JPH03266426A - Formation of molybdenum pattern - Google Patents

Formation of molybdenum pattern

Info

Publication number
JPH03266426A
JPH03266426A JP6436290A JP6436290A JPH03266426A JP H03266426 A JPH03266426 A JP H03266426A JP 6436290 A JP6436290 A JP 6436290A JP 6436290 A JP6436290 A JP 6436290A JP H03266426 A JPH03266426 A JP H03266426A
Authority
JP
Japan
Prior art keywords
film
sputtering
deposited
molybdenum
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6436290A
Other languages
Japanese (ja)
Inventor
Kinya Kato
加藤 謹矢
Tsutomu Wada
力 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6436290A priority Critical patent/JPH03266426A/en
Publication of JPH03266426A publication Critical patent/JPH03266426A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To enable a molybdenum (Mo) film to be taper-etched in excellent step coverage by a method wherein the Mo film deposited under compression stress is processed using hydrogen peroxide. CONSTITUTION:A molybdenum film (Mo film) deposited under compression stress is processed using hydrogen peroxide. That is, when the Mo film is deposited meeting the low gas pressure requirements not exceeding 1 Pa using Ne as sputtering gas (d), the Mo film is deposited under the inner stress (b) displaying the compression stress. Furthermore, when the Mo film is deposited under the compression stress, the columnar structure peculiar to a sputter film is destroyed by recoil ion collision to bring an amorphous phase inside the Mo film, thereby enabling the Mo film to be taper-etched by using the etching process at low etching rate in the amorphous phase. Through these procedures, the Mo film can be taper-etched in excellent controllability using the wet etching process.

Description

【発明の詳細な説明】 〈産業上の利用公費〉 本発明は、モリブデンパタンの形成方法に関し、モリブ
デンパタンを形成するに際し、特に段差被覆性に優れた
テーパ加工を施すことができるように工夫したものであ
る。
[Detailed Description of the Invention] <Industrial Utilization Public Expenses> The present invention relates to a method for forming a molybdenum pattern, and is devised so that taper processing with particularly excellent step coverage can be performed when forming the molybdenum pattern. It is something.

〈従来の技術〉 一般にモリブデン(Mo)等の高融点金属膜は、LSI
等の半導体集積回路や薄膜トランジスタ(TPT)等を
用いた薄膜デバイスのゲート電極材料や配線材料として
広く用いられている。
<Prior art> Generally, high melting point metal films such as molybdenum (Mo) are used in LSI
It is widely used as a gate electrode material or wiring material for semiconductor integrated circuits such as , thin film devices using thin film transistors (TPT), etc.

従来においては、Mo等の高融点金属膜の形成の際アル
ゴン(Ar)をスパッタガスとして用い、スパッタ法で
堆積すると、選択配向を示し基板に垂直な柱状組織(C
olu■nerStrueture)が形成されるため
、配線パタンに加工するとパタンエツジが、この構造を
反映して垂直ないしオーバハング状となる欠点があった
Conventionally, when forming a high melting point metal film such as Mo, argon (Ar) is used as a sputtering gas and when deposited by sputtering, a columnar structure (C
Since this structure is formed, when processed into a wiring pattern, the pattern edges become vertical or overhanging, reflecting this structure.

これは、Arをスパッタガスとして用いてMo膜を形成
する場合、体心立方格子(bee)の金属膜を堆積する
と、最稠密面(110)を基板に平行とした<110>
配向のMo膜が得られることに起因している。すなわち
この最稠密面(110)は、最も原子密度の高い面で、
エツチング速度が小さいことが知られているので、Ar
で堆積した<110>配向のMo膜では、最稠密な(1
10)面が表面および等砥面として垂直な面とに現れる
ため、上記した膜構造と共に垂直なエツチング形状が生
じたと考えられる。
When forming a Mo film using Ar as a sputtering gas, when depositing a body-centered cubic lattice (bee) metal film, the closest packed plane (110) is parallel to the substrate <110>
This is due to the fact that an oriented Mo film is obtained. In other words, this most densely packed plane (110) is the plane with the highest atomic density,
Since the etching speed is known to be low, Ar
In the <110> oriented Mo film deposited at
10) Since the plane appears on the surface and the perpendicular plane as a uniformly polished plane, it is thought that a vertical etched shape was generated together with the above-mentioned film structure.

このため、Moパタン上に絶縁膜を堆積し、2層目配線
を形成する場合、Moパタンのパタンエツジ上の絶縁膜
ないし2層目配線の段差被覆性が悪く、絶縁不良や2層
目配線の断線を生じ易い欠点があった。
For this reason, when depositing an insulating film on the Mo pattern to form a second layer wiring, the step coverage of the insulating film on the pattern edge of the Mo pattern or the second layer wiring is poor, resulting in poor insulation and the formation of the second layer wiring. There was a drawback that wire breakage was likely to occur.

この問題を解決する方法として、本発明者らは、先に特
開昭61−170561号公報(特願昭60−1107
6号)において、ネオン(Ne)をスパッタガスに用い
て、<111>配向したMo膜を形成する方法を提案し
た。
As a method to solve this problem, the present inventors previously published Japanese Patent Application Laid-Open No. 170561/1982 (Japanese Patent Application No. 1107/1982).
No. 6) proposed a method of forming a <111> oriented Mo film using neon (Ne) as a sputtering gas.

本方法は、Neをスパッタガスに用い、1Paす上の高
ガス圧側でMo膜の堆積を行うと、<111>配向のM
o膜が得られることを開示するものである。すなわち、
<111>配向Mo膜では、エツチング速度の遅い最稠
密面が基板に対し斜めに存在するため、従来のようなA
rで堆積した<110>配向Mo膜と加工特性が異なる
ため、反応性ドライエツチング法でテーパ状に加工する
ことが可能となった。
In this method, when a Mo film is deposited at a high gas pressure of 1 Pa using Ne as a sputtering gas, the <111> oriented M
It is disclosed that an o film can be obtained. That is,
In the <111> oriented Mo film, the closest packed plane with a slow etching rate exists obliquely to the substrate, so the conventional A
Since the processing characteristics are different from those of the <110> oriented Mo film deposited by r, it became possible to process it into a tapered shape using the reactive dry etching method.

〈発明が解決しようとする課題〉 しかしながら、上述したNoをスパッタガスとして用い
てIPm以上のガス圧で得られた<111>配向Mo膜
の加工特性を詳細に調へてみると、反応性ドライエツチ
ング法では、上述したようにテーパ加工は可能であるが
、過酸化水素水(H20□)を用いた簡易なウェットエ
ツチング法では、過剰にエツチングを行わないと(いわ
ゆるオーバーエツチング)1良好なテーパ加工特性を示
さず、エツチング時間の設定や形状のコントロールが難
しいという欠点が生じている。
<Problems to be Solved by the Invention> However, when we examine in detail the processing characteristics of the <111> oriented Mo film obtained using the above-mentioned No as a sputtering gas at a gas pressure of IPm or higher, we find that the reactive drying With the etching method, taper processing is possible as described above, but with the simple wet etching method using hydrogen peroxide (H20□), if excessive etching is not performed (so-called over-etching), a good taper cannot be obtained. The drawback is that it does not exhibit any processing characteristics, and it is difficult to set the etching time and control the shape.

本発明は以上述べた亭情に艦み、ウェットエツチング法
で制御性よく良好なテーパ加工可能なモリブデンパタン
の形成方法を提供することを目的とする。
In view of the above-mentioned circumstances, it is an object of the present invention to provide a method for forming a molybdenum pattern that can be tapered with good controllability using a wet etching method.

く課題を解決するための手段〉 前記目的を達成するために本発明者らは鋭意研究を重ね
た結果、Noをスパッタガスとして堆積したMo膜の構
造を調べて行くと、1Pa以上のガス圧では前述したよ
うに明瞭なく111>配向を示すが、1Pa未満ではア
モルファス相を含んだ<110>配向のM。
Means for Solving the Problems In order to achieve the above object, the inventors of the present invention have conducted extensive research, and as a result of investigating the structure of a Mo film deposited using No as a sputtering gas, it was found that a gas pressure of 1 Pa or higher was found. As mentioned above, M clearly shows the 111> orientation, but at less than 1 Pa, the M has the <110> orientation including an amorphous phase.

膜が得られることを知見した。さらにこの1Pa未満の
低ガス圧側で堆積した<110>配向のMo膜は、ジャ
ストエツチングで約45゜以下のテーパ角の加工ができ
ることも知見した。
It was found that a film could be obtained. Furthermore, it has been found that a <110> oriented Mo film deposited at a low gas pressure of less than 1 Pa can be processed to a taper angle of about 45° or less by just etching.

