JPH03261688A - Sintered apatite compact having cellular surface and production thereof - Google Patents

Sintered apatite compact having cellular surface and production thereof

Info

Publication number
JPH03261688A
JPH03261688A JP2303958A JP30395890A JPH03261688A JP H03261688 A JPH03261688 A JP H03261688A JP 2303958 A JP2303958 A JP 2303958A JP 30395890 A JP30395890 A JP 30395890A JP H03261688 A JPH03261688 A JP H03261688A
Authority
JP
Japan
Prior art keywords
sintered body
apatite
buffer solution
dense
apatite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2303958A
Other languages
Japanese (ja)
Other versions
JP3076598B2 (en
Inventor
Fumie Yasukawa
安川 文恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP02303958A priority Critical patent/JP3076598B2/en
Publication of JPH03261688A publication Critical patent/JPH03261688A/en
Application granted granted Critical
Publication of JP3076598B2 publication Critical patent/JP3076598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To efficiently obtain a sintered apatite compact having the cellular surface and dense central part at a low cost by dipping a dense sintered apatite compact in an acidic buffer solution. CONSTITUTION:One or more apatites selected from hydroxyapatite, fluorapatite and chlorapatite are formed into a desired shape and sintered at 700-1400 deg.C to provide a dense sintered apatite compact, which is then dipped in an acidic buffer solution (e.g. Clark-Lub's buffer solution) at pH2.2-6.0 for 10min to 20hr to cellulate the surface thereof.

Description

【発明の詳細な説明】 「利用分野」 本発明は、表面が多孔質のアパタイト焼結体及びその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to an apatite sintered body having a porous surface and a method for producing the same.

「従来の技術及びその問題点J 多孔質アパタイトは、人工歯根、人工骨等の様々な生体
材料として利用されている。多孔質アパタイトの簡単で
効率の良い製造方法として、カルシウム過剰アパタイト
を800℃以上の温度で焼成して酸化カルシウムを分相
させ、その酸化カルシウムを当該焼結体から溶出除去す
る方法があるが、この方法では分相する酸化カルシウム
の量を調節すること煩雑である。
"Conventional technology and its problems J Porous apatite is used as a variety of biomaterials such as artificial tooth roots and artificial bones. As a simple and efficient manufacturing method for porous apatite, calcium-rich apatite is heated to 800℃. There is a method in which calcium oxide is phase-separated by firing at a temperature above, and the calcium oxide is eluted and removed from the sintered body, but in this method, it is complicated to adjust the amount of phase-separated calcium oxide.

また、セラミックス基板上に多孔質膜を設ける方法とし
て、特開昭61−213056号公報には、湿式法で製
造されたリン酸カルシウムを約500〜1000°Cで
仮焼成して成形体用原料粉末とし、これにバインダを混
合して所望の形態に成形した後、前記成形体用原料粉末
を別のバインダでスラリー状態としたものを前記成形物
に塗布・乾燥し、焼成することが開示されている。しか
し、この方法ではバインダーを使用するため、製造コス
トが高くなる。
Furthermore, as a method for forming a porous film on a ceramic substrate, Japanese Patent Application Laid-Open No. 61-213056 discloses that calcium phosphate produced by a wet method is pre-sintered at about 500 to 1000°C and used as raw material powder for a molded body. , it is disclosed that after mixing a binder with this and molding it into a desired shape, the raw material powder for the molded body is made into a slurry state with another binder and then applied to the molded product, dried, and fired. . However, since this method uses a binder, manufacturing costs are high.

さらに特開昭62−297284号公報には、溶射によ
ってリン酸カルシウム膜を形成することが開示されてい
る。しかし、この方法では膜の付着強度が低く、また、
細孔径のコントロールが困難である。
Furthermore, Japanese Patent Laid-Open No. 62-297284 discloses forming a calcium phosphate film by thermal spraying. However, with this method, the adhesion strength of the film is low, and
Difficult to control pore size.

