06-0.3%, Cr: 0.06-0.1
%, Zr: At least one of these is added in a range of 0.06 to 0.1%. It should be noted that if the lower limit values are exceeded, the above-mentioned effects will not be obtained, and if the upper limit values are exceeded, the elongation will decrease and the moldability will deteriorate, which is not preferable. Note that although the Al-Mg-based aluminum alloy having the above components contains impurities, it is desirable that the impurities be as small as possible. For example, if Fe, Si, and Zn are each 0.5% or less, and other elements are 0.1% or less, the effects of the present invention are not particularly lost. Next, heat treatment conditions for an aluminum alloy having the above chemical components will be explained. In solution treatment, it is necessary to form a sufficient solid solution of Cu and Ag, and for this purpose, the heating temperature must be maintained for at least 30 minutes when the heating temperature is between 300 and 400℃, and for 3 minutes or less when the heating temperature is over 400℃. It is necessary to do so. At temperatures below 300℃, they do not form a solid solution and have no effect on improving SCC resistance, and at temperatures above 400℃ for more than 3 minutes, although they form a solid solution, the structure becomes coarser, resulting in poor formability and SCC resistance. It becomes like this. Cooling after solution treatment is 300℃ to 100℃.
Unless the cooling rate is at least ℃/min, no improvement in SCC resistance will be observed. After cooling after solution treatment, the temperature is 70 to 200℃.
It is necessary to perform heat treatment for 15 minutes to 24 hours. 70℃
If it is less than that, precipitation of Cu and Ag will be small, SCC resistance will deteriorate, and general corrosion resistance will also deteriorate. The same applies to the heating time; if the heating time is less than 15 minutes or more than 24 hours, the SCC resistance will not be improved. (Example) Next, an example of the present invention will be shown. Example 1 A 500 mm thick ingot of an aluminum alloy having the chemical composition shown in Table 1 was homogenized at 520°C for 2 hours, and then hot rolled at 520 to 280°C to a plate thickness of 4 mm. Subsequently, cold rolling was performed to a plate thickness of 1 mm. This Al alloy plate with a thickness of 1 mm was subjected to solution treatment, cooling, and heat treatment under the conditions shown in Table 2. After heat treatment, mechanical properties, Erichsen values, SCC resistance, general corrosion resistance, weld cracking resistance, and microstructure were investigated. The results are also listed in Table 2. The test conditions are as follows. Regarding SCC resistance, after subjecting the material to 30% cold working and then heat treatment at 120°C for 7 days,
Load stress due to 180° bending was applied, and direct current was applied in a 3.5% NaCl aqueous solution with the sample as the anode and lead as the cathode.
A current of 40 mA/inch 2 was applied to promote stress corrosion cracking. If it breaks in less than 30 minutes, mark it with an X, 30~
Evaluation was made by marking △ if the film cracked in 240 minutes, marking ◯ if it cracked in 240 to 900 minutes, and marking ◎ if it did not break even after 900 minutes. General corrosion resistance was evaluated by conducting it for one month according to the salt spray test specified by JIS. The weld cracking property was evaluated by a tanning test using a fish bone test. As is clear from Table 2, all of the examples of the present invention have particularly excellent stress corrosion cracking resistance, and have an equiaxed grain structure and good press formability (stretchability). On the other hand, all of the comparative examples have poor stress corrosion cracking resistance. Especially when the composition is within the scope of the present invention (No. 16
~ No. 19), no improvement in stress corrosion cracking resistance was observed.

【表】【table】

【表】 第1表に示した合金No.2とNo.9のアルミニウム
合金の190mmφのビレツト鋳塊に520℃×4hrの均
質化処理を施した後、5mm(肉厚)×200mm(幅)
の型材に熱間押出をした。この型材に第3表に示
す条件にて熱処理を施し、機械的性質と耐SCC性
を調査した。その結果を第3表に併記する。 同表に示すように、本発明例はいずれも耐応力
腐食割れ性に優れている。一方、比較例は、耐応
力腐食割れ性が劣つており、溶体化処理後の冷却
速度が適切でないため、本発明範囲内の組織の場
合(No.3)は却つて悪い結果となつている。
[Table] 190mmφ billet ingots of aluminum alloys No. 2 and No. 9 shown in Table 1 were subjected to homogenization treatment at 520°C for 4 hours, and then 5mm (thickness) x 200mm (width)
Hot extrusion was carried out into the shape material. This mold material was heat treated under the conditions shown in Table 3, and its mechanical properties and SCC resistance were investigated. The results are also listed in Table 3. As shown in the table, all the examples of the present invention are excellent in stress corrosion cracking resistance. On the other hand, in the comparative example, the stress corrosion cracking resistance was poor, and the cooling rate after solution treatment was not appropriate, so the result was even worse in the case of the structure within the scope of the present invention (No. 3). .

