JPH03269522A - Amplifier device for wavelength multiplex optical transmission line - Google Patents

Amplifier device for wavelength multiplex optical transmission line

Info

Publication number
JPH03269522A
JPH03269522A JP2070289A JP7028990A JPH03269522A JP H03269522 A JPH03269522 A JP H03269522A JP 2070289 A JP2070289 A JP 2070289A JP 7028990 A JP7028990 A JP 7028990A JP H03269522 A JPH03269522 A JP H03269522A
Authority
JP
Japan
Prior art keywords
optical
multiplexing
light
transmission line
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2070289A
Other languages
Japanese (ja)
Inventor
Ryozo Yamauchi
良三 山内
Akira Wada
朗 和田
Taiichiro Tanaka
大一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2070289A priority Critical patent/JPH03269522A/en
Publication of JPH03269522A publication Critical patent/JPH03269522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To allow the execution of amplification by optical amplification in the optical transmission line of wave length multiplex optical communication by transmitting light rays of plural wavelengths by respectively one each to each of auxiliary transmission lines and providing optical amplifiers which optically amplify the transmitted ligth rays thereof to the auxiliary transmission lines. CONSTITUTION:Two pieces of multiplexing/demultiplexing elements 12, 13 are disposed in series in the main optical transmission line 11 where the light of the plural wavelengths is transmitted. The plural auxiliary transmission lines 14 corresponding to the number of the wavelengths are provided between these multiplexing/demultiplexing elements. The light rays of the plural wavelengths are transmitted respectively by one each to each of these auxiliary transmission lines 14 and the optical amplifiers 15 which optically amplify the transmitted light rays thereof are provided in these auxiliary transmission lines 14. The equipment devices for wavelength multiplex optical communication are simplified and the optical amplifier having high reliability is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば双方向波長多重光通信などに使用さ
れる波長多重光伝送路増幅装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a wavelength division multiplexing optical transmission line amplification device used, for example, in bidirectional wavelength division multiplexing optical communications.

〔従来の技術〕[Conventional technology]

双方向波長多重光通信は、例えば第4図に示すように1
本の光ファイバ(光伝送路)1に波長の異なる光(λ1
.λ、)をそれぞれ対向する方向から入射して双方向に
通信を行うものである。この例では、一方の端局には、
波長λ1の光を送信する光送信器TX(λ、)2と、波
長λ、の光を受信する光受信器RX(λ、)3と、波長
λ1の光と波長λ、の光を分波、合波する分波合波素子
4とが設けられており、他方の端局には波長λ。
Bidirectional wavelength division multiplexing optical communication is, for example, as shown in Figure 4.
Light of different wavelengths (λ1
.. λ, ) are incident from opposite directions to perform bidirectional communication. In this example, one end station has
An optical transmitter TX(λ,)2 transmits light with wavelength λ1, an optical receiver RX(λ,)3 receives light with wavelength λ, and separates light with wavelength λ1 and light with wavelength λ. , a demultiplexing/multiplexing element 4 for multiplexing are provided, and the other terminal station is provided with a wavelength λ.

の光を送信する光送信器TX(λ、)5と、波長λ、の
光を受信する光受信器RX(λ、)6と、同様の分波合
波素子7とが設けられている。一方の端局の光送信器T
X(λl)tからの光(λ、)は分波合波素子4を経て
光ファイバlを他方の端局に向けて伝送され、他方の端
局の分波合波素子7を経て光受信器RX(λ、)で受信
される。また逆に他方の端局の光送信器TX(λ、)5
からの光(λ、)は分波合波素子7を経て先ファイバを
一方の端局に向けて伝送され、一方の端局の分波合波素
子4を経て光受信器RX(λ、)3で受信され、1本の
光フアイバ1内に2つの波長λλ、の光が逆方向に伝送
されるようになっている。
An optical transmitter TX (λ, ) 5 that transmits light of wavelength λ, an optical receiver RX (λ, ) 6 that receives light of wavelength λ, and a similar demultiplexing/multiplexing element 7 are provided. Optical transmitter T of one terminal station
The light (λ,) from X(λl)t passes through the demultiplexing/multiplexing element 4, is transmitted along the optical fiber l toward the other terminal station, and is optically received via the demultiplexing/multiplexing element 7 of the other terminal station. The signal is received by the receiver RX(λ,). Conversely, the optical transmitter TX(λ,)5 of the other terminal station
The light (λ, ) is transmitted through the demultiplexing/multiplexing element 7 to the destination fiber toward one terminal station, and then passes through the demultiplexing/multiplexing element 4 of one terminal station to the optical receiver RX (λ, ). 3, and the lights of two wavelengths λλ are transmitted in opposite directions within one optical fiber 1.

このような双方向波長多重光通信にあっては、通常の光
通信と同様にその伝送距離が増加すると、光ファイバの
伝送損失によって信号レベルが減衰低下する。このため
、長距離伝送には光中継器を設ける必要がある。
In such bidirectional wavelength multiplexing optical communication, as in normal optical communication, as the transmission distance increases, the signal level attenuates and decreases due to the transmission loss of the optical fiber. Therefore, it is necessary to provide an optical repeater for long-distance transmission.

一般の光中継器は光信号を一旦電気信号に変換して増幅
し、この電気信号を再び光信号に変換するものである。
A general optical repeater first converts an optical signal into an electrical signal, amplifies it, and then converts this electrical signal back into an optical signal.

したがって、このタイプの光中継器を上述の双方向波長
多重光通信に適用した場合、波長の数に対応する数の光
中継器が必要となって装置が高価となるとともに信頼性
においても不安がある。
Therefore, when this type of optical repeater is applied to the above-mentioned two-way wavelength division multiplexing optical communication, the number of optical repeaters corresponding to the number of wavelengths is required, making the equipment expensive and causing concerns about reliability. be.

一方、光を直接増幅する光増幅においては、かかる不都
合は解決される。現在光増幅には光半導体を用いた半導
体光増幅器と、エルビウムなとの希土類元素添加ファイ
バを用いたファイバ光増幅器か知られている。
On the other hand, in optical amplification in which light is directly amplified, this problem is solved. Currently, two types of optical amplification methods are known: semiconductor optical amplifiers using optical semiconductors and fiber optical amplifiers using fibers doped with rare earth elements such as erbium.

しかし、半導体増幅器もファイバ増幅器もその増幅可能
な波長帯域が狭く、1本の光ファイバに複数の波長の光
が伝送される波長多重通信には、使用することかできな
かった。
However, both semiconductor amplifiers and fiber amplifiers have narrow wavelength bands that can be amplified, and cannot be used for wavelength division multiplexing communications in which light of multiple wavelengths is transmitted through a single optical fiber.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

よって、この発明の課題は、波長多重光通信のための光
伝送線路において、光増幅による増幅を行えるようにす
ることにある。
Therefore, an object of the present invention is to enable amplification by optical amplification in an optical transmission line for wavelength multiplexed optical communication.

C課題を解決するための手段〕 かかる課題は、複数の波長の光が伝送される主光伝送路
に、2個の合波分波素子を直列に配して、これら合波分
波素子間に波長の数に相当する複数の副伝送路を設け、
これらの副伝送路のそれぞれに上記複数の波長の光をそ
れぞれ1つづつ伝送するようにし、かつこれら副伝送路
にその伝送光を光増幅する光増幅器を設けることで解決
される。
Means for Solving Problem C] This problem can be solved by arranging two multiplexing/demultiplexing elements in series on the main optical transmission path through which light of a plurality of wavelengths is transmitted, and connecting the multiplexing/demultiplexing elements between these multiplexing/demultiplexing elements. A plurality of sub-transmission lines corresponding to the number of wavelengths are provided in
This problem can be solved by transmitting one light beam of each of the plurality of wavelengths through each of these sub-transmission lines, and by providing each of these sub-transmission lines with an optical amplifier for optically amplifying the transmitted light.

以下、この発明の詳細な説明する。The present invention will be described in detail below.

第1図は、この発明の波長多重光伝送路増幅装置(以下
、増幅装置と略記する。)の基本的な例を示すものであ
る。
FIG. 1 shows a basic example of a wavelength multiplexed optical transmission line amplifier (hereinafter abbreviated as amplifier) of the present invention.

光ファイバからなる主光伝送路11には波長の異なるn
個の光(波長λ1.λ、・ ・・λn)が伝送されてい
る。この光伝送路1】には、第1の合波分波素子12と
第2の合波分波素子13とか直列に挿入されている。こ
れらの合波分波素子12゜13はともに1個の1次ポー
トPPと、n個の2次ポートSP、、SPl・・・・・
SPnを有するもので、各素子12.13の1次ポー)
PPはそれぞれ主光伝送路11をなす光ファイバに接続
されている。
The main optical transmission line 11 consisting of an optical fiber has n of different wavelengths.
pieces of light (wavelengths λ1.λ, . . . λn) are transmitted. In this optical transmission line 1, a first multiplexing/demultiplexing element 12 and a second multiplexing/demultiplexing element 13 are inserted in series. Both of these multiplexing/demultiplexing elements 12 and 13 have one primary port PP and n secondary ports SP, SPl...
SPn, and the primary port of each element 12.13)
Each of the PPs is connected to an optical fiber forming the main optical transmission line 11.

また、各素子12.13の2次ボートsp、、sP、・
・・・・SPnはそれぞれ他方の素子12.13の同一
番号の2次ボートSP、、SPl・・・・SPnにn個
の副伝送路14.14・・・・・・をなす0本の光ファ
イバによって接続されている。これにより、各副伝送路
14.14・・・・・・には、それぞれ波長の異なる光
が伝送されるようになっており、第1の副伝送路I4に
は波長λ1の光が、第2の副伝送路14には波長λ、の
光が、第nの副伝送路14には波長λnの光が伝送され
るように構成されている。
In addition, the secondary ports sp,,sP,・ of each element 12.13
...SPn is the secondary port SP with the same number of the other element 12.13, SPl...SPn with n sub-transmission lines 14.14... connected by optical fiber. As a result, each of the sub-transmission lines 14, 14...... transmits light of a different wavelength, and the first sub-transmission line I4 receives light of wavelength λ1, and the first sub-transmission line I4 receives light of wavelength λ1. The second sub-transmission path 14 is configured to transmit light with a wavelength λ, and the n-th sub-transmission path 14 is configured to transmit light with a wavelength λn.

また、これらの各副伝送路14.14・・ には、光増
幅器15.15  ・か設けられ、各副伝送路14.1
4・・・・に伝送される光を増幅するようになっている
。この光増幅器15は、それか設けられた副伝送路14
に伝送される光の波長に合致した増幅波長域を有するも
のか遭択され、具体的には増幅波長域が1.3μmLy
)InGaAsP系半導体光増幅器や、エルビウムなと
の希土類元素添加石英ガラスからなるコアを有する/ン
グルモード光ファイバを使用した増幅波長域が1.55
μmのファイバ光増幅器などが用いられる。
Further, each of these sub-transmission lines 14.14... is provided with an optical amplifier 15.15.
It is designed to amplify the light transmitted to...4. This optical amplifier 15 is connected to the sub-transmission line 14 provided therein.
The amplification wavelength range that matches the wavelength of the light transmitted to the
) The amplification wavelength range is 1.55 using an InGaAsP semiconductor optical amplifier or a single-mode optical fiber with a core made of quartz glass doped with rare earth elements such as erbium.
A μm fiber optical amplifier or the like is used.

このような増幅装置においては、主光伝送路11に伝送
されるn個の波長の光が一方向に伝送される一方向波長
多重通信であれば、第1の合波分波素子12が分波器も
しくは合波器として機能し、第2の合波分波素子13が
合波器もしくは分岐器として機能する。また、n個の波
長の光のうち2以上のいずれかか双方向に伝送される双
方向波長多重通信であれば、第1および第2の合波分波
素子12.13はいずれも合波分波器として機能する。
In such an amplification device, if it is unidirectional wavelength multiplexing communication in which light of n wavelengths transmitted to the main optical transmission line 11 is transmitted in one direction, the first multiplexing/demultiplexing element 12 performs demultiplexing. It functions as a multiplexer or a multiplexer, and the second multiplexing/demultiplexing element 13 functions as a multiplexer or a splitter. In addition, in the case of bidirectional wavelength multiplexing communication in which two or more of the n wavelengths of light are transmitted bidirectionally, both the first and second multiplexing/demultiplexing elements 12.13 Functions as a splitter.

そして、各副伝送路14.14・・に設置される各光増
幅器15.15・・・はそれぞれの伝送光の伝送方向に
一致した増幅方向性を有するように構成される。
Each of the optical amplifiers 15, 15, . . . installed in each of the sub-transmission lines 14, 14, .

このような増幅装置にあっては、各副伝送路14.14
・・に伝送される光の波長に合った増幅波長域の光増幅
器15.15・・で各波長の光が増幅されるので、各伝
送光に十分な増幅利得が与えられ、波長多重通信におい
て長距離伝送が可能となる。
In such an amplifier, each sub-transmission line 14.14
Since the light of each wavelength is amplified by an optical amplifier with an amplification wavelength range that matches the wavelength of the light transmitted in 15. 15. Long distance transmission becomes possible.

第2図は、この発明の増幅装置の他の例を示すもので、
この例では二つの波長の光としてえよ−1,3μm、λ
t”1.55μmを使用し、双方向通信するものである
。また、この例での合波分波素子には、シングルモード
型光ファイバを用いた第1および第2の波長多重型光カ
ブラ16.17が用いられている。この波長多重型光カ
ブラ1617は、第3図に示すような出射特性を有して
おり、ボート■からボート■への光結合はλ1=1.3
μmで100%となり、ボート■からボート■への光結
合はえ、=1°55μmで100%となっている。よっ
て、λ、=1.3μmの光はボート■とボート■との間
で双方向に伝送され、λ、=1.55μmの光はボート
■とボート■との間で双方向に伝送される。
FIG. 2 shows another example of the amplifying device of the present invention.
In this example, the two wavelengths of light are −1.3μm and λ
t" 1.55 μm for bidirectional communication. The multiplexing/demultiplexing element in this example includes first and second wavelength multiplexing optical couplers using single mode optical fibers. 16.17 is used. This wavelength multiplexing type optical coupler 1617 has the output characteristics as shown in Fig. 3, and the optical coupling from boat ■ to boat ■ is λ1 = 1.3.
It becomes 100% at μm, and the optical coupling from boat (■) to boat (2) becomes 100% at =1°55 μm. Therefore, light with λ, = 1.3 μm is transmitted bidirectionally between boat ■ and boat ■, and light with λ, = 1.55 μm is transmitted bidirectionally between boat ■ and boat ■. .

また、この例では、1.3μm用の副伝送路14に設け
られた光増幅器15には、1.3μmの光を増幅するI
nGaAsP系半導体光増幅器18が用いられており、
この半導体光増幅器18の入力側および出力側にはそれ
ぞれ集光用レンズ19.19とアイソレータ20,20
が設けられている。一方、1.55μm用の副伝送路1
4に設けられた光増幅器には1.55μmの光を増幅す
ルエルビウム添加シングルモードファイバを用イた光フ
アイバ型増幅器21が用いられている。この光フアイバ
型増幅器21は、コアにエルビウムが添加されたシング
ルモードファイバ22と、この/ングルモードファイバ
22の一端に接続された1 48μm−1,55μml
長多重型0ポンプ光入力用カブラ23と、ポンプ光とな
る波長148μmのレーザ光を発振するレーザ光源24
とからなるもので、レーザ光源24からの波長148μ
mのポンプ光は、ポンプ光入力用カブラ23のボート■
からボート■に伝送され、ボート■からシングルモード
ファイバ22にポンプ光として入力される。また、副伝
送路14を伝送される1、55μmの光は、ポンプ光入
力用カブラ23のボート■からボート■に伝送され、ボ
ート■からシングルモードファイバ22に信号光として
人力され、ここで光増幅される。
Further, in this example, the optical amplifier 15 provided in the sub-transmission line 14 for 1.3 μm has an I/O amplifier for amplifying 1.3 μm light.
An nGaAsP semiconductor optical amplifier 18 is used,
Condensing lenses 19 and 19 and isolators 20 and 20 are provided on the input and output sides of the semiconductor optical amplifier 18, respectively.
is provided. On the other hand, sub-transmission line 1 for 1.55 μm
An optical fiber type amplifier 21 using a luerbium-doped single mode fiber for amplifying 1.55 μm light is used as the optical amplifier provided at 4. This optical fiber type amplifier 21 includes a single mode fiber 22 whose core is doped with erbium, and a 148 μm-1,55 μml single mode fiber 22 connected to one end of the single mode fiber 22.
A long-multiplexed 0 pump light input coupler 23 and a laser light source 24 that oscillates a laser light with a wavelength of 148 μm as pump light.
The wavelength of 148μ from the laser light source 24 is
The pump light of m is the boat of Cobra 23 for pump light input.
The light is transmitted from the boat (2) to the boat (2), and is input as pump light into the single mode fiber 22 from the boat (2). In addition, the 1.55 μm light transmitted through the sub-transmission line 14 is transmitted from the boat ■ of the pump light input coupler 23 to the boat ■, and from the boat ■ it is manually inputted as signal light to the single mode fiber 22, where it is optically transmitted. amplified.

波長1.3μmの光は、第2図中左側から主光伝送路1
1を伝送され、第1の波長多重型光カブラ16を経て一
方の副伝送路14に送られ、半導体光増幅器18で増幅
されたのち、第2の波長多重型光カブラ17を経て主光
伝送路11に戻され右方向に伝送される。また、波長1
.55μmの光は第2図中右側から主光伝送路11を伝
送され、第2の波長多重型光カブラ17を経て他方の副
伝送路14に送られ、ポンプ光入力用カブラ23を経て
エルビウム添加シングルモードファイバ22に送られ、
ここで光増幅されたのち、第1の波長多重型光カブラ1
6を経て主光伝送路11に戻され、左方向に伝送される
Light with a wavelength of 1.3 μm is transmitted through the main optical transmission line 1 from the left side in Figure 2.
1 is transmitted through the first wavelength multiplexing type optical coupler 16, sent to one of the sub transmission lines 14, amplified by the semiconductor optical amplifier 18, and then passing through the second wavelength multiplexing type optical coupler 17 for main optical transmission. The signal is returned to path 11 and transmitted to the right. Also, wavelength 1
.. The 55 μm light is transmitted through the main optical transmission line 11 from the right side in FIG. sent to single mode fiber 22,
After the light is amplified here, the first wavelength multiplexing optical coupler 1
6, the light is returned to the main optical transmission line 11, and transmitted to the left.

この増幅装置では、半導体光増幅器18および光フアイ
バ型増幅器21かいずれもその増幅に関しての方向性か
ないため、どの方向から信号光が入力しても反対側に増
幅された信号光が出力される。この特性は、いわゆる0
TDR(オプチカルタイム ドメイン リフラクトメト
リー、光パルス試験)を用いて光伝送路の損失状況を測
定する場合にも利用できる。例えば、試験光パルスが第
2図中左方から入射すると試験光は増幅されて右方に出
射する。伝送路中で散乱した光が後方散乱光として右方
から戻ってくると、この後方散乱光は同様に増幅され、
左方へ出力される。この際、試験光パルスの波長が1.
3μmの場合は、1゜3μm用の半導体光増幅器18を
通過して増幅され、1.55μmの場合は1.55μm
用の光フアイバ型光増幅M21を通過して増幅される。
In this amplifying device, since neither the semiconductor optical amplifier 18 nor the optical fiber type amplifier 21 has any directionality regarding their amplification, no matter which direction the signal light is input from, the amplified signal light is output from the opposite side. This characteristic is called 0
It can also be used to measure the loss status of an optical transmission line using TDR (optical time domain refractometry, optical pulse test). For example, when a test light pulse enters from the left in FIG. 2, the test light is amplified and emitted to the right. When the light scattered in the transmission path returns from the right side as backscattered light, this backscattered light is similarly amplified.
Output to the left. At this time, the wavelength of the test light pulse is 1.
In the case of 3 μm, it is amplified by passing through the semiconductor optical amplifier 18 for 1°3 μm, and in the case of 1.55 μm, it is amplified by the semiconductor optical amplifier 18 for 1°3 μm.
The signal passes through an optical fiber type optical amplifier M21 for amplification.

〔実施例〕〔Example〕

第2図に示した増幅装置を作成した。主伝送路11には
径125μmのシングルモード光ファイバを使用し、副
伝送路14および各先部分間の接続にも同様のシングル
モード光ファイバを使用した。InGaAsP系半導体
光増幅器18の利得は12dBで、該光増幅器18の入
出力端部には反射に伴う増幅度の動作不安定を避けるた
めの無反射コーティングが施しである。エルビウム添加
シングルモードファイバ22としては、エルビウム添加
量が500ppmものを使用し、またポンプ光用のレー
ザ光源24には1.48μmで出力約50mWの半導体
レーザを使用した。
The amplification device shown in FIG. 2 was created. A single-mode optical fiber with a diameter of 125 μm was used for the main transmission line 11, and a similar single-mode optical fiber was used for the sub-transmission line 14 and the connections between the respective end portions. The gain of the InGaAsP semiconductor optical amplifier 18 is 12 dB, and the input and output ends of the optical amplifier 18 are coated with anti-reflection coating to avoid operational instability of the amplification caused by reflection. As the erbium-doped single mode fiber 22, one having an erbium doping amount of 500 ppm was used, and as the laser light source 24 for pump light, a semiconductor laser with a diameter of 1.48 μm and an output of about 50 mW was used.

この増幅装置によって、約30kmの中継距離で双方向
波長多重通信を行うことができた。
This amplifier enabled bidirectional wavelength division multiplexing communication over a relay distance of approximately 30 km.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の増幅装置は複数の波長
の光が伝送される主光伝送路に、2個の合波分波素子を
直列に配して、これら合波分波素子間に波長の数に相当
する複数の副伝送路を設け、これらの副伝送路のそれぞ
れに上記複数の波長の光をそれぞれ】つつつ伝送するよ
うにし、かつこれら副伝送路にその伝送光を光増幅する
光増幅器を設けたものであるので、波長多重光通信にお
いて設備装置か簡単て、信頼性の高い光増幅を適用する
ことが可能となる。
As explained above, the amplifier device of the present invention has two multiplexing/demultiplexing elements arranged in series on the main optical transmission path through which light of a plurality of wavelengths is transmitted, and between these multiplexing/demultiplexing elements. A plurality of sub-transmission lines corresponding to the number of wavelengths are provided, each of these sub-transmission lines transmits light of the plurality of wavelengths, and the transmitted light is optically amplified in these sub-transmission lines. Since the optical amplifier is equipped with an optical amplifier, it is possible to apply highly reliable optical amplification to wavelength division multiplexed optical communications with simple equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はいずれもこの発明の増幅装置の例
を示す該略構成図、第3図はこの発明の増幅装置に用い
られる合波分波素子としての波長多重型光カブラの出射
特性を示すグラフ、第4図は従来の双方向波長多重光通
信の具体例を示す説明図である。 11・・・・主光伝送路、12 ・・・・第1の合波分
波素子、13・・・第2の合波分波素子、14・・・・
副伝送器、15・・・光増幅器、16・・・・・第1の
波長多重型光カブラ、17・・・第2の波長多重型光カ
ブラ、18・・・・・半導体光増幅器、21イバ型増幅
器。 光ファ
Figures 1 and 2 are both schematic configuration diagrams showing examples of the amplifier of the present invention, and Figure 3 is the output of a wavelength multiplexing type optical coupler as a multiplexing/demultiplexing element used in the amplifier of the present invention. A graph showing the characteristics, FIG. 4, is an explanatory diagram showing a specific example of conventional bidirectional wavelength multiplexing optical communication. 11... Main optical transmission line, 12... First multiplexing/demultiplexing element, 13... Second multiplexing/demultiplexing element, 14...
Sub-transmitter, 15... Optical amplifier, 16... First wavelength multiplexed optical coupler, 17... Second wavelength multiplexed optical coupler, 18... Semiconductor optical amplifier, 21 Iba type amplifier. optical fiber

Claims (3)

【特許請求の範囲】[Claims] (1)複数の波長の光が伝送される主光伝送路に、2個
の合波分波素子を直列に配して、これら合波分波素子間
に波長の数に相当する複数の副伝送路を設け、これらの
副伝送路のそれぞれに上記複数の波長の光をそれぞれ1
つづつ伝送するようにし、かつこれら副伝送路にその伝
送光を光増幅する光増幅器を設けたことを特徴とする波
長多重光伝送路増幅装置。
(1) Two multiplexing/demultiplexing elements are arranged in series on the main optical transmission line through which light of multiple wavelengths is transmitted, and multiple sub-multiplexing/demultiplexing elements corresponding to the number of wavelengths are arranged between these multiplexing/demultiplexing elements. A transmission line is provided, and one beam of each of the plurality of wavelengths is transmitted to each of these sub-transmission lines.
What is claimed is: 1. A wavelength multiplexing optical transmission line amplifying device, characterized in that the sub-transmission lines are provided with optical amplifiers for optically amplifying the transmitted light.
(2)合波分波素子が波長多重型光ファイバカプラであ
る請求項(1)記載の波長多重光伝送路増幅装置。
(2) The wavelength multiplexing optical transmission line amplifier according to claim 1, wherein the multiplexing/demultiplexing element is a wavelength multiplexing type optical fiber coupler.
(3)双方向波長多重光通信を行うものである請求項(
1)または(2)記載の波長多重光伝送路増幅装置。
(3) Claim (
The wavelength multiplexed optical transmission line amplification device according to 1) or (2).
JP2070289A 1990-03-20 1990-03-20 Amplifier device for wavelength multiplex optical transmission line Pending JPH03269522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2070289A JPH03269522A (en) 1990-03-20 1990-03-20 Amplifier device for wavelength multiplex optical transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2070289A JPH03269522A (en) 1990-03-20 1990-03-20 Amplifier device for wavelength multiplex optical transmission line

Publications (1)

Publication Number Publication Date
JPH03269522A true JPH03269522A (en) 1991-12-02

Family

ID=13427175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2070289A Pending JPH03269522A (en) 1990-03-20 1990-03-20 Amplifier device for wavelength multiplex optical transmission line

Country Status (1)

Country Link
JP (1) JPH03269522A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265746A (en) * 1993-01-14 1994-09-22 Nippon Telegr & Teleph Corp <Ntt> Bi-directional multi-wavelength transmission equipment
EP0617527A1 (en) * 1993-03-23 1994-09-28 Nortel Networks Corporation Transmission systems incorporating optical amplifiers
EP0621699A1 (en) * 1993-04-19 1994-10-26 Ascom Tech Ag Optical transmission system with optical fibre amplifiers
JPH07202299A (en) * 1993-12-28 1995-08-04 Nec Corp Optical fiber amplifier for wavelength multiplex transmission
EP0706270A1 (en) * 1994-10-05 1996-04-10 Nortel Networks Corporation Optical amplifiers for wavelength division multiplexed systems
US6097534A (en) * 1996-12-05 2000-08-01 Nec Corporation Optical amplifier system generating high optical output level
US6104848A (en) * 1997-03-04 2000-08-15 Nec Corporation WDM optical transmitter
US6400498B1 (en) 1997-05-29 2002-06-04 Nec Corporation Optical signal repeating and amplifying device and optical level adjusting device
US6404525B1 (en) 1997-07-31 2002-06-11 Nec Corporation Optical add-drop multiplexer
US6587241B1 (en) 1999-08-20 2003-07-01 Corvis Corporation Optical protection methods, systems, and apparatuses

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265746A (en) * 1993-01-14 1994-09-22 Nippon Telegr & Teleph Corp <Ntt> Bi-directional multi-wavelength transmission equipment
EP0617527A1 (en) * 1993-03-23 1994-09-28 Nortel Networks Corporation Transmission systems incorporating optical amplifiers
EP0621699A1 (en) * 1993-04-19 1994-10-26 Ascom Tech Ag Optical transmission system with optical fibre amplifiers
JPH07202299A (en) * 1993-12-28 1995-08-04 Nec Corp Optical fiber amplifier for wavelength multiplex transmission
US5608571A (en) * 1994-10-04 1997-03-04 Northern Telecom Limited Optical amplifiers
EP0706270A1 (en) * 1994-10-05 1996-04-10 Nortel Networks Corporation Optical amplifiers for wavelength division multiplexed systems
US6097534A (en) * 1996-12-05 2000-08-01 Nec Corporation Optical amplifier system generating high optical output level
US6104848A (en) * 1997-03-04 2000-08-15 Nec Corporation WDM optical transmitter
US6400498B1 (en) 1997-05-29 2002-06-04 Nec Corporation Optical signal repeating and amplifying device and optical level adjusting device
US6404525B1 (en) 1997-07-31 2002-06-11 Nec Corporation Optical add-drop multiplexer
US6895183B2 (en) 1997-07-31 2005-05-17 Nec Corporation Optical add-drop multiplexer
US6587241B1 (en) 1999-08-20 2003-07-01 Corvis Corporation Optical protection methods, systems, and apparatuses

Similar Documents

Publication Publication Date Title
US5995259A (en) Bidirectional optical telecommunication system comprising a bidirectional optical amplifier
US5280549A (en) Frequency dependent optical isolator
US5943151A (en) Mehtod of selectively compensating for the chromatic dispersion of optical signals
US5452124A (en) Unidirectional amplification for bi-directional transmission using wavelength-division multiplexing
US7035545B2 (en) Bidirectional multichannel optical telecommunication system
AU699315B2 (en) Amplified telecommunication system for wavelength-division multiplexing transmissions capable of limiting variations in the output power
US6173094B1 (en) Optical-transmission system having a split-gain amplifier and a signal-modifying device
US6188509B1 (en) Simple bidirectional add/drop amplifier module based on a single multiplexer
US20050254819A1 (en) Optical in-line amplifier and wavelength-division multiplexer
EP1246377B1 (en) Optical amplifying and relaying system
JPH03269522A (en) Amplifier device for wavelength multiplex optical transmission line
US6832017B2 (en) Bidirectional add/drop multiplexer and bidirectional add/drop amplifier module for band-split bidirectional networks
WO1995015625A1 (en) Bidirectional optical amplifier
JP3591269B2 (en) Ultra-wideband chromatic dispersion compensation device
JPH07128541A (en) Optical communication transmitter-receiver and optical amplifier
US6175444B1 (en) Bi-directional optical amplifier
EP1304775B1 (en) Dispersion-compensated optical fiber amplifier
JP3468097B2 (en) Ultra-wideband chromatic dispersion compensation / amplification device
JPS63124633A (en) Wide band optical communication system especially for subscriber domain
JP4405250B2 (en) Signal light reflection blocking circuit and optical transmission system
JPH11266205A (en) Light amplification repeater and monitoring method therefor
JP2002009707A (en) Optical transmission system and optical transmission method
JPH0311322A (en) Two-way optical amplifying transmission circuit
RU2172562C2 (en) Bi-directional optical amplifier and manner of bi-directional communication
JP2001223643A (en) Optical amplification repeater and its monitoring method