「発明の目的ゴ 本発明は、表面が多孔質で、中心部は緻密質であるアパ
タイト焼結体及びこのような焼結体を極めて簡単な操作
で、安価に効率よく製造しうる方法を提供することを目
的とする。
The present invention provides an apatite sintered body having a porous surface and a dense center, and a method for efficiently producing such a sintered body at low cost and with extremely simple operations. The purpose is to

「発明の構成」 本発明による表面が多孔質のアパタイト焼結体は、緻密
質アパタイト焼結体を酸性の緩衝液に接触させることに
よって得られたものであることを特徴とする。
"Structure of the Invention" The apatite sintered body with a porous surface according to the present invention is characterized in that it is obtained by contacting a dense apatite sintered body with an acidic buffer solution.

本発明に使用しうる緻密質アパタイト焼結体は、ハイド
ロキシアパタイト、フッ素アパタイト及び塩素アパタイ
トのうちの1種以上から威るものであればよく、2種以
上のアパタイトから戒る場合には、全体が2種以上のア
パタイトの混合物から成るものでも、表面だけ別種のア
パタイトから成るものでもよい。後者の例として、化学
処理によってハイドロキシアパタイトの表面をフッ素ア
パタイトに変えたものなどがある。
The dense apatite sintered body that can be used in the present invention may be made of one or more of hydroxyapatite, fluoroapatite, and chlorapatite, and if two or more types of apatite are avoided, the whole The surface may be made of a mixture of two or more types of apatite, or only the surface may be made of different types of apatite. An example of the latter is one in which the surface of hydroxyapatite is changed to fluoroapatite through chemical treatment.

本発明に使用する緻密質アパタイト焼結体は、常法で製
造した各種のアパタイトを粉末又はスラリーの状態で用
いて所望の形状に成形し、焼結させることによって得ら
れる。成形法としては、乾式成形でも、湿式成形でも特
に制限はなく、注型法、押出成形法、射出成形法、圧縮
成形法などを適用することができる。焼結は、通常、7
00〜1400℃、好ましくは900〜1200℃で行
う。
The dense apatite sintered body used in the present invention can be obtained by molding various types of apatite produced by conventional methods in the form of powder or slurry into a desired shape and sintering. The molding method is not particularly limited, whether dry molding or wet molding, and casting methods, extrusion molding methods, injection molding methods, compression molding methods, etc. can be applied. Sintering is usually 7
It is carried out at a temperature of 00 to 1400°C, preferably 900 to 1200°C.

また、本発明に使用しうる緩衝液としては、任意の酸性
の緩衝液を用いることができるが、リン酸を含む緩衝液
は、リン酸がカルシウムと反応し、沈澱が生じ、緩衝作
用が低くなるので、好ましくない。使用しうる緩衝液と
しては、例えば、クラーク−ラプス(C1ark−Lu
bs)緩衝液、セーレンセン(Sφrensen)緩衝
液、コルトフ(Kalthoff)緩衝液、ミバエリス
(Michaelis)緩衝液、マツキルベイン(Mc
llvaine)緩衝液、ワルボール(Walpole
)緩衝液などが挙げられる。これらのうち、pHが6.
0以下のものが好ましく、pH2,2〜6.0の範囲の
ものがより好ましい。本発明においては、酸によりアパ
タイト焼結体の表面が部分的に溶解して多孔質化するの
で、酸が強ければ、それだけ速く多孔質化する。
Furthermore, any acidic buffer can be used as the buffer that can be used in the present invention, but buffers containing phosphoric acid react with calcium and form precipitates, resulting in poor buffering action. Therefore, it is not desirable. Examples of buffers that can be used include Clark-Lu
bs) buffer, Sφrensen buffer, Kalthoff buffer, Michaelis buffer, pine kilvain (Mc
llvaine buffer, Walpole
) buffer solutions, etc. Among these, pH is 6.
A pH of 0 or less is preferable, and a pH of 2.2 to 6.0 is more preferable. In the present invention, the surface of the apatite sintered body is partially dissolved by the acid and becomes porous, so the stronger the acid, the faster the surface becomes porous.

