JPH0326839A - Air-fuel ratio self tuning controller for internal combustion engine - Google Patents

Air-fuel ratio self tuning controller for internal combustion engine

Info

Publication number
JPH0326839A
JPH0326839A JP16077489A JP16077489A JPH0326839A JP H0326839 A JPH0326839 A JP H0326839A JP 16077489 A JP16077489 A JP 16077489A JP 16077489 A JP16077489 A JP 16077489A JP H0326839 A JPH0326839 A JP H0326839A
Authority
JP
Japan
Prior art keywords
fuel
air
amount
fuel ratio
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16077489A
Other languages
Japanese (ja)
Inventor
Toshio Manaka
敏雄 間中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16077489A priority Critical patent/JPH0326839A/en
Publication of JPH0326839A publication Critical patent/JPH0326839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To carry out the air-fuel ratio correction during transient always in good order by determining, correcting or learning the fuel adhesion quantity or fuel adhesion rate from the ratio between the variation value of the detected air-fuel ratio and the variation value of the supplied fuel quantity. CONSTITUTION:In a calculation part 11, the fuel quantity is calculated on the basis of the aimed air-fuel ratio corresponding to the intake air quantity QA and water temperature, and in a calculation part 13, the supplied fuel quantity Te is calculated by the multiplication of the air-fuel ratio correction coefficient, and further the injection pulse Ti is calculated. In a calculation part 16, the learning calculation for the fuel adhesion rate X is performed from the rate between the variation value DELTATe of the supplied fuel quantity and the variation value DELTAA/F of air-fuel ratio, and by an estimation means 12, the liquid film quantity Mf of fuel is estimated from the learning value X, intake air quantity Qa, throttle opening degree thetaTH, engine revolution speed N and water temperature Tw, and the fuel calculation in a calculation part 11 is corrected from the adhesion rate X and the evaporation time constant tau. Thus, the air-fuel ratio correction during transient can be carried out in good order.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本免明は、内燃機関に供給する混合気L/)空燃比の過
渡n3における?ili償lj法に係L』、特1こ内燃
機関の加減速時の窄燃比の制御11向上に関1″/)。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is applicable to a transient n3 of the air-fuel ratio of the air-fuel mixture L/) supplied to an internal combustion engine. Relating to the Ili Compensation Lj Method, Particularly 1) Regarding Improving the Control of Fuel Constriction Ratio During Acceleration and Deceleration of Internal Combustion Engines 1''/).

〔tY″東の技術』 従来の装置は特公11ζ{6148053 IL:記載
のように〜11衡燃料何着駄と{’J着あlの変化速度
を規定すこ)時定数から過鴻゛時の燃料不足hiを池算
(,−て補IFシ5ていた。
[tY'' East technology'' The conventional device is the special public 11ζ {6148053 IL: As described in ~11 Equilibrium fuel consumption and {'J specifies the rate of change of the amount of fuel used] The time constant determines the overheating time. Calculated the fuel shortage of 1 (, - and supplementary IF 5).

〔発明が解決し,,ようとする課題コ −L記従来技術は燃料f・1着斌の具体的な決め方、経
時的な変化について配!改がざれ(−おらず、過渡時の
空燃比補iJ:がJ)好に行えな< IZ:るi+T能
性,があ一っ た。
[Problems to be Solved by the Invention - Section L The prior art does not discuss the specific method of determining the fuel f-1 loading and how it changes over time! There was a change in the air-fuel ratio during the transient period (iJ: was not corrected).

本発明の[1的は−1−―記の燃料イ・1着駄と付n案
のい4ff .t.,、か一方を学習補正すること:″
より過渡時の′)9t燃比補止を’a, ATに行なう
こたにある。
The first aspect of the present invention is the fuel described in -1--1, 1 and 4ff. t. ,, to correct one by learning: ″
9t fuel ratio supplementation should be performed on AT during a more transient period.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は排気管に設けた空燃比センサから検出した空
撚比変動値と燃料{jl:袷喰の蛮11!Ij値から燃
刺−伺若鼠才たは付着率を決定することにより達成ざれ
る。
The above purpose is to calculate the air-twist ratio fluctuation value detected from the air-fuel ratio sensor installed in the exhaust pipe and the fuel {jl: Bokui no Ban 11! This is achieved by determining the degree of penetration or attachment rate from the Ij value.

〔作用〕[Effect]

燃才」付着−駄圭たは付管率の学習は経時的な変化に適
応1,でいくのC.過渡時の空燃比補正がいつ}こ?.
 +>良好に行なえる,. 〔実施例〕 以下、本m明の−実施例5i第1図により説明する。第
J図は本発明の制御ブロック図を示し、たもので、9〕
る。エンジンの吸入ゆ気、tMQAを調整ずるための紋
り弁開度OTHはドライバーによりコンI・ロールされ
,その結果、吸入空気hlQ^,エンジン同転数N,エ
ンジン冷却水温Twが変化する。
C. The ability to adapt to changes over time is adaptive to changes over time. When should the air-fuel ratio be corrected during transient periods? ..
+>Perform well. [Example] This will be explained below with reference to FIG. 1 of Example 5i of the present invention. Figure J shows a control block diagram of the present invention, 9]
Ru. The engine intake air and the opening degree OTH of the engine valve for adjusting tMQA are controlled by the driver, and as a result, the intake air hlQ^, the engine rotational speed N, and the engine cooling water temperature Tw change.

それらはコン1−ロールユ,7ツ1−8に人力され、ブ
「1ツク■2で吸気管に付着している燃刺を表わず液1
摸駄Mi,供給された燃利量から吸気管へ付着する量の
割合S・示寸−付符率X,液膜量M1から蒸発する燃料
の蒸発時定数丁が決定され、ブロック11でそれC)の
値で供給燃利量G( が演算されて、hコ招的にブロッ
ク13゛C噴射バル−、’% 4’l+i ”f’ t
  ( m !;)が訣’pJHされ、インジエクタ6
に出力される。ブロック10の[1漂孕燃比(ハ/F)
。はエンジン冷却水IA ’].” wの関数として決
定され、T w≧80℃では(A / F)o= 1 
4 . 7 (理論空燃比),−20τ:なとの低温域
では(A/F)。=8〜10に設定さ↑1る。ブロック
】−1の式は付着せずにシリンダに流入する燃料量G 
r・(■〜X)と油膜!IIMI から蒸発してシリン
ダに流入する燃科fit−M+ の和がτ シリンダに供給すへき燃科積ΩA/(A/Y’)。に等
し,くなるという考え方から導きだされたものである。
They were manually applied to Con 1-Roll Yu, 7 Tsu 1-8, and liquid 1 did not show the burnt sticks attached to the intake pipe with Bu 1 Tsuku ■ 2.
The evaporation time constant of the evaporated fuel is determined from the amount of fuel Mi, the ratio of the amount of fuel that adheres to the intake pipe from the amount of fuel supplied, the indication rate - the marking rate X, and the amount of liquid film M1, and in block 11 it is determined. The amount of fuel to be supplied G
(m !;) is tip'pJH, and injector 6
is output to. Block 10 [1 drift fuel ratio (Ha/F)
. is the engine coolant IA']. ” is determined as a function of w, and for T w ≥ 80 °C (A / F) o = 1
4. 7 (stoichiometric air-fuel ratio), -20τ: (A/F) in the low temperature range. = set to 8 to 10 ↑1. Block】-1 formula is the amount of fuel G that flows into the cylinder without adhering to it.
r・(■~X) and oil film! The sum of fuel fit-M+ that evaporates from IIMI and flows into the cylinder is τ. The fuel product ΩA/(A/Y') is supplied to the cylinder. This is derived from the idea that it is equal to and becomes.

ブロック】2の液膜推定式は、演算周期Δ′l゛(ms
)毎に計算され、kは現時点,k−1はΔ’r(ms)
前の時点を表わしている。すなわちM i ( k].
 )はΔT(rns)前に?寅算さ才した液+si、G
i(k  t)はΔT(ms)前に演算された供給燃料
量Glである。燃料付着皐Xはエンジン冷却水温Twと
絞り弁開度OTuの関数で決定される値と本発明の付着
率学習補正値ΔXしの和で求められろ。付d率Xは1汲
気管壁面温度′■゛2と吸気管托力P,吸入空気’IQ
^の関数としてもよい,,液膜敗M. i からの燃料
の蒸発時定数ではエンジン冷却水’44 T w とエ
ンジン負荷に相!!1ずるヱンジン1回転当りの吸入空
気ffiQ^/Nの関数で決定される。
The liquid film estimation formula of block]2 has a computation period Δ′l゛(ms
), k is the current time, k-1 is Δ'r (ms)
represents a previous point in time. That is, M i (k].
) before ΔT(rns)? Tora calculation wise liquid + si, G
i(k t) is the supplied fuel amount Gl calculated ΔT (ms) ago. The fuel adhesion X can be determined by the sum of the value determined by the function of the engine coolant temperature Tw and the throttle valve opening OTu and the adhesion rate learning correction value ΔX of the present invention. The attached d rate
It may also be a function of ^, liquid film failure M. The evaporation time constant of fuel from i is in phase with engine cooling water '44 T w and engine load! ! It is determined by the function of intake air ffiQ^/N per engine revolution.

蒸発時定数丁は吸気管壁面温度゛I′つと吸気管圧力P
,吸入空気景Q^の関係としてもよい。ステップ13の
噴射パルス輻計算式において、αはA/Fセンサ:3で
検出された空燃比A / Fが所定の卆燃比にフィード
バック制御するためのλコントロール補正係数で0.5
〜〕.5の範囲の値をとるように設定されている。K1
は供給燃料量α・G(を噴射パルス幅に換算するための
換算係数であり、T8はインジエクタ6の駆動電圧の補
正を行なうための補正パルス幅である。ブロック16は
本発明の燃料付着率Xの学習計算を行なうものであり、
吸入空気ffiQ^の変化dQA/dt  が所定値よ
り小さい場合が絞り弁開JJ!:(Jtnの変化d O
Ts/ d tが所定値より小さい場合に実施される。
The evaporation time constant is determined by the intake pipe wall temperature ゛I' and the intake pipe pressure P.
, the inhalation airscape Q^. In the injection pulse radiance calculation formula in step 13, α is a λ control correction coefficient of 0.5 for feedback controlling the air-fuel ratio A/F detected by the A/F sensor 3 to a predetermined fuel-fuel ratio.
~〕. It is set to take a value in the range of 5. K1
is a conversion coefficient for converting the supplied fuel amount α·G into an injection pulse width, and T8 is a correction pulse width for correcting the drive voltage of the injector 6. Block 16 is a conversion coefficient for converting the supplied fuel amount α·G into an injection pulse width. It performs learning calculations for X,
If the change dQA/dt in intake air ffiQ^ is smaller than a predetermined value, the throttle valve opens JJ! :(Change in Jtn d O
This is performed when Ts/dt is smaller than a predetermined value.

dQA/d tが所定値より小さい場合、サンプリング
期間T3の間の供給燃料iTeの変動値ΔTeと平均値
Teを算出する。供給燃料量Teの変動の結果がA/F
センサ3に検出されるまでの無だ時間Tdはエンジンの
サイクルに起因する時間K N /N KNは定数と吸
入空気JLQ^に起因する時間KQ^/QAKQ^は定
数の和で近似できる。その無駄時間Td経過後、サンプ
リング期間Tsの間の空燃比変動値Δ(A/F)と平均
値(A/F)を算出する。以上の変動値と平均値から変
動比γを算出し、変動比γと絞り弁開度BTHの関数で
決定される付着率の学習値Xt,を求め、X < X 
Lの場合は現在,Xの計算に使用されている学習値ΔX
 L J − 1(Tw,θTH)に補正分aを加算し
、最新の学習値ΔXLJとする。X > X t,の場
合は現在、Xの計算に使用されている学習値△X.+.
,−t(Tw, (JTH)に補正分aを減算して、最
新の学習値ΔX i. aとする。
If dQA/dt is smaller than a predetermined value, a fluctuation value ΔTe and an average value Te of the supplied fuel iTe during the sampling period T3 are calculated. The result of variation in supplied fuel amount Te is A/F
The idle time Td until detection by the sensor 3 is approximated by the sum of the time K N /N caused by the engine cycle, where KN is a constant and the time KQ^/QAKQ^ caused by the intake air JLQ^ is a constant. After the dead time Td has passed, the air-fuel ratio fluctuation value Δ(A/F) and the average value (A/F) during the sampling period Ts are calculated. Calculate the fluctuation ratio γ from the above fluctuation value and average value, find the learned value Xt of the adhesion rate determined by the function of the fluctuation ratio γ and the throttle valve opening BTH, and find X < X
In the case of L, the learning value ΔX currently used to calculate X
The correction amount a is added to L J − 1 (Tw, θTH) to obtain the latest learned value ΔXLJ. If X > X t, the learning value △X. currently used for calculating X. +.
, -t(Tw, (JTH)) by subtracting the correction amount a to obtain the latest learned value ΔX i.a.

ΔX L Jは学習値が演算されたエンジン冷却水温T
Wと絞り弁開度θTllに対応したメモリ一番地に記憶
される。学習値ΔXLはエンジン冷却水温Twと絞り弁
開度OTHで分割されるメモリー領域に記憶されるが、
そのメモリー領域は吸気管壁面温度T.と吸気管圧力P
で分割してもよい。
ΔX L J is the engine coolant temperature T for which the learning value was calculated.
It is stored in the first memory location corresponding to W and the throttle valve opening θTll. The learned value ΔXL is stored in a memory area divided by the engine coolant temperature Tw and the throttle valve opening OTH.
The memory area is the intake pipe wall temperature T. and intake pipe pressure P
You can also divide it by

第2図に本発明の他の実施例を示す。ブロック2工の燃
料計算式は供給燃料量G,は吸入空気量Q^から計算さ
れる燃料Q^/(A/F)。と液膜量? の単位時間当りの増加量−(Mzo  M■)の和で求
τ められる考え方から導きだされた式である。ここで、M
 ( 0は平衡液膜量,Mnは現在、変化しつつある現
在の液膜量,τは平衡液膜量M t oに到達する速さ
を示す液膜時定数である。ブロック22の液膜推定式は
演算周期ΔT(ms)毎に計算され、kは現時点、k−
1はΔT(ms)前の時点を表わしている。平衡液膜H
 Mz。はエンジン冷却水温Tw,エンジン回転数N,
エンジン負荷を示すエンジン1回転当りの吸入空気量Q
^/Nの関数で決定される値と液膜量の学習値ΔMto
Lの和で求められる。液膜時定数τはエンジン冷却水温
Twとエンジン負荷を示すエンジン1回転当りの吸入空
気量Q^/Nの関数で求められる。Tw,Q^/Nの代
わりに吸気管壁面温度T ,,吸気管圧力Pを用いても
よい。ブロック26は本発明の平衡液膜量Mzo(吸気
管壁面への付着量)の学習計算を行なうものである。吸
入空気量Q^の変化dQ^/dtが所定値より小さい場
合か絞り弁開度f3THの変化d aTo/ d tが
所定値より小さい場合、サンプリング期間Tsの間のΔ
T e , T a ,Δ(A/F),(A/F),γ
を演算するのは第1図のブロック16と同じである。変
動比γから平衡液膜量の学習値MioLを求める。M 
x Q Lは変動比γの関係としたが、変動比と吸入空
気量Q^,吸気管圧力Pの関数としてもよい。M t 
o < M x Q Lの場合は、現在、M1oの計算
に使用されている学習値ΔMzoLJ−t?値ΔMlo
LJとする。M x o > M i o Lの場合は
現花、M 1 oの計算に使用されている学習値ΔM■
。LJ−1習値ΔMt..,,とする。ΔM i O 
L Jはエンジン冷却水温Twとエンジン回転数N,エ
ンジン負前を示すQ^ エンジン1回転当りの吸入空気量一で分割されN るメモリー領域に記憶されるが、そのメモリー領域は吸
気管壁面温度T.と吸気管圧力P,エンジン回転数Nで
分割してもよい。第3図と第4図は供給燃料量Te=α
・G,の変動に対する空燃比A/Fの変動の様子を示し
たものである。第3図は吸気管壁面への燃料付着が少な
い場合で、A/Fセンサ6の検出遅れ時間(無駄時間)
後の空燃.比変動はTeの変動と同じ形状である。第4
図は吸気管壁面l\の燃料付着が多い場合で、空燃比変
動はなまってしまい、小さな変動幅となっている。
FIG. 2 shows another embodiment of the invention. The fuel calculation formula for Block 2 is the supplied fuel amount G, and the fuel Q^/(A/F) calculated from the intake air amount Q^. and liquid film amount? This is a formula derived from the idea that τ is determined by the sum of the increase amount per unit time - (Mzo M■). Here, M
(0 is the equilibrium liquid film amount, Mn is the current liquid film amount that is currently changing, and τ is the liquid film time constant indicating the speed at which the equilibrium liquid film amount M to is reached. Liquid film in block 22 The estimation formula is calculated every calculation period ΔT (ms), and k is the current time, k-
1 represents a time point ΔT (ms) before. equilibrium liquid film H
Mz. are engine cooling water temperature Tw, engine speed N,
Intake air amount Q per engine revolution indicating engine load
The value determined by the function of ^/N and the learned value ΔMto of the liquid film amount
It can be found by the sum of L. The liquid film time constant τ is determined as a function of the engine cooling water temperature Tw and the intake air amount Q^/N per engine revolution, which indicates the engine load. The intake pipe wall temperature T, and the intake pipe pressure P may be used instead of Tw and Q^/N. Block 26 is for performing a learning calculation of the equilibrium liquid film amount Mzo (the amount of adhesion to the intake pipe wall surface) of the present invention. If the change dQ^/dt in the intake air amount Q^ is smaller than a predetermined value, or if the change daTo/dt in the throttle valve opening f3TH is smaller than a predetermined value, Δ during the sampling period Ts
T e , T a , Δ(A/F), (A/F), γ
The calculation of is the same as block 16 in FIG. A learned value MioL of the equilibrium liquid film amount is determined from the fluctuation ratio γ. M
Although x Q L is related to the variation ratio γ, it may also be a function of the variation ratio, the intake air amount Q^, and the intake pipe pressure P. Mt
If o < M x Q L, the learning value ΔMzoLJ-t? currently used to calculate M1o? Value ΔMlo
Let's call it LJ. If M x o > M i o L, the actual flower, the learning value ΔM used to calculate M 1 o
. LJ-1 learned value ΔMt. .. ,,. ΔM i O
L J is divided by the engine cooling water temperature Tw, the engine rotation speed N, and the engine negative front Q^, which is the amount of intake air per engine revolution. T. It may be divided by the intake pipe pressure P and the engine speed N. Figures 3 and 4 show the amount of supplied fuel Te=α
・This shows how the air-fuel ratio A/F changes with respect to the change in G. Figure 3 shows a case where there is little fuel adhering to the intake pipe wall, and the detection delay time (dead time) of the A/F sensor 6.
Later air fuel. The ratio variation has the same shape as the Te variation. Fourth
The figure shows a case where there is a lot of fuel adhering to the intake pipe wall surface l\, and the air-fuel ratio fluctuations are rounded and have a small fluctuation range.

第5図は燃料付着率Xの学習値X+.の特性図で,変動
比γ=1は供給燃料量の変動分ΔT c /TeK空燃
比の変動分Δ(A/F)/(A/F)が等しいことを表
わし、燃料付着が全くないことを意味する。γが1より
小さい部分、例えば0.1〜0.2 は供給燃料量の変
動の割には空燃比変動がたいへん少ないことを表わし、
燃料付着が多いことを意味する。第G図は平衡液膜琥M
,。の学習値M x o +、の持性図である。第7図
は本発明のシステム図である。エンジン9に配設された
エアフローセンサ7,回転センサ5,水温センサ4,A
/I=”センサ3,スロツ1へルセンサ2により、吸入
空低FiQA.エンジン回転数N,エンジン冷却水温T
w,空燃比A/F,絞り弁開度OT■を検出し,コント
ロールユニット8で演算された燃料噴射パルス幅T i
がインジエクタ6に出力される。第8図はインジエクタ
6から供給される?8料の噴射の様子を示したものであ
る。燃料は角度α゜で広がり、吸気バルブ付近に噴射さ
れるため、その燃料の一部は吸気バルブや吸気管壁面に
付着する。その結果、シリンダ内に実際に吸入される燃
料は少なくなり、加速時に失火が発生し、運転性をそこ
なうことがある。この付着量は吸気バルブ付近へのカー
ボン等の付着により経時的に増加方向にありその分の修
正が必要である。本発明によればその修正が良好に行な
える。
FIG. 5 shows the learned value X+ of the fuel adhesion rate X. In the characteristic diagram, the variation ratio γ = 1 indicates that the variation in the amount of supplied fuel ΔT c /TeK air-fuel ratio variation Δ(A/F)/(A/F) is equal, and there is no fuel adhesion at all. means. A portion where γ is less than 1, for example 0.1 to 0.2, indicates that the air-fuel ratio fluctuation is very small compared to the fluctuation in the amount of supplied fuel.
This means that there is a lot of fuel adhesion. Figure G shows the equilibrium liquid film M
,. It is a property diagram of the learned value M x o +. FIG. 7 is a system diagram of the present invention. Air flow sensor 7, rotation sensor 5, water temperature sensor 4, A arranged in engine 9
/I=”Sensor 3, slot 1 health sensor 2 detects intake air low FiQA.Engine speed N, engine coolant temperature T
w, air-fuel ratio A/F, and throttle valve opening OT■ are detected, and the fuel injection pulse width T i is calculated by the control unit 8.
is output to the injector 6. 8 is supplied from injector 6? This figure shows the injection of 8 materials. Since the fuel spreads at an angle α° and is injected near the intake valve, a portion of the fuel adheres to the intake valve and intake pipe wall. As a result, less fuel is actually drawn into the cylinder, which may cause misfire during acceleration, impairing drivability. This amount of adhesion tends to increase over time due to the adhesion of carbon, etc. near the intake valve, and it is necessary to correct it accordingly. According to the present invention, this correction can be performed satisfactorily.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、噴射された燃料の付着量の割合(付着
率)を学習できるので、過渡時の空燃比補正が良奸に行
なえる。
According to the present invention, since the ratio of the adhesion amount of injected fuel (adhesion rate) can be learned, the air-fuel ratio correction during transient times can be performed in a proper manner.

【図面の簡単な説明】[Brief explanation of drawings]

第上図,第2図は本発明の一実施例の制御ブロック図、
第3図,第4図は供給燃料量の変動と空燃比の変動の様
子を示した説明図、第5図は燃料付a率Xの学習値の特
性図、第6図は平衡液膜量M r oの学習値の特性図
,第7図は本発明のシステム図、第8図は燃料噴射状況
の説明図である。 2・・・スロットルセンサ,3・・A/Fセンサ,5・
・・回転センサ、6・・・インジエクタ、7・・・エア
フロー第3口 第4図
Figures 1 and 2 are control block diagrams of an embodiment of the present invention.
Figures 3 and 4 are explanatory diagrams showing the fluctuations in the amount of supplied fuel and the fluctuations in the air-fuel ratio, Figure 5 is a characteristic diagram of the learned value of the fueled a ratio X, and Figure 6 is the equilibrium liquid film amount. A characteristic diagram of the learned value of M r o , FIG. 7 is a system diagram of the present invention, and FIG. 8 is an explanatory diagram of the fuel injection situation. 2... Throttle sensor, 3... A/F sensor, 5...
... Rotation sensor, 6... Injector, 7... Air flow 3rd port Fig. 4

Claims (1)

【特許請求の範囲】 1、内燃機関の吸入空気量とエンジン負荷を示すパラメ
ータのいずれか一方とエンジン回転数を検出し、該検出
値に応じた燃料量を演算し、機関へ供給する燃料供給手
段と排気系に設けた空燃比検出手段を備え、吸気管壁、
機関の吸気バルブに付着する燃料の付着量と供給された
燃料量に対する付着量の比(燃料付着率)のいずれか一
方の値から過渡時の燃料供給量を補正する内燃機関の空
燃比セルフチューニング制御装置において、排気系に設
けた空燃比検出手段より検出される空燃比の変動値と供
給燃料量の変動値の比率から燃料の付着量と燃料付着率
のいずれか一方を決定、修正または学習することを特徴
とする内燃機関の空燃比セルフチューニング制御装置。 2、請求項1記載において、燃料の付着量と燃料付着率
は所定期間の空燃比変動率(平均値に対する変動幅の比
率) ▲数式、化学式、表等があります▼ と供給燃料量変動率(平均値に対する変動幅の比率) ▲数式、化学式、表等があります▼ の比の関数として決定されることを特徴とする内燃機関
の空燃比セルフチューニング制御装置。 (A/F)i;i番目の空燃比のサンプル値(@A/F
@);所定期間の空燃比の平均値n;空燃比測定のサン
プル数 Tek;k番目の供給燃料量 @T@e;所定期間の供給燃料量の平均値 m;供給燃料量のサンプル数
[Claims] 1. Detecting either the intake air amount of the internal combustion engine, a parameter indicating the engine load, and the engine speed, calculating the fuel amount according to the detected value, and supplying fuel to the engine. and an air-fuel ratio detection means provided in the exhaust system,
Air-fuel ratio self-tuning for internal combustion engines that corrects the amount of fuel supplied during transient periods based on either the amount of fuel adhering to the engine's intake valves or the ratio of the amount of adhering to the amount of fuel supplied (fuel adhesion rate). In the control device, either the amount of fuel adhesion or the fuel adhesion rate is determined, corrected, or learned from the ratio of the fluctuation value of the air-fuel ratio detected by the air-fuel ratio detection means provided in the exhaust system and the fluctuation value of the supplied fuel amount. An air-fuel ratio self-tuning control device for an internal combustion engine, characterized in that: 2. In claim 1, the fuel adhesion amount and fuel adhesion rate are defined as the air-fuel ratio fluctuation rate (ratio of fluctuation range to the average value) over a predetermined period ▲There are mathematical formulas, chemical formulas, tables, etc.▼ and the supply fuel amount fluctuation rate ( An air-fuel ratio self-tuning control device for an internal combustion engine, characterized in that the air-fuel ratio is determined as a function of the ratio of the range of variation to the average value) ▲There are mathematical formulas, chemical formulas, tables, etc.▼. (A/F)i; i-th air-fuel ratio sample value (@A/F
@); Average value of the air-fuel ratio for a predetermined period n; Number of samples for air-fuel ratio measurement Tek; Kth supplied fuel amount @T@e; Average value of the supplied fuel amount for a predetermined period m; Number of samples of the supplied fuel amount
JP16077489A 1989-06-26 1989-06-26 Air-fuel ratio self tuning controller for internal combustion engine Pending JPH0326839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16077489A JPH0326839A (en) 1989-06-26 1989-06-26 Air-fuel ratio self tuning controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16077489A JPH0326839A (en) 1989-06-26 1989-06-26 Air-fuel ratio self tuning controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0326839A true JPH0326839A (en) 1991-02-05

Family

ID=15722165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16077489A Pending JPH0326839A (en) 1989-06-26 1989-06-26 Air-fuel ratio self tuning controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0326839A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582085A2 (en) * 1992-07-03 1994-02-09 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system and cylinder air flow estimation method in internalcombustion engine
US5499706A (en) * 1993-12-30 1996-03-19 Unisia Jecs Corporation Viscous fluid clutch with auxiliary reservoir
US5803221A (en) * 1995-10-30 1998-09-08 Unisia Jecs Corporation Viscous fluid clutch

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582085A2 (en) * 1992-07-03 1994-02-09 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system and cylinder air flow estimation method in internalcombustion engine
US5448978A (en) * 1992-07-03 1995-09-12 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system and cylinder air flow estimation method in internal combustion engine
EP0582085A3 (en) * 1992-07-03 1997-08-06 Honda Motor Co Ltd Fuel metering control system and cylinder air flow estimation method in internalcombustion engine
EP0959236A2 (en) * 1992-07-03 1999-11-24 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system and cylinder air flow estimation method in internal combustion engine
EP0959236A3 (en) * 1992-07-03 2000-10-04 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system and cylinder air flow estimation method in internal combustion engine
US5499706A (en) * 1993-12-30 1996-03-19 Unisia Jecs Corporation Viscous fluid clutch with auxiliary reservoir
US5803221A (en) * 1995-10-30 1998-09-08 Unisia Jecs Corporation Viscous fluid clutch

Similar Documents

Publication Publication Date Title
JPH0363654B2 (en)
JPH01182552A (en) Device for controlling adaption of air-fuel ratio
JPH0253615B2 (en)
JPS627374B2 (en)
JPH01267338A (en) Adaptive air-fuel ratio control device for internal combustion engine
US5931136A (en) Throttle control device and control method for internal combustion engine
JPS63143348A (en) Fuel injection controller
US6708681B2 (en) Method and device for feedback controlling air-fuel ratio of internal combustion engine
JPH01100334A (en) Fuel supply control device for internal combustion engine
JPH0326839A (en) Air-fuel ratio self tuning controller for internal combustion engine
JP4107305B2 (en) Engine air-fuel ratio control device
JPH08121211A (en) Fuel control device for internal combustion engine
JP2754744B2 (en) Fuel injection amount control device for internal combustion engine
JPH0357861A (en) Intake air temperature detecting device for internal combustion engine
JPS63295832A (en) Air-fuel ratio control device for electronically controlled fuel-injection internal combustion engine
JPH0686831B2 (en) Air-fuel ratio learning controller for internal combustion engine
JP2627798B2 (en) Intake pressure detection device for internal combustion engine
JP2509020Y2 (en) Fail-safe device of mixed fuel supply control device
JPH1136943A (en) Air-fuel ratio control device for engine
JPH02271041A (en) Intake-air temperature detecting device of internal combustion engine
JP4135279B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62261629A (en) Air-fuel ratio control method for internal combustion engine
JPH01130033A (en) Air-fuel ratio controlling method for internal combustion engine
JPH03179230A (en) Intake pressure detector for internal combustion engine
JPH04228855A (en) Output sensitivity correcting method for combustion pressure sensor