JPH03275544A - Fiber reinforced composite material and molded body thereof - Google Patents

Fiber reinforced composite material and molded body thereof

Info

Publication number
JPH03275544A
JPH03275544A JP2071890A JP7189090A JPH03275544A JP H03275544 A JPH03275544 A JP H03275544A JP 2071890 A JP2071890 A JP 2071890A JP 7189090 A JP7189090 A JP 7189090A JP H03275544 A JPH03275544 A JP H03275544A
Authority
JP
Japan
Prior art keywords
fibers
water
fiber
composite material
vegetable fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2071890A
Other languages
Japanese (ja)
Other versions
JP2587306B2 (en
Inventor
Natsuki Kubo
夏樹 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nozawa Corp
Original Assignee
Nozawa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nozawa Corp filed Critical Nozawa Corp
Priority to JP7189090A priority Critical patent/JP2587306B2/en
Publication of JPH03275544A publication Critical patent/JPH03275544A/en
Application granted granted Critical
Publication of JP2587306B2 publication Critical patent/JP2587306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/18Waste materials; Refuse organic
    • C04B18/24Vegetable refuse, e.g. rice husks, maize-ear refuse; Cellulosic materials, e.g. paper, cork
    • C04B18/28Mineralising; Compositions therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To enable curing in an autoclave, to improve strength, workability and durability and to reduce weight by mixing a hydraulic material with specified modified vegetable fibers and water and carrying out hardening. CONSTITUTION:Vegetable fibers are immersed in an aq. soln. contg. inorg. compds. (e.g. BaCl2 and ammonium hydrogenphosphate) each forming a water insoluble inorg. compd. and the fibers are taken out and dried to obtain modified vegetable fibers with 10-200 pts.wt. water insoluble inorg. compds. fixed in the insides and on the surfaces of 100 pts.wt. oven-dry vegetable fibers. A hydraulic material is mixed with 0.5-30wt.% of the modified vegetable fibers, water is added and aggregate, a filler, an air entraining agent and a water-reducing agent are further added as required. They are kneaded, molded into a desired shape and hardened.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、繊維によって補強された、水硬性材料の硬化
体からなる複合材料およびその成形物に関し、特にオー
トクレーブ養生可能で、耐候性に優れた繊維補強複合材
料およびその成形物に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a composite material made of a cured product of a hydraulic material reinforced with fibers and a molded product thereof, and particularly to a composite material that is autoclave-curable and has excellent weather resistance. The present invention relates to a fiber-reinforced composite material and a molded product thereof.

〔従来の技術〕[Conventional technology]

ポルトランドセメント、高炉セメント、フライアッシェ
セメント等の各種セメント類、石膏、スラッグ石膏、珪
酸カルシウム等の水硬性材料に補強繊維として、スチー
ルファイバー、アモルファス金属繊維等の金属繊維、ガ
ラス繊維、炭素繊維、ロックウール、アスベスト等の無
機繊維、又はポリプロピレン繊維、ポリアミド繊維、ポ
リビニルアルコール繊維、ポリアクリル繊維等の有機繊
維を単独で、あるいは併用して含有させたものを水で硬
化させて得られる複合材料は、壁材、屋根材、各種パイ
プ、柱、床材等の成形物をつくるために、建築あるいは
土木分野などで盛んに利用されている。また、加工性の
改善、軽量化を目的として繊維として植物繊維を含有す
る複合材料も良く知られている。
As reinforcing fibers for various cements such as Portland cement, blast furnace cement, and fly ash cement, and hydraulic materials such as gypsum, slag gypsum, and calcium silicate, metal fibers such as steel fibers and amorphous metal fibers, glass fibers, carbon fibers, and rock. Composite materials obtained by curing with water contain inorganic fibers such as wool and asbestos, or organic fibers such as polypropylene fibers, polyamide fibers, polyvinyl alcohol fibers, and polyacrylic fibers, either alone or in combination. It is widely used in the fields of architecture and civil engineering to make molded products such as wall materials, roofing materials, various pipes, columns, and flooring materials. Composite materials containing vegetable fibers as fibers for the purpose of improving processability and reducing weight are also well known.