本発明による表面が多孔質のアパタイト焼結体は、上記
のように、緻密質アパタイト焼結体を酸性の緩衝液に接
触させることによって製造される。
The apatite sintered body with a porous surface according to the present invention is produced by bringing a dense apatite sintered body into contact with an acidic buffer solution, as described above.

接触の方法には、特に制限はないが、一般に、浸漬する
ことによって接触させるのが好ましい。接触時間は、使
用した緩衝剤のpHによって変動し、所望の表面多孔度
に応じて緩衝液のpH及び接触時間を適宜決定する。表
面を多孔質化するには、接触時間は、通常、pH2,2
では、約10分以上、I)H3,0では約30分以上、
pH6,0では約20時間以上である。
There are no particular restrictions on the method of contact, but it is generally preferable to contact by immersion. The contact time varies depending on the pH of the buffer used, and the pH of the buffer and the contact time are appropriately determined depending on the desired surface porosity. To make the surface porous, the contact time is typically adjusted to pH 2.2.
Then, about 10 minutes or more, I) H3,0 about 30 minutes or more,
At pH 6.0, it is about 20 hours or more.

このように、所定時間の間緩衝液に接触させることによ
り表面層が一様にエツチングされないで多孔質化される
メカニズムは、未だ完全には解明されてはいないが、緩
衝液による溶解作用が比較的緩和であって、まず、粒界
(grain boundary)で溶解が起こり、そ
こから溶解が進行するものと考えられる。接触を続ける
と、始めは孔の数が少ないが、徐々に孔が増加する。あ
る一定のところまで増加すると、それ以上接触を続けて
も表面の構造は変化せず、後は焼結体全体が徐々に小さ
くなっていく。
Although the mechanism by which the surface layer is not uniformly etched and becomes porous by contact with a buffer solution for a predetermined period of time has not yet been completely elucidated, the dissolution effect of the buffer solution is compared. It is thought that dissolution occurs first at grain boundaries and then progresses from there. As the contact continues, the number of pores is small at first, but gradually increases. Once the size reaches a certain point, the surface structure will not change even if the contact continues, and the size of the sintered body will gradually become smaller.

「発明の実施例J 次に、実施例に基づいて本発明をさらに詳しく説明する
が、本発明はこれ↓;よって制限されるものではない。
Example J of the Invention Next, the present invention will be explained in more detail based on Examples, but the present invention is not limited thereby.

実施例1 湿式法により合成したCa/P比が1.67のハイドロ
キシアパタイトスラリーを噴霧乾燥により粉末化し、1
96MPaの静水圧プレスで圧粉体を作製した。この圧
粉体を1050℃で4時間焼成し、直径5m、長さ20
mmの円柱形の緻密質焼結体を製造した。その後、この
焼結体をクエン酸とクエン酸ナトリウムを含むpH3,
0の0.1 Mクエン酸緩衝液中に1時間浸漬し、乾燥
後、その表面を電子顕微鏡により観察した。このときの
顕微鏡写真(1000倍)を第1図に示す。
Example 1 A hydroxyapatite slurry with a Ca/P ratio of 1.67 synthesized by a wet method was powdered by spray drying, and 1
A green compact was produced using a 96 MPa hydrostatic press. This green compact was fired at 1050℃ for 4 hours, and the diameter was 5m and the length was 20mm.
A dense sintered body having a cylindrical shape of mm was manufactured. After that, this sintered body was mixed with pH 3 containing citric acid and sodium citrate.
After drying, the surface was observed using an electron microscope. A micrograph (1000x magnification) at this time is shown in FIG.

さらに、同じ焼結体を同じ緩衝液に48時間浸漬したも
のの顕微鏡写真(400倍)を第2図に示す。
Further, FIG. 2 shows a micrograph (400x magnification) of the same sintered body immersed in the same buffer solution for 48 hours.

無処理の焼結体及び48時間浸漬処理した焼結体の3点
曲げ強度を測定したところ、第1表に示す結果を得た。
The three-point bending strength of the untreated sintered body and the sintered body immersed for 48 hours was measured, and the results shown in Table 1 were obtained.

第1表 第1表に示した結果から判るとおり、酸に浸漬すること
によって強度は多少低下するが、平均値が2000kg
/aIr台を維持していることから、通常の緻密体製品
と同等の強度を持ち、充分に実用に耐えると判定するこ
とかできる。
Table 1 As can be seen from the results shown in Table 1, the strength decreases somewhat due to immersion in acid, but the average value is 2000 kg.
/aIr level, it can be judged that it has the same strength as a normal dense body product and is sufficiently durable for practical use.

実施例2 実施例1と同様にして製造したハイドロキシアパタイト
緻密質焼結体を塩酸とフタル酸水素ナトリウムを含むp
H2,2の0.2M塩酸緩衝液中に1時間及び24時間
浸漬し、乾燥後、その表面を電子顕微鏡により観察した
。このときの顕微鏡写真(400倍)をそれぞれ第3図
及び第4図に示す。
Example 2 A hydroxyapatite dense sintered body produced in the same manner as in Example 1 was treated with p containing hydrochloric acid and sodium hydrogen phthalate.
It was immersed in a 0.2M hydrochloric acid buffer of H2,2 for 1 hour and 24 hours, and after drying, the surface was observed using an electron microscope. Microscopic photographs (400x magnification) at this time are shown in FIGS. 3 and 4, respectively.

実施例3 実施例1と同様にして製造したハイドロキシアパタイト
緻密質焼結体をクエン酸とクエン酸ナトリウムを含むp
H6,0の0.1Mクエン酸緩衝液中に1週間浸漬し、
乾燥後、その表面を電子顕微鏡により観察した。このと
きの顕微鏡写真(400倍)を第5図に示す。
Example 3 A hydroxyapatite dense sintered body produced in the same manner as in Example 1 was mixed with p containing citric acid and sodium citrate.
Soaked in H6,0 0.1M citrate buffer for one week,
After drying, the surface was observed using an electron microscope. A micrograph (400x magnification) at this time is shown in FIG.

比較例1 クエン酸緩衝液の代わりに10−N塩酸(pH3,0)
を用いた以外は、実施例1と同様に操作した。得られた
焼結体の表面を電子顕微鏡で観察した。塩酸に1時間浸
漬した焼結体の表面の電子顕微鏡写真(1000倍)を
第6図、24時間浸漬した焼結体の表面の電子顕微鏡写
真(1000倍)を第7図に示す。
Comparative Example 1 10-N hydrochloric acid (pH 3,0) instead of citric acid buffer
The procedure was the same as in Example 1 except that . The surface of the obtained sintered body was observed using an electron microscope. FIG. 6 shows an electron micrograph (1000x) of the surface of the sintered body immersed in hydrochloric acid for 1 hour, and FIG. 7 shows an electron micrograph (1000x) of the surface of the sintered body immersed for 24 hours.

「発明の効果」 本発明の方法によれば、極めて簡単に効率よく安価に表
面が多孔質のアパタイト焼結体を製造することができる
。本発明によるアパタイト焼結体は、表面層が多孔質で
、中心部は緻密質であるから、強度において著しく優れ
ている。また、表面に活性の高い多孔質アパタイト層を
有するため、本発明によるアパタイト焼結体は、吸着剤
、分離剤、生体材料、バイオリアクター、センサーなど
として有用である。
"Effects of the Invention" According to the method of the present invention, an apatite sintered body with a porous surface can be produced extremely simply, efficiently, and at low cost. Since the apatite sintered body according to the present invention has a porous surface layer and a dense core, it has extremely high strength. Moreover, since it has a highly active porous apatite layer on its surface, the apatite sintered body according to the present invention is useful as an adsorbent, a separation agent, a biological material, a bioreactor, a sensor, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で浸漬時間1時間で製造したアパタイ
ト焼結体表面の粒子構造を示す電子顕微鏡写真(100
0倍)、第2図は実施例1で浸漬時間48時間で製造し
たアパタイト焼結体表面の粒子構造を示す電子顕微鏡写
真(400倍)、第3図は実施例2で浸漬時間1時間で
製造したアパタイト焼結体表面の粒子構造を示す電子顕
微鏡写真(400倍)、第4図は実施例2で浸漬時間2
4時間で製造したアパタイト焼結体表面の粒子構造を示
す電子顕微鏡写真(400倍)、第5図は実施例3で製
造したアパタイト焼結体表面の粒子構造を示す電子顕微
鏡写真(400倍)、第6図は比較例1で浸漬時間1時
間で製造したアパタイト焼結体表面の粒子構造を示す電
子顕微鏡写真(1000倍)、第7図は比較例1で浸漬
時間24時間で製造したアパタイト焼結体表面の粒子構
造を示す電子顕微鏡写真(1000倍)である。
Figure 1 is an electron micrograph showing the particle structure of the surface of the apatite sintered body produced in Example 1 with a immersion time of 1 hour (100
0x), Figure 2 is an electron micrograph (400x) showing the particle structure of the surface of the apatite sintered body produced in Example 1 with an immersion time of 48 hours, and Figure 3 is an electron micrograph (400x) showing the particle structure of the surface of the apatite sintered body produced in Example 2 with an immersion time of 1 hour. An electron micrograph (400x magnification) showing the particle structure of the surface of the produced apatite sintered body, Figure 4 shows the immersion time of 2 in Example 2.
An electron micrograph (400x) showing the particle structure on the surface of the apatite sintered body produced in 4 hours. Figure 5 is an electron micrograph (400x) showing the particle structure on the surface of the apatite sintered body produced in Example 3. , Figure 6 is an electron micrograph (1000x) showing the particle structure of the surface of the apatite sintered body produced in Comparative Example 1 with a immersion time of 1 hour, and Figure 7 is an apatite produced in Comparative Example 1 with a immersion time of 24 hours. This is an electron micrograph (1000x magnification) showing the grain structure on the surface of the sintered body.

Claims (9)

【特許請求の範囲】[Claims] (1)緻密質アパタイト焼結体を酸性の緩衝液に接触さ
せることによって得られた表面が多孔質のアパタイト焼
結体。
(1) An apatite sintered body with a porous surface obtained by contacting a dense apatite sintered body with an acidic buffer solution.
(2)アパタイト焼結体がハイドロキシアパタイト、フ
ッ素アパタイト及び塩素アパタイトのうちの1種以上か
ら成るものである請求項1記載の表面が多孔質のアパタ
イト焼結体。
(2) The apatite sintered body having a porous surface according to claim 1, wherein the apatite sintered body is composed of one or more of hydroxyapatite, fluoroapatite, and chloroapatite.
(3)緩衝液がpH6.0以下のものである請求項1記
載の表面が多孔質のアパタイト焼結体。
(3) The apatite sintered body with a porous surface according to claim 1, wherein the buffer solution has a pH of 6.0 or less.
(4)緩衝液がpH2.2〜6.0のものである請求項
1記載の表面が多孔質のアパタイト焼結体。
(4) The apatite sintered body with a porous surface according to claim 1, wherein the buffer solution has a pH of 2.2 to 6.0.
(5)緻密質アパタイト焼結体を酸性の緩衝液に接触さ
せることを特徴とする表面が多孔質のアパタイト焼結体
の製造方法。
(5) A method for producing an apatite sintered body with a porous surface, which comprises bringing the dense apatite sintered body into contact with an acidic buffer solution.
(6)緻密質アパタイト焼結体を緩衝液中に浸漬するこ
とにより、緩衝液に接触させる請求項5記載の表面が多
孔質のアパタイト焼結体の製造方法。
(6) The method for producing an apatite sintered body having a porous surface according to claim 5, wherein the dense apatite sintered body is brought into contact with the buffer solution by immersing the dense apatite sintered body in the buffer solution.
(7)アパタイト焼結体がハイドロキシアパタイト、フ
ッ素アパタイト及び塩素アパタイトのうちの1種以上か
ら成るものである請求項5記載の表面が多孔質のアパタ
イト焼結体の製造方法。
(7) The method for producing an apatite sintered body with a porous surface according to claim 5, wherein the apatite sintered body is made of one or more of hydroxyapatite, fluoroapatite, and chloroapatite.
(8)緩衝液がpH6.0以下のものである請求項5記
載の表面が多孔質のアパタイト焼結体の製造方法。
(8) The method for producing an apatite sintered body with a porous surface according to claim 5, wherein the buffer solution has a pH of 6.0 or less.
(9)緩衝液がpH2.2〜6.0のものである請求項
5記載の表面が多孔質のアパタイト焼結体の製造方法。
(9) The method for producing an apatite sintered body with a porous surface according to claim 5, wherein the buffer solution has a pH of 2.2 to 6.0.
JP02303958A 1989-11-10 1990-11-13 Apatite sintered body having a porous surface and method for producing the same Expired - Fee Related JP3076598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02303958A JP3076598B2 (en) 1989-11-10 1990-11-13 Apatite sintered body having a porous surface and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-293723 1989-11-10
JP29372389 1989-11-10
JP02303958A JP3076598B2 (en) 1989-11-10 1990-11-13 Apatite sintered body having a porous surface and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03261688A true JPH03261688A (en) 1991-11-21
JP3076598B2 JP3076598B2 (en) 2000-08-14

Family

ID=26559543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02303958A Expired - Fee Related JP3076598B2 (en) 1989-11-10 1990-11-13 Apatite sintered body having a porous surface and method for producing the same

Country Status (1)

Country Link
JP (1) JP3076598B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022074951A1 (en) * 2020-10-07 2022-04-14 国立研究開発法人理化学研究所 Three-dimensional shaped object, method for manufacturing same, and control program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022074951A1 (en) * 2020-10-07 2022-04-14 国立研究開発法人理化学研究所 Three-dimensional shaped object, method for manufacturing same, and control program

Also Published As

Publication number Publication date
JP3076598B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
US5017518A (en) Process for producing calcium phosphate ceramics having porous surface
EP0313090B1 (en) Porous ceramic material
US5185177A (en) Producing a ceramic implant by coating a powder mixture of zirconia and either tricalcium phosphate or hydroxyapatite on a molded unsintered body of partially stabilized zirconia and then sintering the article
JP2008541958A (en) Modeled product
JP3718708B2 (en) Calcium phosphate bioceramic sintered body and method for producing the same
JP4888930B2 (en) Method for producing calcium phosphate bone filling material
US7687138B2 (en) Porous calcium phosphate ceramic and method for producing same
EP0276105B1 (en) Process for production of ceramic shaped product having granule layer on the surface and ceramic implant material
KR20020014034A (en) Cancellous bone type bone filler and process for its production
US5215941A (en) Process for producing a sintered apatite article having a porous surface using an acidic buffer solution
JPH0720486B2 (en) Calcium phosphate-based bioprosthetic material and method for producing the same
JPH02182261A (en) Preparation of ceramic member for living body
JPH03261688A (en) Sintered apatite compact having cellular surface and production thereof
Swain Processing of porous hydroxyapatite scaffold
JP2002320667A (en) Material buried in living body and its manufacturing method
JPH03141181A (en) Production of alumina ceramic having improved surface
JP3873085B2 (en) Calcium phosphate porous sintered body and method for producing the same
JP7455305B2 (en) Manufacturing method of zirconia material
JP3619869B2 (en) Artificial bone
CN100366301C (en) Coral hydroxyapatite artificial bone with betatype tricalcium phosphate coating and its preparation
KR101219871B1 (en) Method for preparing porous strut of biomaterials and porous strut of biomaterials prepared thereby
JPS61242978A (en) Vital body substitute ceramic material
WO2024029412A1 (en) Silica-(calcium phosphate) composite block body, and method for producing silica-(calcium phosphate) composite block body
JP2696345B2 (en) Calcium phosphate ceramic sintered body
JPH06237984A (en) Bioimplant material and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees