JPH03260017A - Manufacture of nonoriented electromagnetic steel strip - Google Patents

Manufacture of nonoriented electromagnetic steel strip

Info

Publication number
JPH03260017A
JPH03260017A JP2058141A JP5814190A JPH03260017A JP H03260017 A JPH03260017 A JP H03260017A JP 2058141 A JP2058141 A JP 2058141A JP 5814190 A JP5814190 A JP 5814190A JP H03260017 A JPH03260017 A JP H03260017A
Authority
JP
Japan
Prior art keywords
hot
rolling
steel
rolled
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2058141A
Other languages
Japanese (ja)
Other versions
JPH07116513B2 (en
Inventor
Akihiko Nishimoto
昭彦 西本
Yoshihiro Hosoya
佳弘 細谷
Toshiaki Urabe
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2058141A priority Critical patent/JPH07116513B2/en
Publication of JPH03260017A publication Critical patent/JPH03260017A/en
Publication of JPH07116513B2 publication Critical patent/JPH07116513B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a nonoriented electromagnetic steel plate having excellent magnetic characteristic and surface characteristic by forming the specific composition of molten steel composed of Si, C, Al, N to the specific structure of a cast strip and executing annealing, cold rolling and annealing after executing a specific hot rolling. CONSTITUTION:A molten steel composed of 1.7-7.0wt.% Si, <=0.005% C, 0.001-1.5% Al, <=0.003% ., <=7.5% Si+Al and the balance Fe with inevitable impurities is formed to a cast strip having <=50mm thickness composed of columnar crystal with 0.5-2mm grain interval. The cast strip is directly or again heated and hot-rolled and the rolling is completed at >=600 deg.C and the draft is made to 80-95%. After annealing this hot rolled plate, the cold rolling or warm rolling is executed and successively, by executing the finish annealing, recrystallization and grain growth of ferrite structure are executed. By this method, the nonoriented electromagnetic steel plate having a desinable balance between iron loss and magnetic flux density, is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気特性及び表面性状に優れた無方向性電磁
鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a non-oriented electrical steel sheet with excellent magnetic properties and surface properties.

〔従来技術及び発明が解決しようとする課題〕無方向性
電磁鋼板は方向性電磁鋼板に比べ磁気特性における異方
性が小さく、このため一般、的に回転機の鉄芯に使用さ
れている。また、方向性電磁鋼板に比べ安価であるため
、一部は変圧器あるいは安定器等の静止器にも適用され
ている。無方向性電磁鋼板に要求される特性値は主に鉄
損と磁束密度であり、鉄損が低く磁束密度の高い、良好
な磁束密度−鉄損バランスを有するものが要求される。
[Prior Art and Problems to be Solved by the Invention] Non-oriented electrical steel sheets have less anisotropy in magnetic properties than grain-oriented electrical steel sheets, and therefore are generally used for iron cores of rotating machines. In addition, since it is cheaper than grain-oriented electrical steel sheets, some of it is also applied to static devices such as transformers and ballasts. The characteristic values required of a non-oriented electrical steel sheet are mainly iron loss and magnetic flux density, and it is required to have a good magnetic flux density-iron loss balance with low iron loss and high magnetic flux density.

また、無方向性電磁鋼板は打抜き後積層して鉄芯として
使用されるが、鋼板の平坦度が劣ると占積率が低下し、
回転機の効率が悪くなるため、鋼板の表面性状が良好で
あることも要求される。
In addition, non-oriented electrical steel sheets are laminated after punching and used as iron cores, but if the flatness of the steel sheets is poor, the space factor will decrease,
Since the efficiency of the rotating machine deteriorates, the surface quality of the steel plate is also required to be good.

従来、良好な磁気特性を有する無方向性電磁鋼板を製造
するために、数々の製造技術が開示されている。磁気特
性の中でも磁束密度は鋼板の集合組織と密接な関係があ
り、磁化容易軸である(100)  軸を鋼板表面にで
きるだけ多く集積させることが重要な点である。そのた
めに、熱延板焼鈍により熱延板組織を改良する技術、冷
圧率を適正化することにより、続いて行う焼鈍時の再結
晶集合組織を制御する技術、あるいは冷圧、焼鈍を2回
以上行うことにより磁気特性に好ましい集合組織へと淘
太していく技術などが開示されている。
Conventionally, a number of manufacturing techniques have been disclosed in order to manufacture non-oriented electrical steel sheets having good magnetic properties. Among magnetic properties, the magnetic flux density is closely related to the texture of the steel sheet, and it is important to accumulate as many (100) axes, which are easy magnetization axes, on the surface of the steel sheet as possible. To this end, we have developed technologies to improve the hot-rolled sheet structure through hot-rolled sheet annealing, techniques to control the recrystallized texture during subsequent annealing by optimizing the cold-rolling rate, or cold-rolling and annealing twice. Techniques have been disclosed in which, by performing the above steps, the texture is reduced to a texture preferable for magnetic properties.