しかしながら、従来の金属繊維を用いる場合、スチール
ファイバーのような鉄系金属繊維では鯖の発生が問題で
あり、アモルファス金属繊維は著しく高価である。また
、アスベストについては近年発癌性が指摘されたため、
その使用は環境衛生上から問題となっており、ガラス繊
維、ロックウールについては、セメントのアルカリアタ
ックによる浸食を受け、耐久性に問題がある。炭素繊維
については、分散性やセメントとの付着性に問題がある
。ポリプロピレン繊維、ポリアミド繊維、ポリビニルア
ルコール繊維、ポリアクリル繊維等の有機繊維について
は、耐熱性が不十分であり、オートクレーブ養生が不可
能である。
However, when using conventional metal fibers, iron-based metal fibers such as steel fibers have a problem with the occurrence of mackerel, and amorphous metal fibers are extremely expensive. In addition, asbestos has been shown to be carcinogenic in recent years,
Their use poses problems from the standpoint of environmental hygiene, and glass fiber and rock wool suffer from erosion due to alkali attack from cement, resulting in durability problems. Regarding carbon fiber, there are problems with its dispersibility and adhesion with cement. Organic fibers such as polypropylene fibers, polyamide fibers, polyvinyl alcohol fibers, and polyacrylic fibers have insufficient heat resistance and cannot be cured in an autoclave.

一方、植物繊維については、安価ではあるが、吸湿性が
あり、繊維の大きさが水分含有率と共に変化し、長時間
水に浸されると繊維がふやけ、また約100−120°
C以上の熱に耐えられないという欠点があり(D、J、
ハナント著「繊維コンクリート」第162頁)、得られ
る複合材料は吸水による寸法変化率が大きく、外装材と
して用いた場合、吸水、乾燥の繰り返しによるクランク
が発生しやすく耐久性に心配もあった。また、植物繊維
は可燃性であるため、それを含む複合材料から構成され
る成形物の不燃性が損なわれたりする問題もあった。
On the other hand, although vegetable fibers are cheap, they are hygroscopic, the size of the fibers changes with the water content, the fibers become soft when soaked in water for a long time, and
They have the disadvantage of not being able to withstand heat above C (D, J,
Hannant, Fiber Concrete, p. 162), the resulting composite material has a large dimensional change rate due to water absorption, and when used as an exterior material, it is prone to cracking due to repeated water absorption and drying, raising concerns about durability. Furthermore, since plant fibers are flammable, there is also the problem that the nonflammability of molded products made of composite materials containing them may be impaired.

〔発明が解決しようとする課題〕 本発明は、上述のような各種補強繊維の欠点を除き、植
物繊維を利用しながら、強度向上、加工性向上、軽量化
と共に耐久性も兼ね備え、かつオーI・クレープ養生可
能な複合材料およびその成形物を得るようにしたもので
ある。
[Problems to be Solved by the Invention] The present invention eliminates the drawbacks of various reinforcing fibers as described above, uses plant fibers, improves strength, improves workability, reduces weight, and has durability, and also - A crepe-curable composite material and a molded product thereof are obtained.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、水硬性材料に水不溶性無機化合物を植物繊維
内部および表面に定着させた改質植物繊維を全体の0.
5〜30wt%含有させたものを水で硬化させたもので
あることを特徴とする繊維補強複合材料、およびそれか
らなる成形物によって、上記の課題を解決した。
The present invention uses a modified plant fiber in which a water-insoluble inorganic compound is fixed to the interior and surface of the plant fiber in a hydraulic material with a total of 0.
The above-mentioned problems have been solved by a fiber-reinforced composite material characterized by containing 5 to 30 wt% of the fiber and curing it with water, and a molded product made from the fiber-reinforced composite material.

なお、上記の改質植物繊維の含有量は、他の配合材料、
添加剤を含めた全体の量に対するものであり、複合材料
中の含有量に相当する。
The content of the above-mentioned modified plant fibers is based on the content of other compounding materials,
This is based on the total amount including additives, and corresponds to the content in the composite material.