本発明は、上記知見に基づくもので、従来技術が<11
1>配向を使用するのに対し、本発明は<111>配向
ではなく、アモルファス相を含む<110>配向を用い
る点が異なり、エツチング終了判定が容易なジャストエ
ツチングで良好なテーパ加工可能な本発明に係るモリブ
デンパタンの形成方法を完成した。
The present invention is based on the above knowledge, and the conventional technology is <11
1> orientation, whereas the present invention uses a <110> orientation containing an amorphous phase rather than a <111> orientation, and the present invention is different in that it uses a <110> orientation that includes an amorphous phase, and it is possible to perform a good taper process by just etching, which makes it easy to determine the end of etching. A method for forming a molybdenum pattern according to the invention has been completed.

かかる本発明のモリブデンパタンの形成方法の構成は、
スパッタ法により堆積したモリブデン膜をパタン化する
モリブデン膜の形成方法において、圧縮応力状態下にモ
リブデン膜を堆積した後、過酸化水素水を用いて加工す
ることを特徴とする。
The structure of the method for forming a molybdenum pattern of the present invention is as follows:
A method for forming a molybdenum film in which a molybdenum film deposited by sputtering is patterned is characterized in that the molybdenum film is deposited under compressive stress and then processed using hydrogen peroxide solution.

息下、本発明の詳細な説明する。The present invention will now be described in detail.

本発明で、圧縮応力状態下にモリブデン膜(Mo膜)を
堆積するとは、スパッタガスとして例えばNeを用い、
このスパッタガスのガス圧を1Pa以下の低ガス圧条件
にて、M。
In the present invention, depositing a molybdenum film (Mo film) under a compressive stress state means using, for example, Ne as a sputtering gas,
The gas pressure of this sputtering gas was set to 1 Pa or less under low gas pressure conditions.

膜を堆積させると、該Mo膜の内部応力が圧縮応力を示
すように堆積していくことをいう。
This means that when a film is deposited, the internal stress of the Mo film exhibits compressive stress.

ここでスパッタガスとしては上記Neに限定されず、N
oを主成分としたガスに例えばAr、Kr、Xs、Rn
等の不活性ガスを混合し?:w!i合ガスを用いてもよ
い。この場合の混合比は、No/Ne十不活性ガスの比
率が70%す上とするのが好ましい。
Here, the sputtering gas is not limited to the above Ne, but is N
For example, Ar, Kr, Xs, Rn, etc.
Mix inert gas such as? :w! i gas may also be used. In this case, the mixing ratio is preferably 70% or more of No/Ne and inert gas.

乙のようにMo膜を圧縮応力状態下に堆積すると、反跳
イオンの衝突により、スパッタ膜特有の柱状構造が崩さ
れ、膜の内部にアモルファス相を生じ、このアモルファ
ス相の工、チング速度が遅いエツチング法を用いること
により、従来技術では容易でなかったMo膜のテーパエ
ツチングが可能となる。
When a Mo film is deposited under compressive stress as shown in Part 2, the columnar structure peculiar to the sputtered film is destroyed by the collision of recoil ions, creating an amorphous phase inside the film, and the processing and ching rate of this amorphous phase increases. By using the slow etching method, taper etching of the Mo film, which was not easy with the prior art, becomes possible.

このアモルファス相を含むMo膜をスパッタ法で簡易に
形成するには、上述したように反跳イオンの衝撃を増加
させスパッタ膜特有の柱状構造を壊せばよい。このよう
にすると、膜の応力は当然圧縮状態になる。すなわち、
アモルファス相の存在と圧縮応力とは表裏一体の関係に
ある。この状態を実現するには、低質量のスパッタガス
を用いるのがよい。
In order to easily form a Mo film containing this amorphous phase by sputtering, the columnar structure peculiar to the sputtered film can be destroyed by increasing the impact of recoil ions as described above. In this way, the stress in the film naturally becomes compressive. That is,
The existence of an amorphous phase and compressive stress are two sides of the same coin. To achieve this condition, it is preferable to use a low mass sputtering gas.

また、基板に負のバイアスを印加し、反跳イオンを基板
方向に加速し、散乱の効果を取り除いても良いことは明
らかである。
It is also obvious that a negative bias may be applied to the substrate to accelerate the recoil ions toward the substrate to remove the scattering effect.

本発明では、スパッタガスとして上述したようにNoを
主として用いるが、これは後述する実施例で示すように
、容易に圧縮応力のMo膜が得られるとともに、膜堆積
速度がArの嘘程度で実用的なためと、バイアス印加が
不用で装置改造を伴うことなく実行できる実用上の利点
があるためである。
In the present invention, No is mainly used as the sputtering gas as described above, but as shown in the examples described later, it is easy to obtain a Mo film with compressive stress, and the film deposition rate is about the same as that of Ar, making it practical. This is because it has the practical advantage of not requiring bias application and requiring no equipment modification.

エツチング液としては、本発明では過酸化水素水を用い
るが、アモルファス相のエツチング速度が小さければよ
く、本発明はこれに限定されるものではない。
As the etching solution, hydrogen peroxide solution is used in the present invention, but the present invention is not limited to this as long as the etching rate of the amorphous phase is low.

く実 施 例〉 つぎに、実施例及び比較例に基づいて、本発明の内容を
具体的に説明する。
EXAMPLES Next, the content of the present invention will be specifically explained based on Examples and Comparative Examples.

[実施例1] 5インチ×15インチの高周波(RF)プレナマグネト
ロン電極を有するスパッタ装置により、Mo膜を堆積し
た。
Example 1 A Mo film was deposited using a sputtering device with a 5 inch x 15 inch radio frequency (RF) planar magnetron electrode.

使用装置は円筒形の基板ホルダを持ち、基板ホルダは装
置中央を回転軸として回転する。
The device used has a cylindrical substrate holder, and the substrate holder rotates around the center of the device as an axis of rotation.

したがって、基板ホルダ上の基板には、基板がターゲッ
ト近傍を通過する時Mo膜が堆積される。ターゲットと
基板とは対向位置で50閣である。
Therefore, a Mo film is deposited on the substrate on the substrate holder when the substrate passes near the target. The target and the board are in opposing positions at 50 degrees.

また、ターゲットには99.9%以上のM。In addition, the target contains M of 99.9% or more.

板を用いた。基板には0.1μmの熱酸化膜を形成した
(100)Siウェハを用いた。スパッタガスには高純
度Noを用いた。
A board was used. A (100) Si wafer on which a 0.1 μm thermal oxide film was formed was used as the substrate. High purity No was used as the sputtering gas.

上記装置を用い、約2xlOPa以下に真空排気したの
ち、スパッタガスNeを導入し、スパッタ電力2  K
Wで膜厚的100 nmのM。
Using the above equipment, after evacuation to approximately 2xlOPa or less, sputtering gas Ne was introduced and the sputtering power was 2K.
M with a film thickness of 100 nm using W.

膜を堆積した。A film was deposited.

このような条件下で、スパッタリングのガス圧を変化さ
せて、菖々のMo膜を堆積し、それらに過酸化水素水を
用いてウェットエツチング法でエツチングし、それらの
断面形状を調べた。
Under such conditions, the sputtering gas pressure was varied to deposit irises of Mo films, which were then etched by wet etching using hydrogen peroxide solution to examine their cross-sectional shapes.

この結果、スパッタリングのガス圧が1Pa未満の低ガ
ス圧側では、ジャストエツチング条件で約45°以下の
テーパ角を示す良−好なテーパ加工ができ、さらにオー
バエツチングを行なうとテーパ角が低下していった。
As a result, on the low gas pressure side of sputtering gas pressure of less than 1 Pa, good taper processing with a taper angle of approximately 45° or less can be achieved under just etching conditions, and when overetching is performed, the taper angle decreases. It was.

一方、スパッタリングのガス圧が1Pa以上の高ガス圧
側では、従来と同様<111>配向を示し、エツチング
が丁度終了するジャストエツチング条件では断面が垂直
になるが、更にエツチングを進めてゆくと徐々にテーパ
状になっていき、ジャストエツチングの約倍のオーバエ
ツチングを行なうとテーパ状になった。
On the other hand, when the sputtering gas pressure is on the high gas pressure side of 1 Pa or more, it shows the <111> orientation as before, and under the just-etching conditions where etching has just finished, the cross section becomes vertical, but as the etching progresses further, it gradually changes. It gradually became tapered, and when overetching was performed about twice as much as just etching, it became tapered.

第1図はスパッタガス圧Pと後に述べる膜の内部応力σ
の関係を示したもので、図中にジャストエツチング条件
でのMoパタン断面形状の模式図を示す。Noをスパッ
タガスとして用いた場合、Mo膜の圧縮応力を示す領域
でテーパ加工が得られているのが分かる。
Figure 1 shows the sputtering gas pressure P and the internal stress σ of the film, which will be described later.
The figure shows a schematic diagram of the cross-sectional shape of a Mo pattern under just etching conditions. It can be seen that when No is used as the sputtering gas, taper processing is obtained in the region of the Mo film exhibiting compressive stress.

本実施例で得られたNoで堆積したMo膜の構造を反射
高速電子線回折(RIl[EED)で調べてみると、前
述したように低ガス圧で堆積したMo膜は、<110>
配向を示す回折パタンとともにアモルファス相を示すハ
ローが重畳しているのに対し、高ガス圧で堆積したM。
When the structure of the Mo film deposited with No obtained in this example was investigated by reflection high-energy electron diffraction (RII [EED)], it was found that the Mo film deposited at low gas pressure had <110>
While the halo indicating the amorphous phase is superimposed on the diffraction pattern indicating the orientation, M deposited under high gas pressure.

膜は<111>配向を示す回折パタンが明瞭に見られる
ことが分かった。
It was found that the film had a clearly visible diffraction pattern indicating <111> orientation.

一方、膜の内部応力を測定すると、低ガス圧で堆積した
Mo膜は大きな圧縮応力を示すが、高ガス圧で堆積した
Mo膜では引っ張り応力となっていることが分かった。
On the other hand, when measuring the internal stress of the film, it was found that the Mo film deposited at low gas pressure showed large compressive stress, but the Mo film deposited at high gas pressure showed tensile stress.

上記実施例でテーパ加工が生じた領域では、第1図に示
したように圧縮応力が一様に見られた。
In the region where the taper process occurred in the above example, compressive stress was uniformly observed as shown in FIG.

一般に、スパッタ膜では文献(J、人、Thorato
nand D、W、Hoffman、 ”Intern
al 5tresses 1ntit亀nium、n1
eke1.molybdenum、and  を亀nt
alumfi1ms deposited by ey
lindrical magnetronsputte
ring  、 J、Vac、Sci、Teehnol
、、vol、14p、 164−1888.1977)
に示されているように、スパッタガス圧を変えてゆくと
、低ガス圧で圧縮応力となり、高ガス圧になると引っ張
り応力となることが分かっている。また、スパッタガス
の質量が小さいほど圧縮応力から引っ張り応力になる転
移ガス圧が大きくなる。
In general, sputtered films are described in the literature (J.
and D., W. Hoffman, “Intern.
al 5tresses 1ntit turtlenium, n1
eke1. molybdenum, and
alumfi1ms deposited by ey
lindrical magnetronsputte
ring, J., Vac., Sci., Teehnol.
,, vol, 14p, 164-1888.1977)
As shown in , it is known that when the sputtering gas pressure is changed, compressive stress occurs at low gas pressures, and tensile stress occurs at high gas pressures. Furthermore, the smaller the mass of the sputtering gas, the greater the transition gas pressure that changes from compressive stress to tensile stress.

これは、ターゲットに衝突したスパッタイオンが反跳し
て堆積膜と衝突することにより構造が変化するピーニン
グ(釘打ち)効果として説明されている。
This is explained as a peening effect in which sputtered ions that collide with the target recoil and collide with the deposited film, resulting in a structural change.

すなわち、低ガス圧では反跳イオンがスパッタガスによ
る散乱を受けず、高エネルギを保持したまま基板表面に
衝突するため、構造が変形を受は緻密化され圧縮応力状
態となるのに対し、高ガス圧では反跳イオンがスパッタ
ガスの散乱効果によりエネルギが減速されるため有効に
基板に衝突しないため、蒸着膜と同様引っ張り応力のま
まとなる。特に、スパッタガスの質量が小さいと散乱に
よるエネルギ低下の割合が小さく、転移ガス圧が上昇す
ると考えられる。
In other words, at low gas pressure, recoil ions are not scattered by the sputtering gas and collide with the substrate surface while retaining high energy. At gas pressure, the energy of the recoil ions is slowed down by the scattering effect of the sputtering gas, so they do not effectively collide with the substrate, so they remain under tensile stress like the deposited film. In particular, it is thought that when the mass of the sputtering gas is small, the rate of energy reduction due to scattering is small and the transition gas pressure increases.

本実施例で示したNoで堆積したMo膜は、上記傾向に
一致し、第1図に示すように、低ガス圧で堆積したMo
膜は圧縮応力を示し、スパッタガス圧が上昇すると引っ
張り応力になる。さらに、低ガス圧では反跳イオンの衝
突により構造が崩され、アモルファス相を生じたものと
推定゛される。
The Mo film deposited with No shown in this example corresponds to the above tendency, and as shown in FIG.
The film exhibits compressive stress, which becomes tensile stress as the sputtering gas pressure increases. Furthermore, it is presumed that at low gas pressures, the structure is destroyed by collisions of recoil ions, resulting in an amorphous phase.

このため、過酸化水素水でのエツチングでは上記アモル
ファス相の存在により、等方性エツチングを生じ、テー
パ加工可能となったと考えられる。
For this reason, it is thought that due to the presence of the amorphous phase, isotropic etching occurs during etching with hydrogen peroxide solution, making taper processing possible.

一方、先に出願した特開昭61−170561号公報(
特願昭60−11076号)に示した反応性ドライエツ
チングでは、アモルファス相のエツチング速度が大きく
、配向特性を示す骨格を形成する部分がエツチング形状
を支配するため、<110>配向を示す低ガス圧領域で
はテーパエツチングができなかったと推定される。
On the other hand, the previously filed Japanese Patent Application Laid-open No. 170561/1983 (
In the reactive dry etching shown in Japanese Patent Application No. 60-11076, the etching rate of the amorphous phase is high, and the part forming the skeleton exhibiting orientation characteristics dominates the etched shape. It is presumed that taper etching was not possible in the pressure region.

次に、本実施例1と同様の装置を用い、N。Next, using the same apparatus as in Example 1, N.

のスパッタガス圧が0.5Pi及びArのスパッタガス
圧が0.5PJlの条件で各々Mo膜を堆積し、過酸化
水素水を用いたウェットエツチング法のジャストエツチ
ング条件でエツチングを終了した各々のMoパタン上に
、スパッタ法で二酸化シリコン(S i O2)膜を堆
積した上で、加熱した過酸化水素とアンモニア水の混合
液に浸漬した。
Each Mo film was deposited under the conditions of a sputtering gas pressure of 0.5 Pi and an Ar sputtering gas pressure of 0.5 PJl, and etching was completed under the just etching conditions of the wet etching method using hydrogen peroxide solution. A silicon dioxide (S i O 2 ) film was deposited on the pattern by sputtering, and then immersed in a heated mixture of hydrogen peroxide and aqueous ammonia.

この結果、 Neの水準ではS i O2膜下のM。As a result, at the level of Ne, M under the SiO2 film.

膜のエツチングは全く生じなかったのに対し、Arの水
準ではMo膜がパタンエツジから過酸化水素水でエツチ
ングされた。
No film etching occurred at all, whereas at the Ar level, the Mo film was etched from the pattern edge with hydrogen peroxide solution.

これは、Noで堆積したMo膜ではテーパ加工によすs
io、膜が均一に堆積されMo膜を完全に覆うことがで
きたが、Arではパタンエツジが垂直ないしオーバハン
グ状になるためS i OIの被覆性が悪く、薄い部分
から過酸化水素が侵入し、Mo膜がエツチングされたこ
とによる。
This is due to taper processing in the Mo film deposited with No.
io, the film was deposited uniformly and was able to completely cover the Mo film, but with Ar, the pattern edges were vertical or overhanging, so the coverage of SiOI was poor, and hydrogen peroxide entered from the thin part. This is due to the Mo film being etched.

すなわち、Neで堆積したMo膜はテーパ加工できるこ
とから、その上に形成する膜の被覆性を改善する効果が
あった。
That is, since the Mo film deposited with Ne can be tapered, it has the effect of improving the coverage of the film formed thereon.

[実施例2] 本実施例は上記実施例とは方式の異なるスパッタ装置で
Mo膜を堆積したものである。
[Example 2] In this example, a Mo film was deposited using a sputtering system different from that of the above-mentioned example.

本実施例ではスパッタ装置の構成が異なっても同様な効
果が得られることを示す。
This example shows that similar effects can be obtained even if the configuration of the sputtering apparatus is different.

本実施例では、5インチX15インチの直流(DC)プ
レナマグネトロン電極を有するスパッタ装置を用いMo
膜を堆積した。使用装置では基板は一枚のサセプタ上に
搭載され、ターゲット上を一定速度で一方向に移動し、
基板の端から順にMo膜が堆積されていく。
In this example, a sputtering apparatus having a 5 inch x 15 inch direct current (DC) planar magnetron electrode was used.
A film was deposited. In the device used, the substrate is mounted on a single susceptor and moves over the target in one direction at a constant speed.
Mo films are deposited sequentially from the edge of the substrate.

約7X10Pa以下に真空排気したのち、スパッタガス
としてNeを導入し、スパッタ電流2A、放電電圧20
0V〜500Vで膜厚100 nm前後のMo膜を堆積
した。
After evacuation to about 7×10 Pa or less, Ne was introduced as sputtering gas, sputtering current was 2A, and discharge voltage was 20%.
A Mo film with a thickness of about 100 nm was deposited at 0V to 500V.

スパッタリングのガス圧を変えてMo膜を堆積し、過酸
化水素水を用いたウェットエツチング法でエツチングし
て断面形状を調べると、実施例1と同様に0.4Paの
低ガス圧で堆積したMo膜はジャストエツチングでテー
パエツチング可能であるが、1Paの高ガス圧で堆積し
たMo膜は、垂直な断面を示すことが分かった。
A Mo film was deposited by changing the sputtering gas pressure, and the cross-sectional shape was examined by wet etching using hydrogen peroxide. As in Example 1, the Mo film was deposited at a low gas pressure of 0.4 Pa. Although the film can be tapered by just etching, it was found that the Mo film deposited at a high gas pressure of 1 Pa exhibits a vertical cross section.

[実施例3] 実施例1で用いたスパッタ装置を用い、NeにArを混
合したスパッタガスでMo膜を堆積した。
[Example 3] Using the sputtering apparatus used in Example 1, a Mo film was deposited using a sputtering gas containing a mixture of Ne and Ar.

スパッタガス圧は約0.5Pa一定とした。The sputtering gas pressure was kept constant at about 0.5 Pa.

混合比(No/(Ne+Ar))が70%以上ではジャ
ストエツチング条件でテーパ加工ができるが、上記未満
ではテーパ加工できなかった。
When the mixing ratio (No/(Ne+Ar)) is 70% or more, taper processing can be performed under just etching conditions, but when it is less than the above, taper processing cannot be performed.

この場合、Ar以外のXs、 Kr、 He、 Rn等
の不活性ガスをNeに混合しても、同様にテーパ加工を
行うことが可能であった。
In this case, even if an inert gas other than Ar, such as Xs, Kr, He, or Rn, was mixed with Ne, it was possible to perform taper processing in the same way.

〈発明の効果〉 以上、実施例と共に詳しく述べたように、本発明に係る
モリブデンパタンの形成方法を用いれば、終了判定の容
易なジャストエツチング状態でも、テーパ加工ができる
ので、再現性良くテーパ加工が得られる効果がある。
<Effects of the Invention> As described above in detail along with Examples, by using the method for forming a molybdenum pattern according to the present invention, taper processing can be performed even in a just etching state where it is easy to determine the end of etching, so taper processing can be performed with good reproducibility. There is an effect that can be obtained.

また、テーパ加工できているので、上層に形成した絶縁
膜の被覆不良を生じないと共に、さらに上部に形成した
配線の断線を生じない効果がある。
Further, since the tapered structure is formed, there is an effect that not only does the insulating film formed on the upper layer not have poor coverage, but also the wiring formed on the upper layer does not become disconnected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例1に於けるスパッタガス圧P
とMo膜の内部応力σの関係と、ジャストエツチング条
件のMoパタンの断面形状を示す図である。
FIG. 1 shows the sputtering gas pressure P in Example 1 of the present invention.
FIG. 4 is a diagram showing the relationship between the internal stress σ of the Mo film and the cross-sectional shape of the Mo pattern under just etching conditions.

Claims (1)

【特許請求の範囲】 1)スパッタ法により堆積したモリブデン膜をパタン化
するモリブデンパタンの形成方法において、 圧縮応力状態下にモリブデン膜を堆積した 後、過酸化水素水を用いて加工することを特徴とするモ
リブデンパタンの形成方法。 2)請求項1記載のモリブデンパタンの形成方法におい
て、 スパッタ法で用いるスパッタガスとして、 ネオンを用いることを特徴とするモリブデンパタンの形
成方法。 3)請求項1記載のモリブデンパタンの形成方法におい
て、 スパッタ法で用いるスパッタガスとして、 ネオンを主成分とする不活性ガスの混合ガスを用いるこ
とを特徴とするモリブデンパタンの形成方法。 4)請求項1記載のモリブデンパタンの形成方法におい
て、 スパッタ法で用いるスパッタガスとして、 ネオンとアルゴンとの混合ガスを用いることを特徴とす
るモリブデンパタンの形成方法。 5)請求項1〜4記載のモリブデンパタンの形成方法に
おいて、 スパッタ法のスパッタガス圧を1Pa未満 のガス圧とすることを特徴とするモリブデンパタンの形
成方法。
[Claims] 1) A method for forming a molybdenum pattern in which a molybdenum film deposited by sputtering is patterned, characterized in that the molybdenum film is deposited under compressive stress and then processed using hydrogen peroxide solution. A method for forming a molybdenum pattern. 2) The method for forming a molybdenum pattern according to claim 1, wherein neon is used as a sputtering gas used in the sputtering method. 3) The method for forming a molybdenum pattern according to claim 1, wherein a mixed gas of an inert gas containing neon as a main component is used as a sputtering gas in the sputtering method. 4) The method for forming a molybdenum pattern according to claim 1, wherein a mixed gas of neon and argon is used as a sputtering gas used in the sputtering method. 5) The method for forming a molybdenum pattern according to claims 1 to 4, wherein the sputtering gas pressure in the sputtering method is set to a gas pressure of less than 1 Pa.
JP6436290A 1990-03-16 1990-03-16 Formation of molybdenum pattern Pending JPH03266426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6436290A JPH03266426A (en) 1990-03-16 1990-03-16 Formation of molybdenum pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6436290A JPH03266426A (en) 1990-03-16 1990-03-16 Formation of molybdenum pattern

Publications (1)

Publication Number Publication Date
JPH03266426A true JPH03266426A (en) 1991-11-27

Family

ID=13256078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6436290A Pending JPH03266426A (en) 1990-03-16 1990-03-16 Formation of molybdenum pattern

Country Status (1)

Country Link
JP (1) JPH03266426A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19943521A1 (en) * 1999-09-09 2001-04-05 Dresden Ev Inst Festkoerper Process for adjusting the defined flank angle comprises influencing the flank angle by producing or adjusting defined joint stresses in the layer to be structured whilst a metal or metal oxide layer is deposited
US6329300B1 (en) 1999-07-29 2001-12-11 Nec Corporation Method for manufacturing conductive pattern layer by two-step wet etching process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329300B1 (en) 1999-07-29 2001-12-11 Nec Corporation Method for manufacturing conductive pattern layer by two-step wet etching process
DE19943521A1 (en) * 1999-09-09 2001-04-05 Dresden Ev Inst Festkoerper Process for adjusting the defined flank angle comprises influencing the flank angle by producing or adjusting defined joint stresses in the layer to be structured whilst a metal or metal oxide layer is deposited
DE19943521C2 (en) * 1999-09-09 2001-11-29 Dresden Ev Inst Festkoerper Method for setting defined flank angles when producing layer structures

Similar Documents

Publication Publication Date Title
JP3076367B2 (en) Plasma processing equipment
JPS59163826A (en) Dry etching method
JPS61147531A (en) Reactive ion etching method
JP3351843B2 (en) Film formation method
JPWO2010004890A1 (en) Thin film deposition method
JPH08293483A (en) Flattening method for solid surface with gas cluster ion beam
JPS58204537A (en) Plasma etching method
JPH03266426A (en) Formation of molybdenum pattern
JPH0294520A (en) Dry etching method
JPH07258827A (en) Thin metallic film and its formation and semiconductor device and its production
JPS6265331A (en) Etching process for copper or copper alloy
JPH05343363A (en) Dry etching method
JPH06180277A (en) Preparation of sample for transmission electron microscope
JPH08209340A (en) Inorganic extremely thin leaf piece and its production
JPS6286716A (en) Formation of ohmic contact between metal and semiconductor and apparatus for the same
KR910006091B1 (en) Manufacturing method of semiconductor device
JPS61198636A (en) Thin film former
JPS61170561A (en) Formation of high melting point metal film
JPH05121407A (en) Manufacture of semiconductor device
JPS62249420A (en) Apparatus for plasma treatment
JPS62149122A (en) Heat-treatment of compound semiconductor substrate
JPH06275617A (en) Oxidation resistant copper thin film, its manufacture, and semiconductor device using the same
JPS61214430A (en) Manufacture of semiconductor device
JPS5891170A (en) Dry etching method for chromium oxide (or203)
JPS62257727A (en) Manufacture of semiconductor device