JPH03262919A - Magnetic contactless potentiometer - Google Patents

Magnetic contactless potentiometer

Info

Publication number
JPH03262919A
JPH03262919A JP2061459A JP6145990A JPH03262919A JP H03262919 A JPH03262919 A JP H03262919A JP 2061459 A JP2061459 A JP 2061459A JP 6145990 A JP6145990 A JP 6145990A JP H03262919 A JPH03262919 A JP H03262919A
Authority
JP
Japan
Prior art keywords
magnetic
magnet
magnetic field
ferromagnetic magnetoresistive
magnetic track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2061459A
Other languages
Japanese (ja)
Inventor
Shoichi Kubo
久保 正一
Kazunari Kawabe
川邊 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2061459A priority Critical patent/JPH03262919A/en
Publication of JPH03262919A publication Critical patent/JPH03262919A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make an inexpensive magnetic material usable and also to alter a pattern by detecting a signal based upon the intensity of a magnetic field by a ferromagneto-resistance element which faces a magnetic track where the magnetic field intensity varies as a magnet moves. CONSTITUTION:For example, the magnetic intensity of a magnetic track 3A increases linearly and the magnetic field intensity of a magnetic track 3B decreases linearly as the magnet 1 rotates. In this case, the resistance value of an MR1 in a ferromagneto-resistance element block 4 decreases linearly as the magnet 1 rotates. The resistance value of an MR3, on the other hand, increases linearly as the magnet 1 rotates. Therefore, an output signal VA is proportional to variation in the resistance value obtained by adding the resistance decrease of the MR1 and the resistance increase of the MR3. A couple of an MR2 and an MR4 which are connected in opposite-phase relation is opposite in phase from the couple of the MR1 and MR3, so the difference between those output signals VA and VB is calculated to obtain a signal output which is double as large as the signal VA.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、強磁性磁気抵抗素子を用いた磁気式たとえば
、回転角検出用に使用されるポテンショメータは、従来
コンダクティブ・プラスティック(導電性樹脂〉抵抗体
を用いた接点摺動型のものが主流であり、特に一体成形
型のものは、その摺動寿命や回転トルク等の点で優れて
いる。しかしながら、近年のメカトロニクス化の普及に
より、ノイズレス、長寿命、高度な追従性等の要求がさ
らに高まり、これらの要求を満たすために、たとえば、
InSb等の半導体磁気抵抗素子を使用した非接触ポテ
ンショメータが開発された。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a magnetic potentiometer using a ferromagnetic magnetoresistive element, for example, a potentiometer used for rotation angle detection. The mainstream is the sliding contact type, and the one-piece molded type is particularly superior in terms of sliding life, rotational torque, etc. However, with the spread of mechatronics in recent years, noiseless and long-lasting As the demands for longevity, high followability, etc. increase further, in order to meet these demands, for example,
Non-contact potentiometers using semiconductor magnetoresistive elements such as InSb have been developed.

この種の磁気抵抗素子は磁界強度に比例してその抵抗値
が変化するので、磁石と組合せた非接触のポテンショメ
ータとして利用されている。
This type of magnetoresistive element has a resistance value that changes in proportion to the magnetic field strength, so it is used as a non-contact potentiometer in combination with a magnet.

発明が解決しようとする課題 従来の半導体磁気抵抗素子は強磁界を必要としていたの
で高価な希土類磁石などが必要であり、またポテンショ
メータとしては移動に対する出力の変化パターンも限定
されたものであった。
Problems to be Solved by the Invention Conventional semiconductor magnetoresistive elements require a strong magnetic field and therefore require expensive rare earth magnets, and as a potentiometer, the output change pattern with respect to movement is also limited.

本発明は上記従来の問題点を解決し、安価な磁気材料も
使用でき、変化パターンも自由に変えられる磁気式非接
触ポテンショメータを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems, and to provide a magnetic non-contact potentiometer in which inexpensive magnetic materials can be used and the change pattern can be changed freely.

課題を解決するための手段 上記課題を解決するために本発明の磁気式非接触ポテン
ショメータは、フェライト磁石、またはフェライト磁石
粉と樹脂を混合したプラスチック磁石等により磁石を構
成し、この磁石表面に複数の磁気トラックを形成し、こ
の磁気トラックは磁石の移動方向に磁化強度が変化し、
磁化方向は移動方向と直角となるように着磁し、この磁
気トラックに対向配置する強磁性磁気抵抗素子は磁気ト
ラックの移動方向と直角すなわち磁化方向に対して感度
があるように配置する構成としたものである。
Means for Solving the Problems In order to solve the above problems, the magnetic non-contact potentiometer of the present invention includes a magnet made of a ferrite magnet or a plastic magnet made of a mixture of ferrite magnet powder and resin, and a plurality of magnets on the surface of the magnet. This magnetic track forms a magnetic track whose magnetization strength changes in the direction of movement of the magnet.
The magnetization direction is magnetized so that it is perpendicular to the moving direction, and the ferromagnetic magnetoresistive element arranged opposite to this magnetic track is arranged so that it is perpendicular to the moving direction of the magnetic track, that is, it is sensitive to the magnetization direction. This is what I did.

作用 本発明は上記構成により、磁石の移動にしたがって磁界
強さが変化する磁気トラックに対向した強磁性磁気抵抗
素子が、その磁界強さに従った信号を検出するように作
用する。
According to the above-described structure, the ferromagnetic magnetoresistive element facing the magnetic track whose magnetic field strength changes as the magnet moves detects a signal according to the magnetic field strength.

実施例 以下、本発明の一実施例を図面にもとづいて説明する。Example Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図に示すように、円柱状の磁石1の中心にシャフト
2を取付ける。磁石1には磁界強さが所定の値で変化す
る2本の磁気トラック3A。
As shown in FIG. 1, a shaft 2 is attached to the center of a cylindrical magnet 1. The magnet 1 has two magnetic tracks 3A whose magnetic field strength changes at a predetermined value.

3Bが磁気記録されている。その磁化方向は磁気トラッ
クの移動方向(磁石表面の回動方向〉と直角方向(シャ
フト2の軸方向)とし、磁気トラック3Aと3Bの磁界
強さの変化は相互に逆位相となるように磁気記録されて
いる。
3B is magnetically recorded. The direction of magnetization is perpendicular to the direction of movement of the magnetic track (direction of rotation of the magnet surface), and the magnetic field strength of the magnetic tracks 3A and 3B is adjusted so that the changes in magnetic field strength are in opposite phases to each other. recorded.

一方、磁気トラック3A、3Bに対向配置する強磁性磁
気抵抗素子ブロック4は低い磁界でも高感度なNiCo
、NiFeなどの強磁性の薄膜磁気抵抗で構成され、流
れる電流と直角方向の磁界の変化によって抵抗値が増減
するように作用する。強磁性磁気抵抗素子ブロック4の
中で磁気トラック3Aと対向する位置に強磁性磁気抵抗
素子MRIとMR2を配置し、磁気トラック3Bと対向
する位置に強磁性磁気抵抗素子MR3とMR4を配置す
る。強磁性磁気抵抗素子ブロック4の接続は第2図の等
価回路に示すように強磁性磁気抵抗素子MHIとMR3
を、MR2とMR4をそれぞれ直列に接続し、その接続
点から出力信号VA。
On the other hand, the ferromagnetic magnetoresistive element block 4 disposed opposite to the magnetic tracks 3A and 3B is made of NiCo, which is highly sensitive even in a low magnetic field.
It is composed of a ferromagnetic thin film magnetoresistive material such as , NiFe, etc., and acts so that the resistance value increases or decreases depending on the change in the magnetic field in the direction perpendicular to the flowing current. In the ferromagnetic magnetoresistive element block 4, ferromagnetic magnetoresistive elements MRI and MR2 are arranged at positions facing the magnetic track 3A, and ferromagnetic magnetoresistive elements MR3 and MR4 are arranged at positions facing the magnetic track 3B. The ferromagnetic magnetoresistive element block 4 is connected to the ferromagnetic magnetoresistive elements MHI and MR3 as shown in the equivalent circuit of FIG.
, MR2 and MR4 are connected in series, and the output signal VA is obtained from the connection point.

VBをそれぞれ取出し、それぞれの他端側より電源Eに
接続する。
Take out each VB and connect it to the power supply E from the other end of each.

このように構成することにより、たとえば第3図に示す
ように磁石1の回転に対して磁気トラック3Aの磁界強
さは直線増加し、一方磁気トラック3Bの磁界強さは直
線減少するようにしておくと、強磁性磁気抵抗素子ブロ
ック4内のMRIの抵抗値は磁石1の回転に伴って直線
で減少する。
With this configuration, for example, as shown in FIG. 3, the magnetic field strength of the magnetic track 3A increases linearly with respect to the rotation of the magnet 1, while the magnetic field strength of the magnetic track 3B decreases linearly. Then, the resistance value of the MRI in the ferromagnetic magnetoresistive element block 4 decreases linearly as the magnet 1 rotates.

一方MR3の抵抗値は磁石1の回転に伴って直線増加す
る。したがって出力信号VAはMHIの抵抗値減少分と
MR3の抵抗値増加分を加算した抵抗値変化分に比例し
たものとなる。逆相に接続したMR2とMR4の組は前
記MRIとMR3の組と逆相となるのでこの出力信号V
AとVBの差を取ると出力信号VAの2倍の信号出力と
なる。
On the other hand, the resistance value of MR3 increases linearly as the magnet 1 rotates. Therefore, the output signal VA is proportional to the change in resistance value which is the sum of the decrease in the resistance value of MHI and the increase in the resistance value of MR3. Since the pair of MR2 and MR4 connected in opposite phases is in opposite phase to the pair of MRI and MR3, this output signal V
Taking the difference between A and VB results in a signal output that is twice the output signal VA.

なおこの実施例で、強磁性磁気抵抗素子を4個使ってブ
リッジ接続した例を示したが各磁気トラックに1個ずつ
の強磁性磁気抵抗素子を使って2個を直列とし、中点か
ら信号を検出してもよい。
Although this example shows an example in which four ferromagnetic magnetoresistive elements are used in a bridge connection, one ferromagnetic magnetoresistive element is used for each magnetic track, two are connected in series, and the signal is transmitted from the midpoint. may be detected.

つぎに本発明の第2の実施例の温度補償方法を用いた回
路を第6図を用いて説明する。
Next, a circuit using the temperature compensation method according to the second embodiment of the present invention will be explained with reference to FIG.

強磁性磁気抵抗素子ブロック4は温度により抵抗値が増
加するのでその温度補償のため図のような差動増幅回路
を構成している。この増幅回路でにより抵抗値の変わら
ない抵抗器とし、R2には強磁性磁気抵抗素子ブロック
4と同じ材料で作りた同じ温度特性を持つ抵抗器で、で
きれば強磁性磁気抵抗素子ブロック4と同一基板上で同
一材料で作った抵抗器とする。こうすることでMRI。
Since the resistance value of the ferromagnetic magnetoresistive element block 4 increases with temperature, a differential amplifier circuit as shown in the figure is configured to compensate for the temperature. In this amplifier circuit, use a resistor whose resistance value does not change, and for R2, use a resistor with the same temperature characteristics made of the same material as the ferromagnetic magnetoresistive element block 4, preferably on the same substrate as the ferromagnetic magnetoresistive element block 4. Assume that the resistor is made of the same material as above. By doing this, MRI.

MR2,MR3,MR4が持つ抵抗温度特性による出力
変動を補償するこ゛とができる。
It is possible to compensate for output fluctuations due to resistance temperature characteristics of MR2, MR3, and MR4.

つぎに磁気トラック3A、3Bの回転角に対する磁界強
さの変化の各種別を第4図および第5図に示す。第4図
は磁石1が1回転したときにsin波IHzとした場合
で磁気トラック3Aと3Bの磁界強さの変化は相互に1
80度の位相差があり磁界強さはsin波となっている
Next, FIGS. 4 and 5 show various types of changes in magnetic field strength with respect to rotation angles of the magnetic tracks 3A and 3B. Figure 4 shows the case where the magnetic field strength of magnetic tracks 3A and 3B changes by 1 when the magnet 1 rotates once and the magnetic field strength is 1Hz.
There is a phase difference of 80 degrees, and the magnetic field strength is a sine wave.

第5図は磁石1が1回転したときに三角波1比とした場
合で磁気トラック3Aと3Bは相互に180度の位相差
があり磁界強さは三角波となっている。なお、以上回転
する磁石1により説明してきたが、磁石1は回転に限ら
ず、直線移動のリニアポテンショメータとしてもよい。
FIG. 5 shows a case where a triangular wave with a ratio of 1 is generated when the magnet 1 rotates once. The magnetic tracks 3A and 3B have a phase difference of 180 degrees and the magnetic field strength is a triangular wave. Although the above description has been made using the rotating magnet 1, the magnet 1 is not limited to rotating, and may be a linear potentiometer that moves linearly.

また例示のような円柱状でなく円筒状でよく、また円板
状の磁石の平面側に着磁してもよく、さらに円板の表面
と裏面に磁気トラックを配置してもよいものである。ま
た2本の磁気トラックは一体の磁石でなく、たとえば2
個のリング状磁石でもよいものである。また、磁気トラ
ックは2本に限らず多数本設け、強磁性磁気抵抗素子も
それに応じて増加させ増幅回路で加算して検出感度を高
めてもよい。
Further, the magnet may be cylindrical instead of the cylindrical shape shown in the example, and the flat side of the disc-shaped magnet may be magnetized, and magnetic tracks may be arranged on the front and back surfaces of the disc. . Also, the two magnetic tracks are not a single magnet, but for example two magnetic tracks.
A ring-shaped magnet may also be used. Further, the number of magnetic tracks is not limited to two, but a large number may be provided, and the number of ferromagnetic magnetoresistive elements may be increased accordingly, and the detection sensitivity may be increased by adding them using an amplifier circuit.

発明の効果 本発明は以上述べたように、低い磁界で動作させること
ができるので安価な磁気材料を用いることができるとと
もに、構成も簡単で安価な磁気式非接触ポテンショメー
タを作ることができる実用効果の高いものである。
Effects of the Invention As described above, the present invention has the practical effect of being able to operate in a low magnetic field, making it possible to use inexpensive magnetic materials, and producing a magnetic non-contact potentiometer that is simple in construction and inexpensive. It has a high value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の磁気式非接触ポテンショメ
ータの要部構成の斜視図、第2図は強磁性磁気抵抗素子
の接続を示す等価回路図、第3図は磁気トラックにおけ
る磁界強さの変化を示す図、第4図は磁気トラックの磁
界強さの変化の他の例を示す図、第5図は磁気トラック
の磁界強さの変化のさらに他の例を示す図、第6図は本
発明の第2の実施例の温度補償増幅回路を示す回路図で
ある。 1・・・・・・磁石、2・・・・・・シャフト、3A、
3B・・・・・・磁気トラック、4・・・・・・強磁性
磁気抵抗素子ブロック、MRI 、MR2,MR3,M
R4・・・・・・強磁性磁気抵抗素子。
FIG. 1 is a perspective view of the main structure of a magnetic non-contact potentiometer according to an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram showing the connection of a ferromagnetic magnetoresistive element, and FIG. 3 is a diagram showing the strength of the magnetic field in the magnetic track. FIG. 4 is a diagram showing another example of the change in the magnetic field strength of the magnetic track. FIG. 5 is a diagram showing still another example of the change in the magnetic field strength of the magnetic track. The figure is a circuit diagram showing a temperature compensation amplifier circuit according to a second embodiment of the present invention. 1...Magnet, 2...Shaft, 3A,
3B...Magnetic track, 4...Ferromagnetic magnetoresistive element block, MRI, MR2, MR3, M
R4...Ferromagnetic magnetoresistive element.

Claims (4)

【特許請求の範囲】[Claims] (1)同時に移動可能な少なくとも2本の磁気トラック
のそれぞれに対向して検出用の強磁性磁気抵抗素子を配
置し、前記磁気トラックはその移動方向に対する磁界強
度の変化が互いに逆位相であり、かつ磁化方向が磁気ト
ラックの移動方向と直角である磁気式非接触ポテンショ
メータ。
(1) A ferromagnetic magnetoresistive element for detection is arranged opposite to each of at least two simultaneously movable magnetic tracks, and the magnetic tracks have changes in magnetic field strength in opposite phases with respect to the moving direction; and a magnetic non-contact potentiometer whose magnetization direction is perpendicular to the direction of movement of the magnetic track.
(2)強磁性磁気抵抗素子を直列に接続して、その中点
を信号検出端とし、両端に電源を接続した請求項1記載
の磁気式非接触ポテンショメータ。
(2) The magnetic non-contact potentiometer according to claim 1, wherein the ferromagnetic magnetoresistive elements are connected in series, the middle point thereof is used as a signal detection end, and a power source is connected to both ends.
(3)磁気トラックに各2個ずつ対向した強磁性磁気抵
抗素子を有し、同一磁気トラックに対向した強磁性磁気
抵抗素子どうしが対辺になるように検出ブリッジを構成
した請求項1記載の磁気式非接触ポテンショメータ。
(3) The magnetic field according to claim 1, wherein the detection bridge has two ferromagnetic magnetoresistive elements facing each magnetic track, and the detection bridge is configured such that the ferromagnetic magnetoresistive elements facing the same magnetic track are on opposite sides. type non-contact potentiometer.
(4)強磁性磁気抵抗素子と同一素材である抵抗器と、
抵抗温度変化のない抵抗器とで検出電圧を分圧する請求
項1記載の磁気式非接触ポテンショメータ。
(4) A resistor made of the same material as the ferromagnetic magnetoresistive element,
2. The magnetic non-contact potentiometer according to claim 1, wherein the detected voltage is divided by a resistor whose resistance does not change with temperature.
JP2061459A 1990-03-13 1990-03-13 Magnetic contactless potentiometer Pending JPH03262919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2061459A JPH03262919A (en) 1990-03-13 1990-03-13 Magnetic contactless potentiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2061459A JPH03262919A (en) 1990-03-13 1990-03-13 Magnetic contactless potentiometer

Publications (1)

Publication Number Publication Date
JPH03262919A true JPH03262919A (en) 1991-11-22

Family

ID=13171642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2061459A Pending JPH03262919A (en) 1990-03-13 1990-03-13 Magnetic contactless potentiometer

Country Status (1)

Country Link
JP (1) JPH03262919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530355A (en) * 2014-10-14 2017-10-12 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Sensor for determining at least one rotational characteristic of a rotating element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530355A (en) * 2014-10-14 2017-10-12 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Sensor for determining at least one rotational characteristic of a rotating element

Similar Documents

Publication Publication Date Title
US6169396B1 (en) Sensing device for detecting change in an applied magnetic field achieving high accuracy by improved configuration
US6489761B1 (en) Magnetic arrangement for an analog angle encoder
CA1063207A (en) Magnetic field sensing apparatus
JP4117175B2 (en) Rotation angle detector
JPH01297507A (en) Device for magnetically detecting position and speed
EP1031038A1 (en) Magnetic position detector
JPH11304413A (en) Magnetism detecting device
US6014023A (en) High resolution magnetoresistance sensing device with accurate placement of inducing and detecting elements
JPH0350965B2 (en)
JPH10239098A (en) Magnetic detector
JPH03262919A (en) Magnetic contactless potentiometer
JPH0448175B2 (en)
US6211669B1 (en) Magnetic detector with improved noise resistance characteristics
JP2550085B2 (en) Absolute position detector
JPH06147816A (en) Angle sensor
JPH01301113A (en) Signal processing circuit for magneto-resistance element
JPH028171Y2 (en)
RU2307427C2 (en) Magnetoresistive field sensor
JPH05322510A (en) Throttle position sensor
JPH04271425A (en) Contactless position detector
JPS60114714A (en) Magnetic encoder
JPS637856Y2 (en)
JPH0141226B2 (en)
JPH01262414A (en) Magnetic encoder
JPS61189412A (en) Magnetic flux density change detector