本発明で用いる改質植物繊維とは、植物繊維の繊維組織
内部及び表面に不溶性無機化合物を定着させたものであ
る。その不溶性無機化合物を定着させる量は、絶乾植物
繊維100重量部に対し10重量部以上であることが好
ましい、その定着量が多いほど耐久性は増すが、強度向
上、軽量化などの利点が減小する場合があるので、絶乾
植物繊維100重π部に対し200重量部以上としない
方が好ましい。その定着量が10重量部以下とすると耐
久性が小さくなる。
The modified plant fiber used in the present invention is a plant fiber in which an insoluble inorganic compound is fixed inside and on the fiber structure of the plant fiber. The amount of the insoluble inorganic compound to be fixed is preferably 10 parts by weight or more per 100 parts by weight of bone-dry vegetable fibers.The larger the amount of fixed inorganic compound, the higher the durability, but there are also advantages such as improved strength and weight reduction. Therefore, it is preferable not to exceed 200 parts by weight per 100 parts by weight of bone-dried vegetable fiber. If the amount of fixation is less than 10 parts by weight, durability will be reduced.

改質植物繊維に用いる植物繊維としては、周知の植物繊
維がいずれも用いられ、綿、麻、パルプなどが好ましく
用いられるが、完全に分離した繊維状態である必要はな
く、木毛、木粉、木片(チップ)の形態でも使用するこ
とができる。
As the plant fiber used for the modified plant fiber, any well-known plant fiber can be used, and cotton, hemp, pulp, etc. are preferably used, but it does not have to be in a completely separated fiber state, and wood wool, wood flour, etc. It can also be used in the form of wood chips.

本発明で使用する水不溶性無機化合物は、実質的に水に
不溶性であればいずれをも用いることができて、その種
類は特に限定されないが、次のような種類のものを用い
ることができる。
As the water-insoluble inorganic compound used in the present invention, any water-insoluble inorganic compound can be used as long as it is substantially insoluble in water, and the type thereof is not particularly limited, but the following types can be used.

リン酸金属塩: Ba5(POa)*、 CaHPO,
AZ(IIzPOa)a金属水酸化物: Ca(ON>
z、^l (Off) s 、 Fe (OH) を炭
酸金属塩: CaC0,、^l z (COz) !ホ
ウ酸金属塩: BaRuO3 硫酸金属塩: Ca5O,、Ba5OaアパタイトM1
゜(204)&X! M:l〜3価イオン、Ca、Ph、Cd、Sr、Ni。
Phosphate metal salt: Ba5(POa)*, CaHPO,
AZ(IIzPOa)a metal hydroxide: Ca(ON>
z, ^l (Off) s , Fe (OH) as metal carbonate: CaC0,, ^l z (COz) ! Boric acid metal salt: BaRuO3 Sulfate metal salt: Ca5O,, Ba5Oa apatite M1
゜(204)&X! M: l - trivalent ion, Ca, Ph, Cd, Sr, Ni.

^Z、Na、に、Ba等 Z:3〜7価イオン、P、AZ、As、Cr、St。^Z, Na, Ni, Ba etc. Z: 3-7 valent ion, P, AZ, As, Cr, St.

C,S等 x:0〜3価イオン、OH,F、 CLBr+1+0、
COs、1lzO等 エトリンガイト: 3CaO・AZ、03  ・3Ca
SO,・nH,0n=28〜32 無機超微粒子: 5iOt+CaCO5+A7z03.
Ti01等(粒径0.ls以下) これらの中、CaHPO,、八l (011) !、 
CaCO5,アパタイト、エトリンガイド、二酸化ケイ
素などが好ましく用いられる。
C, S, etc. x: 0 to trivalent ions, OH, F, CLBr+1+0,
COs, 1lzO, etc. Ettringite: 3CaO・AZ, 03・3Ca
SO,·nH,0n=28-32 Inorganic ultrafine particles: 5iOt+CaCO5+A7z03.
Ti01 etc. (particle size 0.ls or less) Among these, CaHPO,, 8l (011)! ,
CaCO5, apatite, etrin guide, silicon dioxide, etc. are preferably used.

また、水不溶性無機化合物を植物繊維内部及び表面に定
着させる方法としては、下記に例示する方法の外、いず
れの方法によっても良い。
Further, as a method for fixing the water-insoluble inorganic compound inside and on the surface of the plant fibers, any method other than the method exemplified below may be used.

(1)混合することによって不溶性無機化合物を生ずる
複数の無機化合物水溶液を植物繊維に順次に含浸させ、
各水溶液に含まれるイオン同士を反応させ、不溶性無機
化合物を生成させる方法。
(1) Sequentially impregnating plant fibers with a plurality of aqueous solutions of inorganic compounds that produce insoluble inorganic compounds when mixed;
A method in which ions contained in each aqueous solution react with each other to generate insoluble inorganic compounds.

