JPH03264821A - Method for processing output signal of composite sensor - Google Patents

Method for processing output signal of composite sensor

Info

Publication number
JPH03264821A
JPH03264821A JP2062619A JP6261990A JPH03264821A JP H03264821 A JPH03264821 A JP H03264821A JP 2062619 A JP2062619 A JP 2062619A JP 6261990 A JP6261990 A JP 6261990A JP H03264821 A JPH03264821 A JP H03264821A
Authority
JP
Japan
Prior art keywords
flow rate
sensor
value
flow
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2062619A
Other languages
Japanese (ja)
Other versions
JPH07109376B2 (en
Inventor
Katsuto Sakai
克人 酒井
Takashi Ueki
植木 孝
Tetsuo Hisanaga
哲生 久永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Azbil Corp
Original Assignee
Tokyo Gas Co Ltd
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Azbil Corp filed Critical Tokyo Gas Co Ltd
Priority to JP2062619A priority Critical patent/JPH07109376B2/en
Publication of JPH03264821A publication Critical patent/JPH03264821A/en
Publication of JPH07109376B2 publication Critical patent/JPH07109376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To prevent the deviation of the measured value of a flow rate when a sensor is switched and to improve measuring accuracy by automatically calibrating the data of the sensor having low precision with the sensor having high precision when the measured flow rate has a value between the specified flow rates of two sensors. CONSTITUTION:As a first flow rate sensor, a thermal semiconductor flow rate sensor which can be continuously set and has low precision is used. As a second flow rate sensor, a highly precise fluidic flow rate sensor 2 which requires certain time for measurement is used. Thus a gas flowmeter using the sensors 1 and 2 is constituted. When the measured flow-rate value FB of the sensor 2 lies between sensor output values F1 and F2 (the first and second specified flow rates), the measured flow-rate value FA of the sensor 1 is calibrated by using the value FB. A correcting coefficient (k) for this calibration is obtained by an expression k.F(1+DELTASA) = FB (where F is the actual flow rate, and DELTASA is the sensitivity change in sensor 1). The measured value FA is multiplied by (k), and the measured value FAC is displayed. Thus, the displaying accuracy of the sensor 1 is improved, and the deviation from the measured value FB of the sensor 2 in switching can be eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、2種類の流量センサを使用して測定精度を向
上させる複合センサ出力信号処理方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite sensor output signal processing method that uses two types of flow rate sensors to improve measurement accuracy.

〔従来の技術〕[Conventional technology]

フルイブインク流量センサを気体流量針に使用すると、
低流量域で感度が急激に低下し、満足に測定できないと
いう欠点がある。そこで、低流量域1で測定可能な異な
った方式によるセンサたとえば熱式の半導体流量センサ
と上記フルイブインク流量センサとを組み合わせ、低流
量域から高流量域筐で測定を可能にするような方法が提
案されている。フルイブインク流量センサを気体流量計
に使用したときの特性を第4図(a)に、熱式半導体流
量センサを気体流量針に使用したときの特性を第4図(
b)に示す。第4図において、横軸は流量、縦軸はセン
サ出力である。
When a full ink flow sensor is used as a gas flow needle,
The disadvantage is that the sensitivity rapidly decreases in the low flow rate range, making it impossible to measure satisfactorily. Therefore, there is a method that combines a sensor using a different method that can measure in the low flow rate region 1, such as a thermal type semiconductor flow rate sensor, and the above-mentioned full-ink flow rate sensor, and makes it possible to measure from the low flow rate area to the high flow rate area. is proposed. Figure 4(a) shows the characteristics when a full-ink flow sensor is used as a gas flow meter, and Figure 4(a) shows the characteristics when a thermal semiconductor flow sensor is used as a gas flow needle.
Shown in b). In FIG. 4, the horizontal axis is the flow rate, and the vertical axis is the sensor output.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

フルイブインク流量センサが気体の体積流量を測定する
のに対して、熱式半導体流量センサは気体の質量流量を
測定するため、気体の温度、密度、気体混合比が変化す
ると当然両者の測定値に差が生じる。これを第5図に示
す。第5図において、横軸は体積流量、縦軸はセンサ出
力でsb、81は温度変化等があるときのフルイブイン
ク流量センサの出力、S2は温度変化等があるときの熱
式半導体流量センサの出力を示す。熱式半導体流量セン
サは第5図に示すように温度変化等により異なる特性を
示すので、温度によっては、熱式半導体流量センサから
フルイブインク流量センサへの切換え、あるいはフルイ
ブインク流量センサから熱式半導体流量センサへの切換
えにおいて、流量測定値の飛びすなわち流量測定値の急
激な変化を生じる。
While a full-ink flow sensor measures the volumetric flow rate of gas, a thermal semiconductor flow sensor measures the mass flow rate of gas, so if the temperature, density, or gas mixture ratio of the gas changes, the measured values of both will naturally change. There will be a difference. This is shown in FIG. In Fig. 5, the horizontal axis is the volumetric flow rate, the vertical axis is the sensor output sb, 81 is the output of the full ink flow sensor when there is a temperature change, etc., and S2 is the thermal semiconductor flow sensor when there is a temperature change, etc. shows the output of As shown in Figure 5, thermal semiconductor flow sensors exhibit different characteristics depending on temperature changes, so depending on the temperature, switching from a thermal semiconductor flow sensor to a full ink flow sensor, or switching from a full ink flow sensor to a thermal Switching to a type semiconductor flow sensor results in jumps in flow rate measurements, that is, rapid changes in flow rate measurements.

本発明はこのような点に鑑みてなされたものであシ、そ
の目的とするところは、2種類の流量センサを使用した
場合のセンサ切換えにかける流量測定値のずれをなくし
、かつ測定精度上同上させる信号処理方法を提供するこ
とにある。
The present invention has been made in view of these points, and its purpose is to eliminate the difference in flow rate measurement values caused by sensor switching when two types of flow rate sensors are used, and to improve measurement accuracy. An object of the present invention is to provide a signal processing method that does the same as the above.

〔課Mを解決するための手段〕[Means for solving Section M]

このような目的を達成するために本発明は、第1の所定
流量以下においては流量値を第1の流量センサによって
測定表示し、第2の所定流量以上にかいては流f値を第
2の流量センサによって測定表示する複合センサ出力信
号処理方法において、測定対象流量が第1の所定流量と
第2の所定流量との間の値であるとき2つの流量センサ
のうち高い精度の流量センサにより低い精度の流量セン
サのデータ校正を自動的に行なうようにしたものである
In order to achieve such an object, the present invention measures and displays the flow rate value using a first flow sensor when the flow rate is below a first predetermined flow rate, and displays the flow f value using a second flow rate when the flow rate is above a second predetermined flow rate. In a composite sensor output signal processing method in which the flow rate to be measured is a value between a first predetermined flow rate and a second predetermined flow rate, a flow rate sensor having a higher accuracy among the two flow rate sensors is used. This system automatically calibrates the data of a flow rate sensor with low accuracy.

〔作用〕[Effect]

本発明による複合センサ出力信号処理方法においては、
流量測定値は流量センサ切換えにおいて急激な変化がな
く、滑らかな値となる。
In the composite sensor output signal processing method according to the present invention,
The flow rate measurement value does not change abruptly when the flow rate sensor is switched, and becomes a smooth value.

〔実施例〕〔Example〕

壕ず、本発明の概要について述べる。2個の流量センサ
の切換点付近に両センサが同時に動作する範囲を設け、
測定値がこの範囲に入ったとき見られた2つのデータの
うち予め定められた高精度センサのデータで低精度セン
サのデータを校正する。この校正に使った補正係数は次
に校正を行なう1で低精度センサのデータ補正に使用す
る。
Without further ado, an overview of the present invention will be described. A range is provided near the switching point of the two flow rate sensors in which both sensors operate simultaneously.
Of the two data observed when the measured value falls within this range, the predetermined data from the high precision sensor is used to calibrate the data from the low precision sensor. The correction coefficient used in this calibration is used to correct the data of the low precision sensor in the next calibration.

第3図は第1の流量センサとしての熱式半導体流量セン
サ1と′i42の流量センサとしてのフルイブインク流
量センサ2とを使用した気体流量針を示す系統図で、3
シよび4は流量値FAおよびFBを出力する信号処理回
路、5は流量値FA、FBを入力して処理を行なうマイ
クロコンピュータ、Gは気体である。第1図においては
、フルイブインク流量センサ2が高精度センサ、熱式半
導体流量センサ1が低精度センサでルシ、フルイブイン
ク流量センサ2の流量測定値のある範囲で熱式半導体流
量センサ1のデータ校正を行なう。
FIG. 3 is a system diagram showing a gas flow rate needle using a thermal type semiconductor flow rate sensor 1 as a first flow rate sensor and a full ink flow rate sensor 2 as an 'i42 flow rate sensor.
5 and 4 are signal processing circuits that output the flow values FA and FB, 5 is a microcomputer that inputs and processes the flow values FA and FB, and G is a gas. In FIG. 1, the full ink flow sensor 2 is a high precision sensor, the thermal semiconductor flow sensor 1 is a low precision sensor, and the thermal semiconductor flow sensor 1 is within a certain range of the flow rate measurement value of the full ink flow sensor 2. Perform data calibration.

第1図は本発明による複合センサ出力信号ひ理方法の一
実施例を説明するためのフローチャート、第2図は2種
類のセン?(熱式半導体流量センサp:びフルイデイン
ク*i−センサ)の特性を示すグラフでるる。第2図に
分いて横軸は流量、縦軸dセンサ出力値で、SFA r
i熱熱式半導泥流1センサ1待吐を示す曲縁、srsは
フルイブインク流量センサ2の詩性を示す曲線である。
FIG. 1 is a flowchart for explaining one embodiment of the method for analyzing composite sensor output signals according to the present invention, and FIG. 2 shows two types of sensor output signals. This is a graph showing the characteristics of (Thermal Semiconductor Flow Sensor P: and Fluid Ink*i-sensor). In Figure 2, the horizontal axis is the flow rate, and the vertical axis is the d sensor output value.
The curved edge indicating the i-thermal semi-conducting mudflow 1 sensor 1 standby discharge, and srs are the curves indicating the poetry of the full ink flow rate sensor 2.

!た5raCはデータ校正後の熱式半導体流量センサ1
の出力測定値である。
! 5raC is the thermal semiconductor flow sensor 1 after data calibration.
is the output measurement value.

次に、データ校正の方法について第1図〜第3図を用い
て説明する。センサ1,2の測定出力値の誤差がセンサ
の梠度変化に起因するものと考え、実際の流量をF、セ
ンサ1,2の各々の所定の感度からの変化分t−JsA
、JSBとすれば、FA=F(1−+−JSA) ・・
・・・(1)FB =F (1+、jsB)  ・・・
・・(2)とたる。なお、センサの感度変化は周囲温度
の変化や、測定気体成力の違い、経時変化などによって
生じる。
Next, a method of data calibration will be explained using FIGS. 1 to 3. Assuming that the error in the measured output values of sensors 1 and 2 is due to changes in the sensitivity of the sensors, the actual flow rate is F, and the change from the predetermined sensitivity of each of sensors 1 and 2 is t-JsA.
, JSB, then FA=F(1-+-JSA)...
... (1) FB = F (1+, jsB) ...
...(2) Taru. Note that changes in sensor sensitivity occur due to changes in ambient temperature, differences in measured gas composition, changes over time, and the like.

センサの特性から1−13AI>>IJSBI と考L
、フルイブインク流量センサ2による流量測定値FBが
第1図のセンサ出力値Fl (第1の所定流量)とF2
  (第2の所定流量)との間に入ったとき(第1図の
ステップ11〜13)、フルイブインク流量センサ2の
測定値FBの値を使って熱式半導体流量センサ1の測定
値FAの値を校正する。すなわち、次式の補正係数にの
値を決定する(第1図のステップ15)。
Considering the characteristics of the sensor, 1-13AI>>IJSBI
, the flow rate measurement value FB by the full ink flow rate sensor 2 is the sensor output value Fl (first predetermined flow rate) in FIG. 1 and F2
(second predetermined flow rate) (steps 11 to 13 in FIG. 1), the measured value FB of the full-live ink flow sensor 2 is used to calculate the measured value FA of the thermal semiconductor flow sensor 1. Calibrate the value of. That is, the value of the correction coefficient of the following equation is determined (step 15 in FIG. 1).

k@F(1+JSA)=FB ・・・・・(3)以降、
次に流量測定値FBが第1図のセンサ出力値F1とF2
との間に入るまで、センサ1の測定値FAKkを掛けて
表示する。センサ1の測定値FAにkを掛けたものをF
ACと表わすと、FAC=に@FA=に@F(1−1−
JSA)・・・・・(4)このようにすれば、熱式半導
体流量センサ1の表示精度が向上し、筐た、フルイブイ
ンク流量センサ2の測定値FBとの切換時のずれもなく
すことができる。
k@F(1+JSA)=FB ・・・・・・(3) onwards,
Next, the flow rate measurement value FB is the sensor output value F1 and F2 in Fig. 1.
The measured value FAKk of sensor 1 is multiplied and displayed until the value falls between . F is the measurement value FA of sensor 1 multiplied by k.
When expressed as AC, FAC=, @FA=, @F(1-1-
JSA) ... (4) In this way, the display accuracy of the thermal semiconductor flow sensor 1 is improved, and the deviation between the casing and the measured value FB of the full ink flow sensor 2 is also eliminated. be able to.

フルイブインク流量センサ2では瞬時に流量値が得られ
ず、精度よく測定するには成る程度以上の測定時間が必
要である。このため、校正を行なう際、一定時間流量を
測定し、その間の平均流量をもって、測定値FBとする
。熱式半導体流量センサ1は連続測定可能であるが、校
正時にはフルイブインク流量センサ2と同時間内に測定
を継続して行ない、その間の平均流量をもって流lt値
FAとする。この処理は第1図のステップ14.15に
示す処理であるが、この処理については後述する。
With the full ink flow rate sensor 2, the flow rate value cannot be obtained instantaneously, and a long measurement time is required for accurate measurement. Therefore, when performing calibration, the flow rate is measured for a certain period of time, and the average flow rate during that period is taken as the measured value FB. The thermal type semiconductor flow rate sensor 1 is capable of continuous measurement, but during calibration, measurement is performed continuously within the same time as the full-ink flow rate sensor 2, and the average flow rate during that time is taken as the flow lt value FA. This process is the process shown in step 14.15 in FIG. 1, and will be described later.

このような処理を行なうことにより、測定時間内に流量
変動を生じてもその影響を受けず、筐た高精度の校正が
可能となる。なか、この同時測定中にはフルイブインク
流量センサ2の出力値FBを積算する(第1図のステッ
プ13,14.2(1)。
By performing such processing, even if the flow rate fluctuates during the measurement time, it will not be affected by it, and highly accurate calibration can be performed. During this simultaneous measurement, the output value FB of the full ink flow rate sensor 2 is integrated (steps 13, 14.2(1) in FIG. 1).

筐た、同時測定中に流量が変化して第2図に示す出力値
F1〜F2の範囲を外れた場合には校正演算は中止し、
通常の測定に戻る。なお、アルイブインク流量センサ2
の出力値FBが出力値F1 よシ小さい場合は熱式半導
体流量センサ1の出力値FAを補正して積算する(第1
図のステップ12゜11〜19)。
If the flow rate changes during simultaneous measurement and falls out of the range of output values F1 to F2 shown in Figure 2, the calibration calculation will be stopped.
Return to normal measurement. In addition, Alive ink flow rate sensor 2
If the output value FB is smaller than the output value F1, the output value FA of the thermal semiconductor flow sensor 1 is corrected and integrated (first
Step 12°11-19 in the figure).

データ校正範囲を定めるセンサ出力値Fl、  F2の
値の決定は次のように行なう。フルイブインク流量セン
サ2で満足できる測定の行なえる下限値tFOとし、熱
式半導体流量センサ1で満足できる測定の行なえる上限
値をF3とすれば、FO≦Fl(F2≦F3 ・・・・
・(5)のように出力値Fl、F2を選ぶ。
The sensor output values Fl and F2 that define the data calibration range are determined as follows. If the lower limit value tFO that allows satisfactory measurement with the full ink flow sensor 2 is taken as F3, and the upper limit value that allows satisfactory measurement with the thermal semiconductor flow sensor 1 is taken as F3, then FO≦Fl (F2≦F3...
-Select the output values Fl and F2 as shown in (5).

熱式半導体流量センサ1は連続測定可能でらるが、フル
イブインク流量センサ2は間欠的にしか測定結果が得ら
れないため、気体Gの流量変化が急激に生じた場合、F
l〜F20区関がせ筐いと、測定を行なわないうちにこ
の区間を通過してし1い、先に述べた補正演算が行なわ
れない可能性がある。また、Fl−F2の区間が広いと
、この区間に測定値が入る確率は高く々るが、ここでは
二重に測定を行なうため消費電力が増大し、電池駆動の
気体流量計では好筐しくない。このため、Fl。
Thermal semiconductor flow rate sensor 1 is capable of continuous measurement, but the full ink flow rate sensor 2 can only obtain measurement results intermittently, so if a sudden change in the gas flow rate occurs, F
If this section is passed before measurement is performed, there is a possibility that the above-mentioned correction calculation will not be performed. Additionally, if the Fl-F2 interval is wide, there is a high probability that a measured value will fall in this interval, but since double measurements are performed here, power consumption increases, making it difficult to use a battery-powered gas flow meter. do not have. For this reason, Fl.

F2は上に示した式(5)の範囲で実際の使用条件を考
慮しながら決定する。例えば、P O=10017’ 
h 。
F2 is determined within the range of equation (5) shown above, taking into consideration the actual usage conditions. For example, P O=10017'
h.

F3=300z/hの場合、F’1=150 t/h、
F2=i s o t7h のように選ぶ。
When F3=300z/h, F'1=150t/h,
Choose as F2=is o t7h.

先に述べたデータ校正時の消費電力を防ぐには次のよう
な方法がるる。演算装置内にタイマを設け、データ校正
を行なう毎にタイマをリセットする(第1図のステップ
16)。その後、測定値がF1〜F2の間に入ってもタ
イマにあらかじめセントした時間TIが経過する1では
データ校正を行なわず(第1図のステップ13,14.
2(1)、時115T1を過ぎてから初めてデータ校正
を行なうようにする(第1図のステップ14.15)。
The following methods can be used to prevent the power consumption during data calibration mentioned above. A timer is provided in the arithmetic unit, and the timer is reset every time data is calibrated (step 16 in FIG. 1). Thereafter, even if the measured value falls between F1 and F2, data calibration is not performed at 1 when the time TI set in advance in the timer has elapsed (steps 13 and 14 in FIG. 1).
2(1), data calibration is performed only after time 115T1 (step 14.15 in FIG. 1).

時間T1は気体の温度変化の速度や気体威勺変化の速度
に応じて決定する。すなわち変化の速い測定条件では時
間T1を短く、遅い条件では時間TIは長く選ぶ。この
ようにすることにより、必要以上の頻度でデータ校正し
ないようになり、無駄な電力の消費を防ぐことができる
The time T1 is determined depending on the rate of change in gas temperature and the rate of change in gas pressure. That is, the time T1 is selected to be short under measurement conditions where the change is fast, and the time TI is selected to be long under conditions where the change is slow. By doing this, data proofreading is not performed more frequently than necessary, and wasteful power consumption can be prevented.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、測定対象流量が第1の所
定流量を一定量越えた流量範囲にあるとき第1と第2の
2つの流量センサで同時に測定し、2つの流量センサの
うち安定性の高い流量センサにより経時的なドリフトが
発生しやすい流量センサのデータ校正を自動的に行なう
ことにより5経時的なドリフトを発生しやすい流量セン
サの安定性を高めることができるとともに、2種類の流
量センサを使用した場合のセンサ切換えにおける流量測
定値のずれをなくすことができる効果がるる。
As explained above, the present invention measures the flow rate at the same time using the first and second flow sensors when the flow rate to be measured is in a flow range exceeding the first predetermined flow rate by a certain amount. By automatically calibrating the data of flow sensors that are prone to drift over time, it is possible to improve the stability of flow sensors that are prone to drift over time. This has the effect of eliminating deviations in flow rate measurements when switching sensors when a flow rate sensor is used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による複合センサ出力信号処理方法の一
実施例を説明するためのフローチャート、第2図は21
1類の流量センサの特性を示すグラフ、第3図は本発明
による複合センサ出力信号処理方法の一実施例が適用さ
れる気体流量計を示す系統図、第4図はフルイブインク
流量センサと熱式半導体流量センサの特性を示すグラフ
、Wc5図はフルイブイック流量センサと熱式半導体流
量センサの温度変化等による出力値変化を示すグラフで
るる。 1・・・−熱式半導体流量センサ、2・・・・フルイブ
インク流量センサ、3,4・・・・信号処理回路、5・
・・・マイクロコンピュータ、G・・・・気体。 第 図 第 図 (a) (b) イ峯4シλこ」Iヒ。
FIG. 1 is a flowchart for explaining an embodiment of the composite sensor output signal processing method according to the present invention, and FIG.
A graph showing the characteristics of a type 1 flow rate sensor, Fig. 3 is a system diagram showing a gas flow meter to which an embodiment of the composite sensor output signal processing method according to the present invention is applied, and Fig. 4 shows a graph showing the characteristics of a full-ink flow rate sensor. Figure Wc5, which is a graph showing the characteristics of the thermal semiconductor flow sensor, is a graph showing changes in output values due to temperature changes, etc. of the full-volume semiconductor flow sensor and the thermal semiconductor flow sensor. DESCRIPTION OF SYMBOLS 1...-Thermal semiconductor flow rate sensor, 2...Full ink flow rate sensor, 3, 4...Signal processing circuit, 5...
...Microcomputer, G...Gas. (a) (b) Imine 4shiλko' Ihi.

Claims (3)

【特許請求の範囲】[Claims] (1)第1の所定流量以下においては流量値を第1の流
量センサによつて測定表示し、第2の所定流量以上にお
いては流量値を第2の流量センサによつて測定表示する
複合センサ出力信号処理方法において、第1の流量セン
サは第1の所定流量を一定量越えた流量範囲でも第2の
流量センサと同時に測定できるようにしておき、その第
1の流量センサと第2の流量センサが同時に測定する流
量範囲に測定対象流量があるとき前記2つの流量センサ
のうち安定性の高い流量センサにより経時的なドリフト
が発生しやすい流量センサのデータ校正を自動的に行な
う複合センサ出力信号処理方法。
(1) A composite sensor that measures and displays the flow rate value with the first flow rate sensor when the flow rate is below the first predetermined flow rate, and measures and displays the flow rate value with the second flow rate sensor when the flow rate is above the second predetermined flow rate. In the output signal processing method, the first flow rate sensor is configured to be able to measure simultaneously with the second flow rate sensor even in a flow rate range exceeding the first predetermined flow rate by a certain amount, and the first flow rate sensor and the second flow rate are When the flow rate to be measured is within the flow rate range that the sensors simultaneously measure, a composite sensor output signal that automatically calibrates the data of the flow rate sensor that is more likely to drift over time by using the more stable flow rate sensor among the two flow rate sensors. Processing method.
(2)2つの流量センサとしてフルイデイツクセンサと
熱式半導体センサとを用い、演算装置によりデータ校正
を行なう請求項1記載の複合センサ出力信号処理方法。
(2) The composite sensor output signal processing method according to claim 1, wherein a fluidic sensor and a thermal semiconductor sensor are used as the two flow rate sensors, and data calibration is performed by a calculation device.
(3)演算装置にタイマを付加し、タイマセット時間を
経過するまでは校正を行なわないようにする請求項2記
載の複合センサ出力信号処理方法。
(3) The composite sensor output signal processing method according to claim 2, wherein a timer is added to the arithmetic unit, and the calibration is not performed until the timer set time has elapsed.
JP2062619A 1990-03-15 1990-03-15 Composite sensor output signal processing method Expired - Lifetime JPH07109376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2062619A JPH07109376B2 (en) 1990-03-15 1990-03-15 Composite sensor output signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2062619A JPH07109376B2 (en) 1990-03-15 1990-03-15 Composite sensor output signal processing method

Publications (2)

Publication Number Publication Date
JPH03264821A true JPH03264821A (en) 1991-11-26
JPH07109376B2 JPH07109376B2 (en) 1995-11-22

Family

ID=13205516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2062619A Expired - Lifetime JPH07109376B2 (en) 1990-03-15 1990-03-15 Composite sensor output signal processing method

Country Status (1)

Country Link
JP (1) JPH07109376B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533721A (en) * 1998-12-23 2002-10-08 イメージ・ガイディッド・テクノロジーズ・インコーポレイテッド Hybrid 3D probe tracked by multiple sensors
CN100360911C (en) * 2001-05-03 2008-01-09 安德斯+豪斯有限公司 Flow metering operating method
JP2008175631A (en) * 2007-01-17 2008-07-31 Furukawa Electric Co Ltd:The Flow velocity measuring system
JP2013033026A (en) * 2011-06-03 2013-02-14 Berkin Bv Flow meter for determining flow of medium and use thereof, and quantitative method
US8608306B2 (en) 2009-03-06 2013-12-17 Ricoh Company, Ltd. Inkjet recording ink, ink cartridge, inkjet recording apparatus, and ink recorded matter
WO2014065116A1 (en) * 2012-10-24 2014-05-01 独立行政法人産業技術総合研究所 Mass flowmeter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533721A (en) * 1998-12-23 2002-10-08 イメージ・ガイディッド・テクノロジーズ・インコーポレイテッド Hybrid 3D probe tracked by multiple sensors
CN100360911C (en) * 2001-05-03 2008-01-09 安德斯+豪斯有限公司 Flow metering operating method
JP2008175631A (en) * 2007-01-17 2008-07-31 Furukawa Electric Co Ltd:The Flow velocity measuring system
US8608306B2 (en) 2009-03-06 2013-12-17 Ricoh Company, Ltd. Inkjet recording ink, ink cartridge, inkjet recording apparatus, and ink recorded matter
JP2013033026A (en) * 2011-06-03 2013-02-14 Berkin Bv Flow meter for determining flow of medium and use thereof, and quantitative method
WO2014065116A1 (en) * 2012-10-24 2014-05-01 独立行政法人産業技術総合研究所 Mass flowmeter
JPWO2014065116A1 (en) * 2012-10-24 2016-09-08 国立研究開発法人産業技術総合研究所 Mass flow meter
US9689729B2 (en) 2012-10-24 2017-06-27 National Institute Of Advanced Industrial Science And Technology Zero point drift compensating flowmeter

Also Published As

Publication number Publication date
JPH07109376B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
US7363182B2 (en) System and method for mass flow detection device calibration
US20050034532A1 (en) Dynamic mixed gas flowmeter
EP3032230B1 (en) Flow meter and a method of calibration
US8437976B2 (en) Gas density transducer with a microprocessor executing an algorithm solving Van Der Waal's equation
CN104713606A (en) Method and device for measuring flow of multi-component gas
US10288470B2 (en) Method for operating a flowmeter and flowmeter
WO2004020958A1 (en) Thermal flowmeter
JPH03264821A (en) Method for processing output signal of composite sensor
EP3348969B1 (en) Measurement of a fluid parameter and sensor device therefore
CN113155215B (en) Metering output method and device of thermal gas flowmeter and storage medium
US11982556B2 (en) Wet gas flow rate metering method based on a coriolis mass flowmeter and device thereof
JP2012068218A (en) Flow rate measurement method and flow rate measurement device using the same
JP2004093174A (en) Flowmeter
JP2691243B2 (en) Process abnormality monitoring method and apparatus thereof
JP3053486B2 (en) Fluidic gas meter
EP4257934A1 (en) Method and device for determining a flow rate
JPS6131959A (en) Method for measuring ph of electroplating liquid
JPS62261928A (en) Liquid level measuring instrument
JP2003090751A (en) Flow sensor type flowmeter and calibration method thereof
JPS62132121A (en) Method for measuring flow amount of gas
JP3170335B2 (en) Gas flow meter
JP2004163251A (en) Flow measuring instrument
JP2000009501A (en) Flowmeter and flow rate measuring method
JP2002303544A (en) Method of calculating initial value of pulse constant of fluidic gas meter, and fluidic gas meter
JPS604818A (en) Flow rate measuring apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 15