【表】 (発明の効果) 以上詳述したように、本発明によれば、3.5%
以上の高Mg含有アルミニウム合金で、しかもプ
レス成形性を良好にした等軸粒組織であつても、
特にCu、Agを適量添加して組成調整し、且つ熱
処理条件を規制したので、極めて優れた耐応力腐
食割れ性を有するアルミニウム合金が得られ、66
℃以上の使用環境ではもとより、この温度以下の
使用環境であつても応力腐食割れの懸念が全くな
く、しかもプレス成形性も良好である。したがつ
て、高Mg含有アルミニウム合金の一層の用途の
拡大に貢献する効果が大きい。
[Table] (Effects of the invention) As detailed above, according to the present invention, 3.5%
Even if the above-mentioned high Mg-containing aluminum alloy has an equiaxed grain structure with good press formability,
In particular, by adding appropriate amounts of Cu and Ag to adjust the composition and regulating the heat treatment conditions, an aluminum alloy with extremely excellent stress corrosion cracking resistance was obtained.
There is no fear of stress corrosion cracking, not only in use environments above this temperature but also in use environments below this temperature, and furthermore, the press formability is good. Therefore, it has a great effect of contributing to further expanding the applications of high-Mg-containing aluminum alloys.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%で(以下、同じ)、Mg:3.5〜5.5%
と、0.2%≦Cu+Ag≦1.0%を必須成分として含
み、必要に応じてMn:0.06〜0.3%、Cr:0.06〜
0.1%及びZr:0.06〜0.1%のうちの1種又は2種
以上を含むAl−Mg基合金につき、400℃を越え
る温度の場合は3分以下、300〜400℃間の温度の
場合は30分以上保持する条件の溶体化処理を施
し、溶体化処理後の100℃までの冷却を300℃/分
以上の冷却速度で行つて常温まで冷却し、更に70
〜200℃で15分〜24時間の加熱処理を施すことを
特徴とする耐応力腐食割れ性に優れたアルミニウ
ム合金の製造法。
1% by weight (the same applies hereinafter), Mg: 3.5-5.5%
Contains 0.2%≦Cu+Ag≦1.0% as essential components, Mn: 0.06 to 0.3%, Cr: 0.06 to
For Al-Mg-based alloys containing one or more of 0.1% and Zr: 0.06-0.1%, 3 minutes or less at temperatures exceeding 400℃, 30 minutes at temperatures between 300-400℃ After the solution treatment, the temperature is cooled to 100°C at a cooling rate of 300°C/min or more to room temperature, and then further cooled to room temperature for 70°C.
A method for producing an aluminum alloy with excellent stress corrosion cracking resistance, which is characterized by heat treatment at ~200°C for 15 minutes to 24 hours.
JP2230988A 1988-02-02 1988-02-02 Manufacture of aluminum alloy excellent in stress corrosion cracking resistance Granted JPH01198456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2230988A JPH01198456A (en) 1988-02-02 1988-02-02 Manufacture of aluminum alloy excellent in stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2230988A JPH01198456A (en) 1988-02-02 1988-02-02 Manufacture of aluminum alloy excellent in stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPH01198456A JPH01198456A (en) 1989-08-10
JPH0327624B2 true JPH0327624B2 (en) 1991-04-16

Family

ID=12079139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2230988A Granted JPH01198456A (en) 1988-02-02 1988-02-02 Manufacture of aluminum alloy excellent in stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPH01198456A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0799900A1 (en) 1996-04-04 1997-10-08 Hoogovens Aluminium Walzprodukte GmbH High strength aluminium-magnesium alloy material for large welded structures
JP5600637B2 (en) * 2010-08-05 2014-10-01 株式会社神戸製鋼所 Aluminum alloy plate with excellent formability

Also Published As

Publication number Publication date
JPH01198456A (en) 1989-08-10

Similar Documents

Publication Publication Date Title
JP2823797B2 (en) Manufacturing method of aluminum alloy sheet for forming
JP3194742B2 (en) Improved lithium aluminum alloy system
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
EP0646655B1 (en) Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardening ability
WO2019025227A1 (en) 6xxxx-series rolled sheet product with improved formability
JPH0747807B2 (en) Method for producing rolled aluminum alloy plate for forming
JP3157068B2 (en) Manufacturing method of aluminum alloy sheet for forming
GB2135694A (en) Superplastic aluminium alloy
JP4117243B2 (en) Aluminum alloy sheet with excellent bake hardenability
JP2000239811A (en) Manufacture for aluminum alloy sheet excellent in formability
JPH0547615B2 (en)
WO2019025335A1 (en) Automotive outer panel made from a 6xxx-series aluminium alloy sheet product
JPH0327624B2 (en)
JPH0480979B2 (en)
JP3208234B2 (en) Aluminum alloy sheet for forming process excellent in formability and method for producing the same
CN113924377A (en) Aluminum alloy with silicon, magnesium, copper and zinc
CA3118984A1 (en) 2xxx aluminum alloys
JPH0547616B2 (en)
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH062092A (en) Method for heat-treating high strength and high formability aluminum alloy
KR960007633B1 (en) Al-mg alloy & the preparation
JP2698888B2 (en) Manufacturing method of aluminum alloy sheet with excellent stress corrosion cracking resistance
JPS63169353A (en) Aluminum alloy for forming and its production
JP2678675B2 (en) Method for producing aluminum alloy sheet for forming having excellent deep drawability
JPH01225738A (en) Heat treatment-type aluminum alloy rolled plate for forming and its manufacture