(2)水不溶性無機化合物のゾル分散液(超微粒子)を
植物繊維中に含浸させる方法。
(2) A method of impregnating a sol dispersion (ultrafine particles) of a water-insoluble inorganic compound into plant fibers.

(3)二酸化炭素と反応して水不溶性無機化合物を生じ
る化合物の水溶液を植物繊維に含浸した後、その含浸植
物繊維を二酸化炭素雰囲気中に置く方法。
(3) A method in which plant fibers are impregnated with an aqueous solution of a compound that reacts with carbon dioxide to produce a water-insoluble inorganic compound, and then the impregnated plant fibers are placed in a carbon dioxide atmosphere.

このような反応による定着の例を次に挙げる。An example of fixing by such a reaction is given below.

Al t (SO4) s + 3NatllPOa−
ラAZz(llPOm)++3NazSO4CaC1t
 ・811tO−一−→CaC0゜ホウ酸金属塩 BaCZg ・2HtO+1IsBO3→ Ba1lB
Osこのような無機化合物水溶液の植物繊維への含浸、
あるいはその後の水不溶性無機化合物の定着にさいして
は、膨潤剤、寸法安定北側等の添加剤を必要に応じて使
用することができる。
Al t (SO4) s + 3NatllPOa-
LaAZz(llPOm)++3NazSO4CaC1t
・811tO-1-→CaC0゜boric acid metal salt BaCZg ・2HtO+1IsBO3→ Ba1lB
Impregnation of plant fibers with such an inorganic compound aqueous solution,
Alternatively, in the subsequent fixation of the water-insoluble inorganic compound, additives such as a swelling agent and a dimensionally stable additive may be used as necessary.

本発明において使用する水硬性材料としては、従来から
水硬性材料として使用されてきたものがいずれも使用す
ることができ、例えば、ポルトランドセメント、高炉セ
メント、フライアッシュセメント、アルミナセメント等
の各種セメント類、石膏、スラグ石膏、珪酸カルシウム
等を使用することができる。
As the hydraulic material used in the present invention, any hydraulic material that has been conventionally used can be used, such as various cements such as Portland cement, blast furnace cement, fly ash cement, and alumina cement. , gypsum, slag gypsum, calcium silicate, etc. can be used.

この水硬性材料に、前記の水不溶性無機化合物を繊維内
部および表面に定着させた改質植物繊維を全体の0.5
〜30w 1%含有させたものを水で硬化させると、本
発明の繊維補強複合材料が得られる。
To this hydraulic material, 0.5% of the total amount of modified vegetable fibers in which the above-mentioned water-insoluble inorganic compound was fixed inside and on the fibers was added.
The fiber-reinforced composite material of the present invention can be obtained by curing a mixture containing 1% of ~30w with water.

なお、この複合材料には、配合材料として、前記の改質
植物繊維以外の各種補強繊維、各種骨材、充填材、AE
剤、減水剤、分散剤等の添加剤を必要に応じて含有させ
ることができる、これらは硬化させる前に水硬性材料と
改質植物繊維との混合物に加えておく。
In addition, this composite material contains various reinforcing fibers other than the above-mentioned modified vegetable fibers, various aggregates, fillers, and AE.
Additives such as water-reducing agents, water-reducing agents, and dispersants can be included as necessary, and these are added to the mixture of hydraulic material and modified vegetable fiber before curing.

その繊維補強複合材料をつくるに当り、水により硬化さ
せるさいに板状等の所望の形状に成形しておくと、その
複合材料からなる成形物が得られる。すなわち、水硬性
材料と改質植物繊維、あるいはさらに上記の配合材料と
の混合物に水を加えて混練したものを所望の形状に成形
し、硬化させることにより、その複合材料からなる成形
物を得ることができる。
In producing the fiber-reinforced composite material, if it is molded into a desired shape such as a plate while being cured with water, a molded article made of the composite material can be obtained. That is, by adding water to a mixture of a hydraulic material and a modified vegetable fiber, or the above-mentioned compounded materials, and kneading the mixture, it is molded into a desired shape and cured to obtain a molded product made of the composite material. be able to.

この成形物は種々の形状を取ることができ、板状、柱状
、パイプ状、あるいはその他の形状を取りうるから、壁
材、屋根材、柱、床材、各種パイプなどとすることがで
き、建築、土木等の広い分”野に使用することができる
This molded product can take various shapes, such as plate, column, pipe, or other shapes, so it can be used as wall materials, roof materials, columns, floor materials, various pipes, etc. It can be used in a wide range of fields such as architecture and civil engineering.

成形手段としては、各種の方法を取ることができ、押し
出し、流し込み、プレス、その方法によることができる
Various methods can be used as the molding means, including extrusion, pouring, and pressing.

その成形により得られた成形体を硬化させるに当っては
、養生を行うが、その養生の手段としてはオートクレー
ブ養生、高温湿空養生、自然養生のいずれの方法をも採
用してもよい。
In curing the molded product obtained by the molding, curing is performed, and any method such as autoclave curing, high temperature and humid air curing, or natural curing may be adopted as the curing method.

特に、補強繊維として有機繊維を用いた場合には前述の
ようにオートクレーブ養生をすることができないが、本
発明の複合材料を製造する場合には、改質植物繊維を用
いているために、短時間に処理でき、かつ最大の強度に
到達させることができるという利点を有するオートクレ
ーブ養生を行うことができる。
In particular, when organic fibers are used as reinforcing fibers, autoclave curing cannot be performed as described above, but when producing the composite material of the present invention, modified vegetable fibers are used, so it is difficult to cure in an autoclave. Autoclave curing can be carried out, which has the advantage of being time consuming and reaching maximum strength.

〔作 用〕[For production]

従来のように、水硬性材料に連常の植物繊維を軽量化、
加工性向上を目的として添加し、水により硬化させて得
た複合材料では、元来植物繊維は繊維の大きさが水分含
有率と共に変化し、長時間水に浸されると繊維がふやけ
るように、水に弱いものであり、また植物繊維が可燃性
であるところから、耐熱性、耐火性に劣る材料であり、
更に弾性係数が低いことから、セメントマトリックス等
の高弾性係数の材料の強度向上には寄与しない。
As in the past, we used continuous plant fibers in hydraulic materials to reduce weight.
In composite materials obtained by adding water for the purpose of improving processability and curing with water, the fiber size of plant fibers originally changes with the water content, and the fibers become soft when soaked in water for a long time. It is a material with poor heat resistance and fire resistance because it is sensitive to water and plant fibers are flammable.
Furthermore, since the elastic modulus is low, it does not contribute to improving the strength of high elastic modulus materials such as cement matrices.

本発明においては、予め水不溶性無機化合物を植物繊維
の内部及び表面に定着させた改質植物繊維を用いること
により、その改質された植物繊維はバルキング効果によ
り耐水性が向上し、吸水による寸法変化が小さくなり、
得られた複合材料の耐久性を損なうことがない、そして
、それから得られた成形物の寸法変化率や耐久性を損な
うことがない、また、改質植物繊維の弾性係数が高くな
るためか、成形物の曲げ強度向上をもたらすこともでき
る。
In the present invention, by using a modified plant fiber in which a water-insoluble inorganic compound is fixed in advance on the inside and surface of the plant fiber, the water resistance of the modified plant fiber is improved due to the bulking effect, and the size due to water absorption is improved. Changes become smaller,
This is because the durability of the obtained composite material is not impaired, the dimensional change rate and durability of the molded product obtained from it are not impaired, and the elastic modulus of the modified plant fiber is increased. It can also improve the bending strength of the molded product.

なお、植物繊維への水不溶性無機化合物の定着が、植物
繊維(絶乾)100重量部に対し10重量部以下では植
物繊維が十分に改質され°ζおらず、得られた複合材料
の寸法変化率に悪影響を及ぼす場合があるため、前記無
機化合物をlO重量部以上定着させることが好ましい。
Note that if the fixation of the water-insoluble inorganic compound to the plant fibers is less than 10 parts by weight per 100 parts by weight of the plant fibers (absolutely dry), the plant fibers will not be sufficiently modified, and the dimensions of the resulting composite material will decrease. Since this may adversely affect the rate of change, it is preferable to fix the inorganic compound in an amount of 10 parts by weight or more.

また、本発明の複合材料では、補強効果を発揮させるた
めには改質植物繊維を少なくとも0.5wtχ添加する
ことが必要であり、また30wt%より多くなると逆に
強度低下をもたらすためである。
Furthermore, in the composite material of the present invention, in order to exhibit a reinforcing effect, it is necessary to add at least 0.5 wt.

この改質植物繊維は、水不溶性無機化合物が定着してい
るため、通常の植物繊維や前記のポリプロピレン繊維の
ような有機繊維類のようにオートクレーブ養生による劣
化を起こすことが少なく、複合材料からなる成形物の養
生にオートクレーブ養生を採用することができる。
This modified plant fiber has a water-insoluble inorganic compound fixed on it, so it is less prone to deterioration due to autoclave curing unlike ordinary plant fibers or organic fibers such as the above-mentioned polypropylene fiber, and is made of composite material. Autoclave curing can be used to cure the molded product.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

ただし本発明はこれらの実施例のみに限定されるもので
はない。
However, the present invention is not limited to these examples.

実施例1〜3 NUKP (針葉樹未晒しクラフトパルプ)をパルプ濃
度3%で解1lll後、圧縮成形機で含水率的300%
の湿潤パルプを得た。これを1.5sol/ffiの塩
化バリウム水溶液に15分間浸漬した。ついで、圧縮成
形機によって余剰の塩化バリウム水溶液を除去したのち
、3.5mol/j!リン酸水素アンモニウム水溶液に
20分間浸漬処理した。水洗乾燥後、重量増加率を測定
したところ、72−1%増加した改質植物繊維Aが得ら
れた。
Examples 1 to 3 After dissolving 1 lll of NUKP (softwood unbleached kraft pulp) at a pulp concentration of 3%, the moisture content was 300% using a compression molding machine.
A wet pulp was obtained. This was immersed in a 1.5 sol/ffi barium chloride aqueous solution for 15 minutes. Then, after removing the excess barium chloride aqueous solution using a compression molding machine, 3.5 mol/j! It was immersed in an aqueous ammonium hydrogen phosphate solution for 20 minutes. After washing with water and drying, the weight increase rate was measured, and it was found that the modified vegetable fiber A had an increase of 72-1%.

これを普通ポルトランドセメントと混合し、表1に示す
組成でセメントスラリーを調整し、フィルタープレス法
(プレス圧40kg/d)によって中150×長200
×厚7閣に成形し、2週間湿空養生して成形板を得た。
Mix this with ordinary Portland cement to prepare a cement slurry with the composition shown in Table 1, and use the filter press method (press pressure 40 kg/d) to make a
The molded plate was molded into a ×7-thickness shape and cured in a humid air for 2 weeks to obtain a molded plate.

比較例1〜2 表1の組成に従ったほかは、上記実施例1〜3と同様に
して成形板を得た。
Comparative Examples 1-2 Molded plates were obtained in the same manner as in Examples 1-3 above, except that the compositions shown in Table 1 were followed.

実施例4 NUKPを木粉(径3閣以下)とした以外、実施例1〜
3と同様な手順で処理したところ、重量増加率91%の
改質植物繊維Bが得られた。
Example 4 Example 1 to
When treated in the same manner as in 3, modified vegetable fiber B with a weight increase rate of 91% was obtained.

改質植物繊維Bを粉砕機で解繊後、表2に示す組成で混
練して押出成形機によって中500×厚5〇−の中空形
状に成形後、180℃lO時間オートクレーブ養生し押
出成形板を得た。
After defibrating the modified plant fiber B with a crusher, kneading it with the composition shown in Table 2 and molding it into a hollow shape of 500mm x 50mm thick using an extruder, autoclaving at 180°C for 10 hours to make an extrusion-molded plate. I got it.

実施例5 木粉をLBKP (広葉樹晒しクラフトパルプ)として
、塩化バリウム水溶液を1.0■ol/j!、リン酸水
素アンモニウム水溶液濃度を1.5mol/j!とした
ほかは実施例1〜3と同様な手順で処理したところ、重
量増加率13%の改質植物繊維Cが得られた。
Example 5 Using wood flour as LBKP (bleached hardwood kraft pulp), barium chloride aqueous solution was added at 1.0 ol/j! , the concentration of ammonium hydrogen phosphate aqueous solution is 1.5 mol/j! When treated in the same manner as in Examples 1 to 3, except for the above, modified vegetable fiber C with a weight increase rate of 13% was obtained.

この改質植物繊維Cを用いたほかは上記実施例4と同様
にして押出成形板を得た。
An extrusion-molded plate was obtained in the same manner as in Example 4 above, except that this modified vegetable fiber C was used.

比較例4 改質植物繊維の代りはLBKPパルプを用いたほかは、
上記実施例4と同様にして押出成形板を得た。
Comparative Example 4 Except for using LBKP pulp instead of modified plant fiber,
An extrusion molded plate was obtained in the same manner as in Example 4 above.

上記実施例1〜5および比較例1〜4について成形品の
曲げ強度、寸法変化率、嵩比重をそれぞれ測定した0寸
法変化率は、成形品を48時間吸水させて飽水状態にし
、これを絶乾状態にしたときの寸法変化を測定すること
によって行った。クランク試験は湿潤(24時間水中浸
漬)−乾燥(90°C24時間乾燥)サイクルを10回
繰り返した後、押出成形板の表面及び小口のクラックの
有無を目視により観察した。
The 0 dimensional change rate obtained by measuring the bending strength, dimensional change rate, and bulk specific gravity of the molded products for Examples 1 to 5 and Comparative Examples 1 to 4 above is determined by allowing the molded products to absorb water for 48 hours to become saturated with water. This was done by measuring the dimensional change when the sample was kept completely dry. In the crank test, after repeating a wet (immersion in water for 24 hours) - dry (dry for 24 hours at 90° C.) cycle 10 times, the presence or absence of cracks on the surface and edges of the extruded plate was visually observed.

〔発明の効果〕〔Effect of the invention〕

本発明の繊維補強複合材料は、強度、特に曲げ強度が向
上し、加工性が増し、耐久性が増し、軽量化された製品
を作るのに用いることができ、特に成形後にオートクレ
ーブ養生することができ、その養生によって強度が低下
することがない。さらに、本発明の摺合材料は、改質植
物繊維を用いており、これは加熱によって補強強度が皆
無となることがないから、耐火性にも優れている。
The fiber-reinforced composite materials of the present invention can be used to make products with improved strength, especially flexural strength, increased processability, increased durability, and reduced weight, and in particular can be autoclaved after molding. The strength will not decrease due to curing. Furthermore, the sliding material of the present invention uses modified vegetable fibers, which do not lose their reinforcing strength when heated, and therefore have excellent fire resistance.

また、本発明の成形物は、強度が高く、加工性が良好で
、軽量化されており、クラックの入り方が少なく耐久性
に冨み、オートクレーブ養生をしてつくることができる
ので、生産性に優れている。
In addition, the molded product of the present invention has high strength, good workability, is lightweight, has less cracking, is highly durable, and can be cured in an autoclave, increasing productivity. Excellent.

さらに、耐火性に優れているので、高品位の石膏ボード
板やスレート板などを得ることができる。
Furthermore, since it has excellent fire resistance, high-quality gypsum board boards, slate boards, etc. can be obtained.

手 続 補 正 書 平成2年6月15日hand Continued Supplementary Positive book June 15, 1990

Claims (2)

【特許請求の範囲】[Claims] (1)水硬性材料に水不溶性無機化合物を植物繊維内部
および表面に定着させた改質植物繊維を全体の0、5〜
30wt%含有させたものを水で硬化させたものである
ことを特徴とする繊維補強複合材料。
(1) Modified plant fibers in which water-insoluble inorganic compounds are fixed to the interior and surface of the plant fibers are used as hydraulic materials.
A fiber-reinforced composite material, characterized in that it is made by curing a material containing 30 wt% with water.
(2)請求項(1)記載の繊維補強複合材料からなる成
形物。
(2) A molded article made of the fiber-reinforced composite material according to claim (1).
JP7189090A 1990-03-23 1990-03-23 Fiber reinforced composite material Expired - Fee Related JP2587306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7189090A JP2587306B2 (en) 1990-03-23 1990-03-23 Fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7189090A JP2587306B2 (en) 1990-03-23 1990-03-23 Fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JPH03275544A true JPH03275544A (en) 1991-12-06
JP2587306B2 JP2587306B2 (en) 1997-03-05

Family

ID=13473587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7189090A Expired - Fee Related JP2587306B2 (en) 1990-03-23 1990-03-23 Fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP2587306B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1125903A3 (en) * 2000-02-10 2001-08-29 Österreichische Heraklith GmbH Wood-wool based building elements and process for manufacturing the same
JP2004511421A (en) * 2000-10-17 2004-04-15 ジェイムズ ハーディー リサーチ ピーティーワイ.リミテッド Fiber cement composite using durable cellulose fibers treated with biocide
JP2016534243A (en) * 2013-08-27 2016-11-04 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH Novel fibers, their production process and their use in the manufacture of reinforced parts
CN114835463A (en) * 2022-05-26 2022-08-02 太原科技大学 Environment-friendly bio-based lightweight plastering gypsum mortar and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036361A (en) * 1983-02-28 1985-02-25 ニユガトマジヤールオルサギ フアガツダサギ コムビナト Manufacture of formed body
JPS61174472A (en) * 1985-01-29 1986-08-06 エルケム・アクシエセルスカプ Increase of fiber reinforcing characteristics
JPH0248448A (en) * 1988-08-09 1990-02-19 Kubota Ltd Production of inorganic construction material
JPH0354135A (en) * 1989-07-20 1991-03-08 Noda Corp Inorganic plate for building construction
JPH03146766A (en) * 1989-10-26 1991-06-21 Matsushita Electric Works Ltd Modified pulp fiber and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036361A (en) * 1983-02-28 1985-02-25 ニユガトマジヤールオルサギ フアガツダサギ コムビナト Manufacture of formed body
JPS61174472A (en) * 1985-01-29 1986-08-06 エルケム・アクシエセルスカプ Increase of fiber reinforcing characteristics
JPH0248448A (en) * 1988-08-09 1990-02-19 Kubota Ltd Production of inorganic construction material
JPH0354135A (en) * 1989-07-20 1991-03-08 Noda Corp Inorganic plate for building construction
JPH03146766A (en) * 1989-10-26 1991-06-21 Matsushita Electric Works Ltd Modified pulp fiber and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1125903A3 (en) * 2000-02-10 2001-08-29 Österreichische Heraklith GmbH Wood-wool based building elements and process for manufacturing the same
JP2004511421A (en) * 2000-10-17 2004-04-15 ジェイムズ ハーディー リサーチ ピーティーワイ.リミテッド Fiber cement composite using durable cellulose fibers treated with biocide
JP2016534243A (en) * 2013-08-27 2016-11-04 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH Novel fibers, their production process and their use in the manufacture of reinforced parts
CN114835463A (en) * 2022-05-26 2022-08-02 太原科技大学 Environment-friendly bio-based lightweight plastering gypsum mortar and preparation method thereof

Also Published As

Publication number Publication date
JP2587306B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
Wei et al. Utilization of rice husk ash in green natural fiber-reinforced cement composites: Mitigating degradation of sisal fiber
US20190308914A1 (en) Method of treating magnesium oxysulfate or magnesium oxychloride article with water soluble phosphate solution
AU2017228691B2 (en) A metal oxide activated cement
KR20080012984A (en) Natural aluminosilicate composite and aggregates synthesized in alkaline environment and their manufacturing process
Liguori et al. Fiber-reinforced lime-based mortars: Effect of zeolite addition
WO2022004643A1 (en) Cured body reinforced with fibers
JPH03275544A (en) Fiber reinforced composite material and molded body thereof
JPH11322395A (en) Fiber-reinforced cement molding and its production
KR20080022657A (en) Liquid composition for water-proof in concrete
KR102146455B1 (en) Blast furnace slag-based compositon and hardened product thereof
JP3212591B1 (en) Humidity control building materials
JP2646278B2 (en) Manufacturing method of inorganic cured molded products
JP2006188398A (en) Cementitious composition
TWI749787B (en) Paint layer and manufacturing method thereof
JP3564450B2 (en) Energy-saving production method of ceramic moldings and moldings
JP2001058884A (en) Production of calcium silicate hardened body
JPH03153554A (en) Production of fiber reinforced lightweight cement plate
JP2000007466A (en) Woody cement hardened body
JP3903190B2 (en) Hygroscopic gypsum hardened body
JPS5943432B2 (en) Method for manufacturing fiber-reinforced plaster-based cured product
JPS6055457B2 (en) Manufacturing method for gypsum-based building materials with excellent water repellency
Hajmohammadian Baghban et al. Natural Kenaf Fiber and LC3 Binder for Sustainable Fiber-Reinforced Cementitious Composite: A Review
JPH0242784B2 (en)
JP2758449B2 (en) Fire-resistant hardened asbestos-free gypsum body and method for producing the same
JP2892096B2 (en) Manufacturing method of building materials

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees