JPH03263211A - System power factor controller - Google Patents

System power factor controller

Info

Publication number
JPH03263211A
JPH03263211A JP2063461A JP6346190A JPH03263211A JP H03263211 A JPH03263211 A JP H03263211A JP 2063461 A JP2063461 A JP 2063461A JP 6346190 A JP6346190 A JP 6346190A JP H03263211 A JPH03263211 A JP H03263211A
Authority
JP
Japan
Prior art keywords
power
reactive power
var
generator
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2063461A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Miwa
三輪 義幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2063461A priority Critical patent/JPH03263211A/en
Publication of JPH03263211A publication Critical patent/JPH03263211A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To smoothly improve a power factor by calculating the power generation allowable reactive power range and the generator reactive power controlled variable in accordance with the power factor of a generator and not only controlling increase/reduction of the generator reactive power in accordance with the controlled variable but also monitoring it by a display means. CONSTITUTION:An allowable power factor calculating means 3A calculates the allowable reception power factor, and an allowable reception VAR range calculating means 5a calculates the allowable reception reactive power range. An adjustment requiring VAR value calculating means 7A calculates a reactive power value requiring adjustment, and a reception power factor calculating means 12 calculates the reception power factor. The power factor of the generator is calculated by a means 2 to calculate the power generation allowable reactive power range by a power generation allowable VAR range calculating means 26, and a power generation increasable VAR value calculating means 27 calculates the power generation increasable reactive power value, and a power generation reducable VAR value calculating means 28 calculates the power generation reducable reactrive power value. A power generation VAR increase controlled variable calculating means 29 calculates the power generation reactive power increasing controlled variable, and a power generation VAR reduction controlled variable calculating means 31 calculates the power generation reactive power reduction controlled variable, and a AVR increase control command output means 33 outputs the power generation reactive power increase control command and an AVR reduction control command output means 34 outputs the power generation reactive power reduction control command to control increase/reduction of the generator reactive power, and the control state is always monitored by a display means 35.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、受電、配電系統に自家用発電設備が接続さ
れている系統の力率を制御する受電力率制御装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a receiving power factor control device for controlling the power factor of a power receiving and distribution system to which private power generating equipment is connected.

〔従来の技術) 第5図及び第6図は、例えば、特開昭59=13272
5号公報に示された従来の系統力率制御装置の構成国及
び従来の系統力率制御装置を含む単線接続図である。第
5図において、1は受電目標力率設定器、2はこの受電
目標力率に対しての制御範囲を設定する不感帯設定器、
3は不感帯設定器2で設定された受電目標力率と不感帯
とより受電許容力率の範囲を演算する許容力率範囲演算
回路、4は受電の有効電力値を検出入力する受電電力入
力回路、5は前記許容力率範囲演算回路3で算出した許
容力率範囲と受電電力入力回路4で入力した受電電力値
とから許容無効電力範囲(以後、無効電力をVARと略
記する)を算出する許容受電VAR範囲演算回路、6は
受電の無効電力を検出入力する受電VAR入力回路、7
は前記許容受電VAR範囲演算回路5で算出した許容受
電VAR範囲と受電VAR入力回路6で入力した受電V
AR値とから調整必要V A R4Mを算出する調整必
要VAR演算回路、8は調整必要VARの極性を判別し
、コンデンサの入又は切の制御モードを判別するコンデ
ンサ制御モード判別回路、9はコンデンサ制御モード判
別回路8にてコンデンサ“入”モードが選択された時に
、コンデンサ投入指令を出力するコンデンサ投入指令出
力回路、10はコンデンサ制御モード判別回l118に
てコンデンサ“切”モードが選択された時に、コンデン
サ切指令を出力するコンデンサ引外指令出力回路である
[Prior art] Figures 5 and 6 are, for example, disclosed in Japanese Patent Application Laid-Open No. 59/13272.
FIG. 5 is a single-line connection diagram including the constituent countries of the conventional system power factor control device shown in Publication No. 5 and the conventional system power factor control device. In FIG. 5, 1 is a power receiving target power factor setting device, 2 is a dead band setting device for setting a control range for this power receiving target power factor,
3 is an allowable power factor range calculation circuit that calculates the range of the power receiving allowable power factor from the power receiving target power factor set by the dead band setting device 2 and the dead band; 4 is a receiving power input circuit that detects and inputs the received active power value; 5 is an allowance for calculating an allowable reactive power range (hereinafter, reactive power is abbreviated as VAR) from the allowable power factor range calculated by the allowable power factor range calculating circuit 3 and the received power value input by the received power input circuit 4. 6 is a power receiving VAR input circuit that detects and inputs the reactive power of power receiving; 7 is a power receiving VAR range calculation circuit;
is the allowable power receiving VAR range calculated by the allowable power receiving VAR range calculation circuit 5 and the power receiving V inputted by the power receiving VAR input circuit 6.
8 is a capacitor control mode determination circuit that determines the polarity of VAR that requires adjustment and determines the control mode of capacitor on or off; 9 is a capacitor control circuit that calculates the VAR that needs adjustment from the AR value; A capacitor input command output circuit outputs a capacitor input command when the mode discrimination circuit 8 selects the capacitor “ON” mode, and 10 indicates a capacitor input command output circuit that outputs a capacitor input command when the capacitor “OFF” mode is selected in the capacitor control mode discrimination circuit 118. This is a capacitor trip command output circuit that outputs a capacitor cut command.

また、第6図において、51は系統からの受電電力変換
器(図中、WTで表す)、52は同じく受電無効電力変
換器(図中、VARTで表す)、53は複数設けられた
進相コンデンサ(図中、SCTで表す)、54は進相コ
ンデンサの開閉器、55は例えば工場負荷、11は第5
図の諸回路要素を包含した系統力率制御装置である。ま
た、第6図に示すように、工場負荷55は電力会社の系
統より受電しており、受電の力率を改善するため進相コ
ンデンサ53を必要容量だけ、進相コンデンサの開閉器
54にて投入する。この投入するコンデンサの数を制御
する目的として系統力率制御装置11を備えている。
In addition, in FIG. 6, 51 is a receiving power converter from the grid (represented by WT in the figure), 52 is also a receiving reactive power converter (represented by VART in the figure), and 53 is a plurality of phase advancing converters. A capacitor (represented by SCT in the figure), 54 is a switch for a phase advance capacitor, 55 is, for example, a factory load, 11 is a fifth
This is a system power factor control device that includes the various circuit elements shown in the figure. Further, as shown in FIG. 6, the factory load 55 receives power from the power company's system, and in order to improve the power factor of the received power, a phase advance capacitor 53 is connected to the required capacity by a switch 54 of the phase advance capacitor. throw into. A system power factor control device 11 is provided for the purpose of controlling the number of capacitors to be input.

次に、系統力率制御装置11の動作について説明する。Next, the operation of the system power factor control device 11 will be explained.

まず、第5図において、受電目標力率設定器1にて設定
した数値X%と、不感帯設定器2にて設定した数値子“
Y”%及び−“Z”%とから許容力率範囲演算回路3に
おいて演算を行い力率制御範囲を算出して、“XX”〜
”YY”%とする。この力率制御範囲と、受電電力入力
回路4に入力した受電有効電力値とを基に許容受電VA
R範囲演真回路5において、許容受電VARの範囲“X
XX″vAR〜″YYY″VARを算出する0次に、調
整必要VAR演算回路7において、受電VAR入力回路
6に入力した受電VAR値が、前記許容受電VAR範囲
演算回路5において算出した許容受電VAR範囲内であ
れば調整VARは零とし、範囲外であれば調整必要VA
R値” z zZ″VARを算出する。
First, in FIG. 5, the numerical value X% set by the target power factor setting device 1 and the numerical value
The allowable power factor range calculation circuit 3 calculates the power factor control range from Y"% and -Z"%, and calculates the power factor control range from "XX" to
Let it be “YY”%. Based on this power factor control range and the received active power value input to the received power input circuit 4, the allowable received power VA
In the R range demonstration circuit 5, the allowable power reception VAR range “X
Calculate XX″vAR~″YYY″VAR Next, in the adjustment-required VAR calculation circuit 7, the power reception VAR value input to the power reception VAR input circuit 6 is set to the allowable power reception VAR calculated in the permissible power reception VAR range calculation circuit 5. If it is within the range, the adjusted VAR is zero; if it is outside the range, the VA that needs adjustment is
Calculate the R value "z zZ"VAR.

次に、コンデンサ制御モード判別回路8において、前記
調整必要VARの極性が受fiVARを減すべき方向で
あれば、コンデンサ投入要求信号を出力し、逆に前記調
整必要VARの極性が受電VARを増加すべき方向であ
ればコンデンサ引外要求信号を出力する。
Next, in the capacitor control mode determination circuit 8, if the polarity of the VAR requiring adjustment is in the direction in which the received fiVAR should be decreased, a capacitor input request signal is output, and conversely, the polarity of the VAR requiring adjustment increases the received VAR. If it is in the desired direction, a capacitor tripping request signal is output.

次にコンデンサ投入指令出力回路9が、前記コンデンサ
投入要求信号を受信すると、複数の進相コンデンサ53
に対する制御指令が系統力率制御装置11から出力され
、該当する進相コンデンサの開閉器54を投入する。
Next, when the capacitor input command output circuit 9 receives the capacitor input request signal, the plurality of phase advance capacitors 53
A control command is output from the system power factor control device 11 to close the switch 54 of the corresponding phase advance capacitor.

一方、コンデンサ引外指令出力回路10が前記コンデン
サ引外要求信号を受信すると、複数の進相コンデンサ5
3に対する制御指令が系統力率制御装置11から出力さ
れ、該当する進相コンデンサの開閉器54を引外す。コ
ンデンサ投入指令出力の結果、進相コンデンサ53が投
入されると、投入されたコンデンサの容量分だけ受電V
ARが減少する。逆に、進相コンデンサ53が引外され
ると、引外されたコンデンサの容量分だけ受電■ARが
増加する。受電VARの減あるいは増により、受電力率
が目標力率に接近する。
On the other hand, when the capacitor tripping command output circuit 10 receives the capacitor tripping request signal, a plurality of phase advance capacitors 5
A control command for No. 3 is output from the system power factor control device 11, and the switch 54 of the corresponding phase advance capacitor is tripped. When the phase advance capacitor 53 is turned on as a result of the capacitor input command output, the received power V is increased by the capacity of the input capacitor.
AR decreases. Conversely, when the phase advance capacitor 53 is tripped, the received power (AR) increases by the capacitance of the tripped capacitor. As the received power VAR decreases or increases, the received power factor approaches the target power factor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の系統力率制御装置は以上のように構成されている
ので、自家発電設備を有する系統においては、発電機の
運転状況に応じて受電力率が変化することから、進相コ
ンデンサの人、切制御モードのみによって受電力率を制
御する力率改善方式の場合には頻繁に進相コンデンサを
人、切することになり、また発電機が進相領域で運転さ
れる可能性が生じ、系統の電力変動が生じやすく不安定
になる等の課題があった。
Conventional system power factor control devices are configured as described above, so in systems with in-house power generation equipment, the received power factor changes depending on the operating status of the generator. In the case of a power factor correction method that controls the received power factor only in the cut-off control mode, the phase advance capacitor must be frequently turned off, and there is a possibility that the generator will be operated in the phase advance region, causing the grid There were issues such as power fluctuations and instability.

この発明は上記のような課題を解消するためになされた
もので、受電VARの変動による力率の変動に対し、そ
の力率の改善を円滑に行い、かつ自家発電機の安全な運
転及び監視ができる系統力率制御装置を得ることを目的
とする。
This invention was made in order to solve the above-mentioned problems, and it smoothly improves the power factor against fluctuations in power factor due to fluctuations in power receiving VAR, and also enables safe operation and monitoring of private generators. The purpose of this study is to obtain a system power factor control device that can.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る系統力率制御装置は、受電、配電系統に
接続された自家発t@の有効電力及び■AR入力手段と
、前記発電機の制御可能VARを算出する発電許容VA
R範囲算出手段と、前記発電機の発電増加(fI&少)
可能VAR値を算出する発電増加(減少)可能VAR値
算出手段及び発電VAR増(減)制御量算出手段と、発
電機出力VARで調整必要無効電力を充当するように発
電機の自動電圧調整装W(以後、AVRと略記する)を
制御するAVR増(fIi)制御指令出力手段と前記発
電有効電力入力手段及び発電VAR入力手段からの入力
データ及び各算出データの必要部を表示する表示手段等
をもって構成したものである。
The system power factor control device according to the present invention includes an active power of a privately generated t@ connected to a power receiving and distribution system, and an AR input means, and a power generation allowable VA that calculates a controllable VAR of the generator.
R range calculation means and power generation increase of the generator (fI & small)
A power generation increase (decrease) possible VAR value calculation means for calculating a possible power generation increase (decrease) value, a power generation VAR increase (decrease) control amount calculation means, and an automatic voltage adjustment device for the generator so that the reactive power that needs to be adjusted is appropriated by the generator output VAR. An AVR increase (fIi) control command output means for controlling W (hereinafter abbreviated as AVR), a display means for displaying input data from the generated active power input means and the generated VAR input means, and necessary parts of each calculated data, etc. It is composed of

〔作 用〕[For production]

この発明における系統力率制御装置は、自家発電機の運
転時の力率に応じた制御可能VAR値を演算によって算
出し、この制御可能範囲で調整必要VARを発電機出力
VARで充当するように発電機のAVRを制御し、ま大
コンデンサ投入量を制御する。さらに、表示部において
は、受電の力率値や発電機力率値、発電機データ等を表
示することにより発電機の安全運転の確保と制御状態の
監視とを行えるようにする。
The system power factor control device according to the present invention calculates a controllable VAR value according to the power factor during operation of the private generator by calculation, and uses the generator output VAR to allocate the VAR that needs to be adjusted within this controllable range. Controls the AVR of the generator and also controls the amount of large capacitor input. Furthermore, the display section displays the received power factor value, generator power factor value, generator data, etc., thereby ensuring safe operation of the generator and monitoring the control state.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図において、IAは受電目標力率設定手段、2Aはこの
、目標力率に対しての制御範囲を設定する不感帯設定手
段、3Aは設定された目標力率と不感帯より受電許容力
率の範囲を演算する許容力率範囲演算手段、4Aは受電
の有効電力値を検出して入力する受電有効電力入力手段
、5Aは許容力率範囲演算手段3Aで算出した許容力率
範囲と受電有効電力入力手段4Aで入力した受電電力値
とから許容VAR範囲を算出する許容受電VAR範囲算
出手段、6Aは受電のVARを検出入力する受電VAR
力入大入力手段Aは前記許容受電VAR範囲算出手段5
Aで算出した許容VAR範囲と受電VAR入力手1%6
Aで入力した受電VAR値とから、調整必要VAR値を
算出する調整必要VAR値算出手段、12は検出した受
電電力とMARとより受電力率を算出する受電力率算出
手段、21は調整必要VAR極性判別手段、22は自家
発電機の有効電力を検出して入力する発電有効電力入力
手段、23は同じく発電VAR入力手段、24は入力さ
れた発電有効電力信号と発電VARとより発電機の力率
値を算出する発電力率算出手段、25は発電機の定格力
率、定格皮相電力等を設定する発電機定格値設定手段、
26は入力した発電有効電力と、設定した発電機定格値
とから、その時点の発電機の出力許容VARの範囲を算
出する発電許容VAR範囲算出手段、27は算出した発
電許容VAR範囲と、入力した発電■ARとから、発電
機がさらに出力増加できるVAR値を算出する発電増加
可能VARIK出手段、28は逆に発電機の出力VAR
を減少できる値を算出する発電減少可能VAR値算出手
段、29は前記調整必要VAR値算出手段7Aで算出し
た調整必要VAR値が調整必要VAR極性判別手段21
で判別して受電VARを減らすべき方向の極性の時、こ
の調整必要VAR値と発電増加可能VAR値算出手段2
7で算出した発電増加可能VAR値とを比較して、発電
機で増加できるVAR値を算出する発電VAR増制御量
算出手段、30は調整必要VAR値の内、進相コンデン
サで充当すべきVAR値を算出するコンデンサ投入必要
量算出手段、31は調整必要VAR値が受電VARを増
加させるべき方向の極性の時、発電機で減少できるVA
R値を算出する発電VAR減制御量算出手段、32は調
整VAR値の内、進相コンデンサの引外しにより充当す
べきVAR値を算出するコンデンサ引外必要量算出手段
、33は発電VAR増制御量算出手段29で算出した発
電VAR増制御量から、後述する発電機の自動電圧調整
装置58(以後、AVRと略記する)に対し、必要量の
励磁増指令を出力するAVR増制御指令出力手段、34
は逆に発電機のAVRに対し、必要量の励磁域指令を出
力するAVR減制種制御指令出力手段Aはコンデンサ投
入必要量算出手段30のコンデンサ投入必要量から該当
コンデンサを選出し、そのコンデンサの開閉器を投入す
る指令を出力するコンデンサ投入指令出力手段、IOA
は発電VAR減制御量算出手段31のコンデンサ引外必
要量から該当コンデンサを選出し、そのコンデンサの開
閉器を引外す指令を出力するコンデンサ引外指令出力手
段、35は受電目標力率設定手段1Aで設定した受電目
標力率、受電力率算出手段11で算出した受電力率、発
電機出力及び発電機力率等の各種データを表示する表示
手段である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, IA is a power receiving target power factor setting means, 2A is a dead band setting means for setting a control range for the target power factor, and 3A is a power receiving allowable power factor range that is determined from the set target power factor and dead band. 4A is a received active power input means for detecting and inputting the received active power value; 5A is an allowable power factor range calculated by the allowable power factor range calculation means 3A and a received active power input means. 6A is a power reception VAR that detects and inputs the power reception VAR.
The input input means A is the allowable power receiving VAR range calculation means 5.
Allowable VAR range calculated in A and receiving VAR input method 1%6
Adjustment-required VAR value calculation means for calculating the adjustment-required VAR value from the received power VAR value input in A; 12 is a received power rate calculation means for calculating the received power rate from the detected received power and MAR; 21 is adjustment-required. VAR polarity determination means; 22, generated active power input means for detecting and inputting the active power of the private generator; 23, similarly generated VAR input means; A power generation power factor calculation means for calculating a power factor value, 25 a generator rated value setting means for setting the rated power factor, rated apparent power, etc. of the generator;
26 is a power generation permissible VAR range calculation means for calculating the output permissible VAR range of the generator at that time from the input generated active power and the set generator rated value; 27 is the calculated permissible power generation VAR range and the input. 28 is the output VAR of the generator, which calculates the VAR value that allows the generator to further increase the output from the generated power ■AR.
A power generation reduction possible VAR value calculation means 29 calculates a value that can reduce the amount of power generation, and 29 is a VAR polarity determination means 21 in which the adjustment required VAR value calculated by the adjustment required VAR value calculation means 7A is adjusted.
When the polarity is in the direction in which the received power VAR should be reduced, the VAR value that requires adjustment and the VAR value that can increase power generation are calculated by means 2.
A power generation VAR increase control amount calculation means that calculates a VAR value that can be increased by the generator by comparing the VAR value that can increase the power generation calculated in step 7, 30 is the VAR that should be applied by the phase advance capacitor among the VAR values that need to be adjusted 31 is a VA that can be reduced by the generator when the VAR value that needs to be adjusted has a polarity in the direction that the received VAR should be increased;
A power generation VAR reduction control amount calculation means for calculating the R value, 32 a capacitor tripping required amount calculation means for calculating the VAR value to be applied by tripping the phase advance capacitor out of the adjusted VAR value, 33 a power generation VAR increase control AVR increase control command output means for outputting a necessary amount of excitation increase command to a generator automatic voltage regulator 58 (hereinafter abbreviated as AVR), which will be described later, from the power generation VAR increase control amount calculated by the amount calculation means 29; , 34
On the other hand, the AVR reduction control command output means A, which outputs the excitation range command of the required amount to the AVR of the generator, selects the corresponding capacitor from the required capacitor input amount of the capacitor input required amount calculation means 30, and outputs the required amount of excitation range command to the AVR of the generator. capacitor closing command output means, IOA, which outputs a command to close the switch;
35 is a capacitor trip command output means that selects a corresponding capacitor from the required capacitor trip amount of the power generation VAR reduction control amount calculation means 31 and outputs a command to trip the switch of the capacitor, and 35 is a power reception target power factor setting means 1A. This is a display means for displaying various data such as the power reception target power factor set in , the power reception rate calculated by the reception power rate calculation means 11, the generator output, and the generator power factor.

また第2図において、IIAはこの発明の系統力率制御
装置を示すブロック図であり、前記IA〜7A、12.
21〜35を包含したものである。
Further, in FIG. 2, IIA is a block diagram showing the system power factor control device of the present invention, and IA to 7A, 12.
21 to 35 are included.

また第3図において、56は電力系統に接続された自家
発電機、57はこの自家発電機56の界磁コイル、58
はこの界磁コイル57に励磁電流を可変供給するAVR
159は発電電力変換器、60は発電無効電力変換器で
ある。
Further, in FIG. 3, 56 is a private generator connected to the power system, 57 is a field coil of this private generator 56, and 58 is a private generator connected to the power system.
is an AVR that variably supplies exciting current to this field coil 57.
159 is a generated power converter, and 60 is a generated reactive power converter.

次に第4図のフローチャートを参照して系統力率制御袋
fllAの動作について説明する。まず、受電目標力率
設定器IAにより設定した目標力率と、不感帯設定手段
2Aにより設定した不感帯及び発電機定格値設定手段2
5により設定した発電機定格力率、定格皮相電力等の発
電機定格値と、外部に設けたVAR変換器51、受電V
AR変換器52、発電電力変換器59及び発電VAR変
換器60等の各変換器にて検出した情報を受’It力入
力手段4A、受電VAR入力手段6A、発電有効電力入
力手段22及び発電VAR入力手段23を介して入力し
た受電有効電力、受電VAR1発電有効電力、及び発電
VAR等(ステップ5TI)とから、許容力率範囲演算
手段3により許容受電力率を算出し、許容受電VAR範
囲算出手段5Aにより許容受tvAR算出範囲を算出す
る(ステップ5T2)、そして調整必要VAR値算出手
段7Aにより調整必要VAR値を算出して受電力率算出
手段12により実際の受電力率を求める(ステップST
3,5T4)。また発電力率算出手段24により発電機
力率を算出し、発電許容VAR範囲算出手段26により
、発ii*許容VAR範囲を求める(ステップ5T5)
、そして各種表示データの表示更新処理を行う(ステッ
プ5T6)。
Next, the operation of the system power factor control bag fllA will be explained with reference to the flowchart of FIG. First, the target power factor set by the receiving power target power factor setting device IA, the dead band set by the dead band setting means 2A, and the generator rated value setting means 2.
5, the generator rated values such as the generator rated power factor and rated apparent power set in accordance with 5, the external VAR converter 51, and the power receiving V
The information detected by each converter such as the AR converter 52, the generated power converter 59, and the generated VAR converter 60 is received by the power input means 4A, the received VAR input means 6A, the generated active power input means 22, and the generated VAR. From the received active power input through the input means 23, the generated active power of the received VAR1, the generated VAR, etc. (step 5TI), the allowable received power rate is calculated by the allowable power factor range calculation means 3, and the allowable received power VAR range is calculated. The means 5A calculates the allowable received tvAR calculation range (step 5T2), the adjustment required VAR value calculation means 7A calculates the adjustment required VAR value, and the received power rate calculation means 12 calculates the actual received power rate (step ST
3,5T4). Furthermore, the power generation power factor calculation means 24 calculates the generator power factor, and the power generation permissible VAR range calculation means 26 calculates the generation ii* permissible VAR range (step 5T5).
, and performs display update processing for various display data (step 5T6).

次に前記で求めた発11@許容VAR範囲と、発電VA
R入力手段23から入力した発電VARとから発電増加
可能VAR値算出手段27にて発電増加可能VAR値を
求め、また発電減少可能VAR値算出手段28にて発i
t減少可能VAR値を算出する(ステップ5T7)、次
に調整必要VAR値算出手段7Aにて求めた調整必要V
AR値が受電VARを減少させるべきものか、増加させ
るべきものかを調整必要VAR極性判定手段21にて判
別する(ステップ5T8)。その判別結果から受電VA
Rを減少させるべきものである時には発電VAR増制御
量算出手段29とコンデンサ投入必要量算出手段30に
て前記発電増加可能VAR値が調整必要VAR値以上で
あるか否かを判断しくステップ5T9)、その判断に基
づき発電VAR増制御量と、コンデンサ投入必要量とを
算出する(ステップ5TII、5T12)、一方、調整
必要VAR値の調整必要VAR極性判別手段21におけ
る判断結果が受電MARを増加させるべきものである時
には(ステップ5TIO)、発電VAR減制御量算出手
段31とコンデンサ中外必要量算出手段32とで前記発
!減少可能VAR値が調整必要VAR値以上であるか否
かを判断し、その判断に基づき発電VARfi制御量と
、コンデンサ中外必要量とを算出する(ステップ5T1
3゜5T14)。
Next, the power generation 11 @ allowable VAR range obtained above and the power generation VA
From the power generation VAR inputted from the R input means 23, the power generation increase possible VAR value calculation means 27 calculates the power generation increase possible VAR value, and the power generation decrease possible VAR value calculation means 28 calculates the power generation increase possibility VAR value.
Calculate the VAR value that can be reduced by t (step 5T7), and then calculate the VAR value that requires adjustment calculated by the adjustment-required VAR value calculation means 7A.
The adjustment-required VAR polarity determining means 21 determines whether the AR value should decrease or increase the received power VAR (step 5T8). Based on the determination result, the receiving VA
If R is to be decreased, the power generation VAR increase control amount calculation means 29 and the capacitor input required amount calculation means 30 determine whether or not the power generation increase possible VAR value is equal to or greater than the adjustment required VAR value (step 5T9). , calculates the power generation VAR increase control amount and the required amount of capacitor input based on the judgment (steps 5TII, 5T12).Meanwhile, the judgment result of the adjustment-required VAR polarity determination means 21 of the adjustment-required VAR value increases the power reception MAR. When it is necessary (step 5TIO), the power generation VAR reduction control amount calculation means 31 and the capacitor intermediate/outside required amount calculation means 32 calculate the above-mentioned generation! It is determined whether the VAR value that can be reduced is equal to or greater than the VAR value that requires adjustment, and based on that determination, the power generation VARfi control amount and the required amount of capacitors are calculated (step 5T1
3°5T14).

次に、前記発電VAR増制御量算出手段29で求めた発
tVAR増制御量に対しAVR増制御指令出力手段33
において発1iAVR増制御指令を出力する。またコン
デンサ投入必要量算出手段30で求めたコンデンサ投入
必要量に対してコンデンサ投入指令出力手段9Aからコ
ンデンサ投入指令を出力する(ステップ5T15)、ま
た、発電AVR減制御量纂出手段31にて求めた発電V
AR減制御量に対しては、発電VAR減制御量算出手段
34から発電機AVRtI&制御指令を出力する。また
コンデンサ中外必要量算出手段32にて求めたコンデン
サ中外必要量に対しては、コンデンサ中外指令出力手段
10Aからコンデンサ中外指令を出力する(ステップ5
T16)、以上の結果として、発電VARが増加した分
、あるいはコンデンサを投入した容量分だけ受電VAR
が減少する。あるいは発電VARが減少した分あるいは
コンデンサを中外した容量分だけ受電VARが増加する
。この結果、受電力率が目標値へ接近することとなる。
Next, the AVR increase control command output means 33 corresponds to the generation VAR increase control amount calculated by the power generation VAR increase control amount calculation means 29.
At 1i, an AVR increase control command is output. Further, the capacitor input command output means 9A outputs a capacitor input command for the required capacitor input amount calculated by the capacitor input required amount calculation means 30 (step 5T15), and the power generation AVR reduction control amount output means 31 calculates Power generation V
For the AR reduction control amount, the power generation VAR reduction control amount calculation means 34 outputs a generator AVRtI & control command. Further, for the required amount of capacitor inside and outside calculated by the capacitor inside and outside required amount calculating means 32, a capacitor inside and outside command is outputted from the capacitor inside and outside command output means 10A (step 5
T16), as a result of the above, the received VAR increases by the amount that the generated VAR increases or the capacity of the capacitor added.
decreases. Alternatively, the power receiving VAR increases by the amount that the power generation VAR decreases or the capacity of the capacitor removed. As a result, the power reception rate approaches the target value.

さらに、表示手段35の表示部においては、設定した受
電目標力率や、算出した受電目標力率、検出した発電機
出力有効電力、VAR及び発電力率等の各種データを表
示し、制御状態を常時監視することができるようにする
Further, on the display section of the display means 35, various data such as the set power reception target power factor, the calculated power reception target power factor, the detected generator output active power, VAR and power generation power factor are displayed, and the control status is displayed. To enable constant monitoring.

第2図は第1図の信号の流れを簡略化して示したもので
、受電データと発電データとを各種変換器を経て系統力
率制御装置11Aに取込み、各種演算処理をしてAVR
*J11及びコンデンサ制御を行うものである。
Figure 2 is a simplified diagram of the signal flow shown in Figure 1. Power reception data and power generation data are taken into the system power factor control device 11A via various converters, and are subjected to various arithmetic processing to generate AVR data.
*This is for J11 and capacitor control.

なお上記実施例では、1台の自家発電機が接続されてい
る場合を例にして説明したが、複数台の自家発電機が接
続されている系統においても、1台又は複数台の発電出
力VARを制御する方式のいずれも、上記実施例と同様
の手法で制御を実行することができる。
In the above embodiment, the case where one private generator is connected is explained as an example, but even in a system where multiple private generators are connected, the power generation output VAR of one or more units can be changed. Any of the control methods can be executed in the same manner as in the above embodiment.

また逆に、進相コンデンサの投入/中外しの制御が不可
の場合においては、実施例のコンデンサ投入指令及びコ
ンデンサ中外指令の出力を除外するよう構成しても良く
、上記実施例と同様の効果を奏する。
Conversely, if it is impossible to control the input/input of the phase advance capacitor, the output of the capacitor input command and the capacitor input/output command in the embodiment may be excluded, and the same effect as in the above embodiment can be obtained. play.

なお、発電機が停止し、進相コンデンサ制御のみ有効の
場合には、調整必要VARを全て進相コンデンサの投入
量又は中装置とするこの発明の変形例として同様の効果
を奏する。
Incidentally, when the generator is stopped and only the phase advance capacitor control is effective, the same effect can be achieved as a modification of the present invention in which all the VARs that require adjustment are set to the input amount of the phase advance capacitor or the intermediate device.

この発明の実施例では、受電目標力率と不感帯値とを設
定し、許容受電VAR範囲を算出して制御しているが、
直接許容受電VAR範囲として目標受電VAR値及び不
感帯VAR値を設定する方式としても良い。
In the embodiment of the present invention, the power reception target power factor and dead zone value are set, and the allowable power reception VAR range is calculated and controlled.
A method may also be adopted in which the target power reception VAR value and the dead zone VAR value are directly set as the permissible power reception VAR range.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、受電有効電力及びVA
Rの他に、発電有効電力及びVARとを入力し、発電機
の力率を算出することにより発電許容VAR範囲を算出
し、続いて発電機VAR(増、M)制御量を算出し、そ
の制御量に応じた発電11AVR@?lI指令を出力し
て発電機VARを増減制御すると共に、表示手段におい
て常時制御状態を監視できるように構成したので、自家
発電機を接続した系統の受電力率制御を発電機出力制御
を行うことにより円滑、かつ安全に実施できる他、自家
発ta運転の制御状態の監視を行うことができるので制
御性が向上し、安定した系統運転が行える効果がある。
As described above, according to the present invention, the received active power and VA
In addition to R, the generated active power and VAR are input, and the power factor of the generator is calculated to calculate the power generation allowable VAR range.Then, the generator VAR (increase, M) control amount is calculated, and the Power generation according to control amount 11AVR@? In addition to controlling the increase/decrease of the generator VAR by outputting the lI command, the control status can be constantly monitored on the display means, so that the power reception rate of the system connected to the private generator can be controlled by the generator output control. In addition to being able to perform the system smoothly and safely, the control status of the privately generated TA operation can be monitored, which improves controllability and has the effect of allowing stable system operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による系統力率制御装置の
ブロック構成国、第2図はこの発明の一実施例による信
号の流れを示すブロック図、第3図はこの発明による系
統力率制御装置を適用した受電系統を示す単線図、第4
図はこの発明の一実施例におけるプログラムの制御動作
を説明するフローチャート、第5図は従来の系統力率制
御装置を示す構tc図、第6図は従来の系統力率制御装
置を適用した単線図である。 図において、IAは受電目標力率設定手段、4Aは受電
電力入力手段、6Aは受電電力入力手段、7Aは調整必
要VAR算出手段、9Aはコンデンサ投入指令出力手段
、IOAはコンデンサ中外指令出力手段、11Aは系統
力率制御装置、12は受電力率算出手段、21は調整必
要VAR極性判別手段、22は発電有効電力入力手段、
23は発電VAR入力手段、24は発電力率算出手段、
25は発電機定格値設定手段、26は発電機許容VAR
範囲算出手段、27は発電増加可能VAR値算出手段、
28は発!減少可能VAR値算出手段、29は発tVA
R増制御量算出手段、30はコンデンサ投入必要量算出
手段、31は発電VAR減制御量算出手段、32はコン
デンサ中外必要量算出手段、33はAVR増制御指令出
カ手段、34はAVR減制種制御指令出力手段5は表示
手段である。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a block diagram of a system power factor control device according to an embodiment of the present invention, FIG. 2 is a block diagram showing a signal flow according to an embodiment of the present invention, and FIG. 3 is a system power factor according to an embodiment of the present invention. Single-line diagram showing the power receiving system to which the control device is applied, Part 4
The figure is a flowchart explaining the control operation of the program in one embodiment of the present invention, Figure 5 is a structural diagram showing a conventional system power factor control device, and Figure 6 is a single line to which the conventional system power factor control device is applied. It is a diagram. In the figure, IA is a power reception target power factor setting means, 4A is a reception power input means, 6A is a reception power input means, 7A is a VAR calculation means requiring adjustment, 9A is a capacitor input command output means, IOA is a capacitor inside/out command output means, 11A is a system power factor control device, 12 is a receiving power factor calculation means, 21 is a VAR polarity determining means requiring adjustment, 22 is a generated active power input means,
23 is a power generation VAR input means, 24 is a power generation power factor calculation means,
25 is a generator rated value setting means, 26 is a generator allowable VAR
range calculation means; 27 is a VAR value calculation means capable of increasing power generation;
28 is out! Decreasable VAR value calculation means, 29 is the output tVA
R increase control amount calculation means, 30 is a capacitor input required amount calculation means, 31 is a power generation VAR reduction control amount calculation means, 32 is a capacitor internal/external required amount calculation means, 33 is an AVR increase control command output means, 34 is AVR reduction control The seed control command output means 5 is a display means. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 受電、配電系統に接続され受電有効電力変換器及び受電
無効電力変換器とよりそれぞれ受電データを取込む受電
有効電力入力手段及び受電無効電力入力手段と、前記受
電、配電系統に接続された自家発電機の発電電力変換器
及び発電無効電力変換器とよりそれぞれ発電機データを
取込む発電有効電力入力手段及び発電無効電力入力手段
と、前記受電データより受電力率を算出する受電力率算
出手段と、前記発電機データより発電機力率を算出する
発電力率算出手段と、前記自家発電機の定格値を設定し
、記憶する発電機定格値設定手段と、前記発電有効電力
入力手段、前記発電機力率算出手段、及び前記発電機定
格値設定手段の各データとから、その時点の発電機運転
状態における発電許容無効電力範囲を算出する発電許容
無効電力範囲算出手段と、前記発電許容無効電力範囲算
出手段及び発電無効電力入力手段の各入力データとから
、発電増加可能無効電力値を算出する発電増加可能無効
電力値算出手段及び発電減少可能無効電力値を算出する
発電減少可能無効電力値算出手段と、前記受電有効電力
入力手段及び受電無効電力入力手段から取込んだ受電デ
ータより調整必要無効電力算出手段で算出した調整必要
無効電力値の極性を判別する調整無効電力極性判別手段
と、前記調整必要無効電力極性判別手段と前記発電増加
可能無効電力値算出手段の出力とを比較し、発電無効電
力増制御量を算出する発電無効電力増制御量算出手段と
、前記発電無効電力増制御量算出手段における比較結果
より進相コンデンサの投入必要量を算出するコンデンサ
投入必要量算出手段と、前記調整必要無効電力値極性判
別手段と、前記発電減少可能無効電力値の出力とを比較
し、発電出力無効電力減制御量を算出する発電無効電力
減制御量算出手段と、前記比較結果より進相コンデンサ
の引外し必要量を算出するコンデンサ引外必要量算出手
段と、前記発電無効電力制御量から発電機の電圧調整装
置の増、又は減制御指令をそれぞれ出力する発電機電圧
調整装置増制御指令出力手段及び発電機電圧調整装置減
制御指令出力手段と、前記進相コンデンサの投入、又は
引外し必要量を算出するコンデンサ投入指令出力手段及
びコンデンサ引外指令出力手段と、前記受電力率算出手
段で算出した受電力率や発電力率算出手段で算出した発
電力率等のデータ及び受電目標力率設定手段の少なくと
も設定データ及び発電機データを表示する表示手段とを
備えた系統力率制御装置。
A received active power input means and a received reactive power input means that are connected to the power receiving and distribution systems and respectively receive power data from a received active power converter and a received reactive power converter, and a private power generator that is connected to the power receiving and distribution systems. a generated active power input means and a generated reactive power input means that respectively input generator data from a generated power converter and a generated reactive power converter of the machine; and a received power rate calculation means that calculates a received power rate from the received power data. , a power generation power factor calculation means for calculating a generator power factor from the generator data; a generator rated value setting means for setting and storing a rated value of the private generator; the generated active power input means; A power generation permissible reactive power range calculation means for calculating a power generation permissible reactive power range in the current generator operating state from each data of the power factor calculation means and the generator rated value setting means; From each input data of the range calculation means and the generated reactive power input means, a reactive power value calculation means that can increase the generated reactive power value and a reactive power value that can be decreased the generated reactive power value that calculates the reactive power value that can be decreased. means, adjusted reactive power polarity determination means for determining the polarity of the reactive power value required for adjustment calculated by the reactive power calculation means for adjustment based on the received power data taken in from the received active power input means and the received reactive power input means; A power generation reactive power increase control amount calculation means for calculating a power generation reactive power increase control amount by comparing the output of the reactive power polarity determining means requiring adjustment and the output of the reactive power value calculation means that can increase the power generation, and the power generation reactive power increase control amount. A required capacitor input amount calculation means for calculating the required input amount of a phase advance capacitor from the comparison result in the calculation means, the adjustment required reactive power value polarity determination means, and the output of the reactive power value that can be reduced in power generation, A generated reactive power reduction control amount calculation means for calculating an output reactive power reduction control amount, a capacitor tripping required amount calculation means for calculating a required tripping amount of the phase advance capacitor from the comparison result, and a generated reactive power reduction control amount calculation means for calculating a required tripping amount of the phase advance capacitor from the comparison result. Generator voltage regulator increase control command output means and generator voltage regulator decrease control command output means that respectively output increase or decrease control commands for the generator voltage regulator, and turning on or tripping the phase advance capacitor. A capacitor input command output means and a capacitor trip command output means for calculating the required amount, and data such as the received power rate calculated by the received power rate calculation means and the power generation power factor calculated by the power generation power factor calculation means, and the received power target power. A system power factor control device comprising display means for displaying at least setting data of a factor setting means and generator data.
JP2063461A 1990-03-14 1990-03-14 System power factor controller Pending JPH03263211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2063461A JPH03263211A (en) 1990-03-14 1990-03-14 System power factor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2063461A JPH03263211A (en) 1990-03-14 1990-03-14 System power factor controller

Publications (1)

Publication Number Publication Date
JPH03263211A true JPH03263211A (en) 1991-11-22

Family

ID=13229902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2063461A Pending JPH03263211A (en) 1990-03-14 1990-03-14 System power factor controller

Country Status (1)

Country Link
JP (1) JPH03263211A (en)

Similar Documents

Publication Publication Date Title
EP2704282B1 (en) Voltage control for wind turbine generators
US4064419A (en) Synchronous motor KVAR regulation system
CN108695897B (en) Power control method, device, controller, system and medium for photovoltaic power station
US5424627A (en) Modular thyristor controlled series capacitor control system
EP2936644A1 (en) Method and apparatus for power plant dynamic var regulation and transient stability improvement
CN109617082B (en) Transient stability control method for inhibiting voltage frequency of micro-grid from exceeding limit
CN112821416B (en) Fire-storage combined frequency modulation energy storage power distribution method
CN109698507A (en) A kind of phase modifier and Static Var Compensator control method for coordinating and system
Ozdemir et al. Supervisory control for coordinating volt/var control devices on a distribution system
JPH03263211A (en) System power factor controller
JPH03127212A (en) System power factor controller
JP2003259554A (en) Device and program for voltage and reactive power monitoring control
JP2008182789A (en) Reactive power control system and reactive power control method
JP2003018748A (en) Voltage reactive power monitoring control device and memory medium
KR20150045081A (en) Method and Apparatus for Predictive Contol for Operating Point of FACTS Device
Patel et al. Design of Hybrid Power System Stabilizer for Dynamic Stability Improvement using Cultural Algorithm
US11251619B2 (en) Control of multiple energy storages in a microgrid
JP2672621B2 (en) Static var compensator
JP2002218657A (en) Power generation system
JPH08214459A (en) Controller of reactive power compensating equipment
JPH05244719A (en) Voltage-reactive power controller
JPH027900A (en) Excitation control device of synchronous generator
Kornilov et al. The use of Microprocessor Devices for Automatic Control of the Excitation of Factory Generators
Cheng et al. Non-Disruptive MPC-Based Frequency and Voltage Control in Microgrids
JPH04248400A (en) Automatic voltage controller for generator