ここで、最終焼鈍後の集合組織は、前工程における冷圧
、熱間圧延および凝固段階での集合組織に大きく左右さ
れるものであり、溶鋼が固体状態となる凝固段階から集
合組織の制御を行わねばならない。ところが、上記した
従来の技術はいずれも、厚さ約200mの連続鋳造スラ
ブを熱間圧延して熱延板とした上で、それ以降の集合組
織を改善しようとする技術であり、プロセス上の制約か
ら集合組織の改善に対して本質的なアプローチをしたも
のとはなっていなかった6 一方、近年、熱間圧延工程を省略し、溶鋼を従来の熱延
板厚程度の鋳片に鋳造し、これをそのまま冷間圧延する
技術(特開昭63−60227号)、或いは鋳造により
直接最終板厚の鋼板を得る技術(特開昭59−9621
9号)が開示されている。
Here, the texture after the final annealing is largely influenced by the texture in the cold rolling, hot rolling, and solidification stages in the previous process, and the texture should be controlled from the solidification stage when the molten steel becomes a solid state. Must be done. However, all of the above-mentioned conventional techniques involve hot rolling a continuously cast slab approximately 200 m thick into a hot-rolled plate, and then improving the subsequent texture. Due to constraints, no fundamental approach has been taken to improve the texture.6 On the other hand, in recent years, the hot rolling process has been omitted and molten steel has been cast into slabs with the same thickness as conventional hot rolled sheets. , the technology of cold-rolling this directly (Japanese Patent Application Laid-Open No. 63-60227), or the technology of directly obtaining a steel plate of the final thickness by casting (Japanese Patent Application Laid-Open No. 59-9621).
No. 9) has been disclosed.

鋳造段階での鋳片厚さが薄くなると凝固速度が大きくな
り、柱状晶の発達が促進される。この柱状晶は(100
)  (uvv)組織を有し、磁化容易軸を最も多く含
んだ集合組織であり、また、この磁化容易軸が鋼板表面
にランダムに向いているため無方向性電磁鋼の集合組織
として好ましいものである。
When the slab thickness at the casting stage becomes thinner, the solidification rate increases and the development of columnar crystals is promoted. This columnar crystal is (100
) (uvv) structure, and contains the largest number of easy axes of magnetization, and since the easy axes of magnetization are oriented randomly on the surface of the steel sheet, it is preferable as a texture for non-oriented electrical steel. be.

前述した2つの技術は、このような磁気特性に良好な集
合組織をできるだけ最終焼鈍後まで維持させようとする
技術であるが、反面、鋼板表面性状が劣化するという問
題がある。すなわち、前者の技術では、従来の熱延板組
織に比べ粗大な柱状組織を冷間圧延するため、リジング
の発生に起因する表面粗度および板厚の精度の劣化が不
可避である。また後者の技術においても、溶湯から直接
最終板厚とするため、板厚精度の管理が実生産上極めて
困難となる。
The two techniques described above are techniques that attempt to maintain the texture with good magnetic properties as much as possible until after the final annealing, but on the other hand, there is a problem that the surface properties of the steel sheet deteriorate. That is, in the former technique, since a coarse columnar structure is cold-rolled compared to a conventional hot-rolled sheet structure, deterioration in surface roughness and sheet thickness accuracy due to occurrence of ridging is inevitable. In the latter technique as well, since the final plate thickness is obtained directly from the molten metal, it is extremely difficult to control the plate thickness accuracy in actual production.

本発明はこのような従来の問題に鑑みなされたもので、
変態の起こらないα単相の無方向性電磁鋼板において、
薄スラブ法を適用し、且つその熱延条件を適正化するこ
とにより、磁気特性及び表面性状に優れた無方向性電磁
鋼板の製造を可能としたものである。
The present invention was made in view of such conventional problems,
In α single-phase non-oriented electrical steel sheet where transformation does not occur,
By applying the thin slab method and optimizing the hot rolling conditions, it has become possible to manufacture non-oriented electrical steel sheets with excellent magnetic properties and surface properties.

すなわち、本発明は、重量%で、Si:1.7〜7.0
%、C≦o、oos%、M : 0,001〜1.5%
、N≦0.003%、Si+Al≦7.5%、残部Fe
および不可避的不純物からなる溶鋼を、粒間隔が0.5
〜2閣の柱状晶からなる厚さ50m以下の薄鋳片とし、
該薄鋳片を直接または再加熱した後、圧延終了温度60
0℃以上。
That is, in the present invention, in weight %, Si: 1.7 to 7.0
%, C≦o, oos%, M: 0,001-1.5%
, N≦0.003%, Si+Al≦7.5%, balance Fe
and unavoidable impurities, the grain spacing is 0.5.
A thin cast slab with a thickness of 50 m or less consisting of ~2 columnar crystals,
Directly or after reheating the thin slab, the rolling end temperature is 60
0℃ or higher.

圧下率80〜95%の熱間圧延を行い、該熱延板を熱延
板焼鈍した後、冷間圧延または温間圧延を施し、しかる
後焼鈍を行うことをその特徴とする。
The feature is that hot rolling is performed at a rolling reduction of 80 to 95%, the hot rolled sheet is annealed, then cold rolling or warm rolling is performed, and then annealing is performed.

〔課題を解決するための手段〕[Means to solve the problem]

以下、本発明の詳細をその限定理由とともに説明する。 Hereinafter, the details of the present invention will be explained together with the reasons for its limitations.

無方向性電磁鋼板の集合組織を磁気特性上良好なものと
するためには、溶鋼を鋳造した直後の凝固組織および熱
延後の集合組織を改善することが重要である。従来、熱
延板以降の集合組織の制御方法については数々の技術が
開示されている。しかし、熱間圧延時の圧下率が集合組
織および鋼板の表面性状に及ぼす影響については、未だ
明らかにされた例はない。これは、従来では連続鋳造に
よる約200++w程度のスラブを素材とすることが常
法となっており、且つ、冷延圧下率の制約上、熱延板の
板厚は約2IIm1程度にせざるを得ないことから、熱
延圧下率にほとんど選択の余地がなかったことによるも
のである。
In order to make the texture of a non-oriented electrical steel sheet good in terms of magnetic properties, it is important to improve the solidification structure immediately after casting molten steel and the texture after hot rolling. Conventionally, a number of techniques have been disclosed for controlling the texture of hot-rolled sheets and subsequent sheets. However, the effect of the rolling reduction during hot rolling on the texture and surface properties of a steel sheet has not yet been clarified. Conventionally, the conventional method is to use continuous casting slabs of about 200++w as raw materials, and due to restrictions on cold rolling reduction, the thickness of hot-rolled sheets has to be about 2IIm1. This is because there was almost no choice in the hot rolling reduction ratio.

これに対し本発明者らは、上記熱間圧延時の圧下率と集
合組織および鋼板の表面性状との関係に着目し、Si量
を1.7%以上含有したα単相鋼において、鋳片の厚さ
を変え、熱間圧延段階における圧下率が磁束密度に及ぼ
す影響についてまず検討を行なった。その結果、熱延圧
下率が小さくなるほど磁束密度が高くなることが明らか
となった。
On the other hand, the present inventors focused on the relationship between the rolling reduction during hot rolling, the texture, and the surface properties of the steel sheet, and in α single-phase steel containing 1.7% or more of Si, the cast slab We first investigated the effect of the rolling reduction during the hot rolling stage on the magnetic flux density by varying the thickness of the steel. The results revealed that the smaller the hot rolling reduction ratio, the higher the magnetic flux density.

1.7%、3%および4.5%Si鋼を厚さ5〜200
rIn の全量柱状晶からなるスラブと、同じく全量等
軸晶からなるスラブに鋳造した時の、最終焼鈍後の磁束
密度および鋼板のうねり高さにおよぼす熱延圧下率の影
響を調べた。すなわち、下記第1表に示す成分組成の溶
鋼を水冷式銅鋳型に鋳造して得られた柱状粒間隔0.7
〜1.8mm+、厚さ5〜67m111の全量柱状晶か
らなる薄鋳片と、同じく約80℃に温めた鋳型に鋳造し
て得られた全量等雑晶からなる厚さ5〜200mtの鋳
片を準備した。これらの鋳片を1100℃に加熱した後
、熱間圧延を施し、板厚2.0〜2 、3 m ”とし
た。また、この時の熱延仕上げ温度ハロ90〜81O℃
テアった。そして、これらの熱延板にそれぞれ900℃
X 2m1n(& 1鋼)、1000℃X 2m1n(
NG2鋼)、1050℃X 2+l1n(& 3鋼)の
熱延板焼鈍を施した後、0 、5 m t*で冷間圧延
(&3鋼は板温100℃で温間圧延)した。冷圧後の焼
鈍は、20%H280%N2雰囲気中で880@CX 
2a+1n(N01鋼) 、960℃X 2m1n (
No 2鋼)、1000℃X 2+++in (N(1
3鋼)の均熱および空冷により実施した。
1.7%, 3% and 4.5% Si steel with thickness 5~200
The effect of the hot rolling reduction ratio on the magnetic flux density after final annealing and the waviness height of the steel sheet was investigated when a slab consisting entirely of columnar crystals of rIn and a slab consisting entirely of equiaxed crystals were cast. That is, the columnar grain spacing 0.7 obtained by casting molten steel having the composition shown in Table 1 below into a water-cooled copper mold.
~1.8mm+, thickness 5-67m111 Thin slab made entirely of columnar crystals, and a slab 5-200m thick made entirely of miscellaneous crystals obtained by casting into a mold heated to about 80°C. prepared. After heating these slabs to 1,100°C, they were hot rolled to a plate thickness of 2.0 to 2.3 m. At this time, the hot rolling finishing temperature was 90 to 81°C.
It was torn. Then, each of these hot-rolled sheets was heated to 900°C.
x 2m1n (& 1 steel), 1000℃ x 2m1n (
NG2 steel), hot-rolled sheet annealed at 1050°C x 2+l1n (&3 steel), and then cold rolled at 0,5 mt* (&3 steel was warm rolled at a sheet temperature of 100°C). Annealing after cold pressing is performed at 880@CX in a 20%H280%N2 atmosphere.
2a+1n (N01 steel), 960℃X 2m1n (
No.2 steel), 1000℃X 2+++in (N(1
3) by soaking and air cooling.

なお、Ha 3鋼については、鋳造後、鋳片の冷却段階
で600℃を下回ることなく 1100℃の加熱炉に装
入後、熱延した。
In addition, for Ha 3 steel, after casting, the slab was charged into a heating furnace at 1100° C. without falling below 600° C. during the cooling stage, and then hot rolled.

第 表 (vt%) 第1図は、その結果を示している。同図から明らかなよ
うに、スラブの凝固組織の磁束密度に及ぼす影響は、全
量柱状晶スラブのほうが全量等雑晶スラブに比較して磁
束密度が高くなっている。
Table (vt%) Figure 1 shows the results. As is clear from the figure, regarding the influence of the solidified structure of the slab on the magnetic flux density, the magnetic flux density is higher in the all columnar crystal slab than in the all mixed crystal slab.

鋼の凝固組織には大別すると柱状晶と等雑晶がある。柱
状晶は、凝固段階において鋳型接触面から核発生し、そ
の核が鋳型面に対して垂直方向に表面から鋳片内部へと
成長することにより形成される。このような柱状晶は 
(100)がスラブ板面に平行であり、かつ(100)
がランダムである(100)  <uvw>組織となっ
ている。  (100)は鋼において磁化容易軸であり
、柱状晶からなるスラブは磁束密度に対して理想的な集
合組織を有している。一方、等軸晶は凝固時に溶湯中か
らランダムに核発生するため、スラブの集合組織もラン
ダムである。したがって、第1図にみられるように、柱
状晶スラブによる電磁鋼板の製造は、磁束密度に良好な
集合組織を有するスラブの集合組織を維持することによ
り1等軸品スラブよりも磁束密度が良好となる。
The solidification structure of steel can be roughly divided into columnar crystals and homogeneous crystals. Columnar crystals are formed by nucleating from the mold contact surface during the solidification stage and growing from the surface into the slab in a direction perpendicular to the mold surface. Such columnar crystals
(100) is parallel to the slab plate surface, and (100)
is random (100) <uvw> organization. (100) is the axis of easy magnetization in steel, and a slab made of columnar crystals has an ideal texture with respect to magnetic flux density. On the other hand, since equiaxed crystals generate nuclei randomly from the molten metal during solidification, the texture of the slab is also random. Therefore, as shown in Fig. 1, the manufacture of electrical steel sheets using columnar slabs provides better magnetic flux density than equiaxed slabs by maintaining the texture of the slab, which has a good texture for magnetic flux density. becomes.

また、スラブの集合組織を維持しようとする場合、これ
が最も難しいのは熱延段階であるが、第1図に示される
ように、熱延時の圧下率を95%以下にすることにより
集合組織の維持が可能となる。
In addition, when trying to maintain the texture of a slab, the most difficult stage is the hot rolling stage, but as shown in Figure 1, by reducing the rolling reduction during hot rolling to 95% or less, the texture can be improved. Maintenance is possible.

したがって、従来のように200〜250m厚さのスラ
ブから2〜3m厚さの熱延板に仕上げる方法では、スラ
ブ中央部に等雑晶が存在するということだけでなく、圧
下率が95%を超えることが不可避であったため、その
集合組織を磁気特性に対して適切なものとすることがで
きなかったものである。このように熱延時の圧下率は、
磁気特性を劣化させる最も大きな因子である。α単相鋼
においては熱間加工時に歪の回復現象が急速に進み、9
0%以上の高圧下率においても凝固時の集合組織を起源
とした良好な集合組織を維持することができるが、95
%以上の圧下率で熱延すると、歪の導入が回復を大きく
上回ってしまうため、凝固時の集合組織が完全に被部さ
れ、磁束密度が劣化してしまうことになる。
Therefore, in the conventional method of finishing a 200 to 250 m thick slab into a 2 to 3 m thick hot rolled sheet, not only do miscellaneous crystals exist in the center of the slab, but the rolling reduction rate exceeds 95%. It was impossible to make the texture suitable for the magnetic properties because it was unavoidable to exceed the magnetic properties. In this way, the rolling reduction during hot rolling is
This is the biggest factor that deteriorates magnetic properties. In α single-phase steel, the strain recovery phenomenon progresses rapidly during hot working, and 9
Although it is possible to maintain a good texture originating from the texture during solidification even at a high reduction rate of 0% or more, 95
If hot rolling is carried out at a rolling reduction of % or more, the introduction of strain will greatly exceed the recovery, so the texture during solidification will be completely covered and the magnetic flux density will deteriorate.

一方、占有率に対して重要な因子であるリジングや肌荒
れなどの鋼板の表面性状に対して、鋳片の結晶粒径や熱
延時の圧下率が大きく影響することも新たに知見した。
On the other hand, it was newly discovered that the grain size of the slab and the rolling reduction during hot rolling have a large influence on the surface properties of the steel sheet, such as ridging and surface roughness, which are important factors in determining the occupancy rate.

第1図に示すように、熱延圧下率が80%未満において
は、最終焼鈍後の鋼板表面のうねりが高くなってしまう
。これは、熱延時の圧下率が低くなると熱延板へ導入さ
れる歪が小さくなるため、冷圧前のフェライト粒径が大
きくなってしまい、冷圧によりこの大きなフェライト粒
に起因する粗大粒模様が現われ、各フェライト粒ごとに
変形量が異なるため、鋼板表面にうねりが発生すること
によるものである。したがって、無方向性電磁鋼板の磁
気特性および表面性状を良好にするためには、熱延時の
圧下率を80〜95%にしなければならない。
As shown in FIG. 1, when the hot rolling reduction ratio is less than 80%, the waviness on the surface of the steel sheet after final annealing becomes high. This is because when the rolling reduction during hot rolling becomes lower, the strain introduced into the hot rolled sheet becomes smaller, so the ferrite grain size before cold rolling becomes larger, and the coarse grain pattern caused by these large ferrite grains is caused by cold rolling. This is because the amount of deformation differs for each ferrite grain, which causes waviness on the surface of the steel sheet. Therefore, in order to improve the magnetic properties and surface properties of a non-oriented electrical steel sheet, the rolling reduction during hot rolling must be 80 to 95%.

また、リジングと呼ばれる鋼板表面の凹凸に対しては、
熱延前のフェライト粒径、すなわち、鋳片の柱状晶の結
晶粒間隔が影響を及ぼす、特に、凝固組織が柱状晶とな
るα単相鋼においては、リジング防止のために凝固組織
の破壊が必要であることはよく知られている。本発明法
においては、無方向性電磁鋼板の特性を向上させるため
に、熱延時の圧下率を常法に比較して低くするため、リ
ジング防止策をしなければならない。このような問題に
対し、本発明者らは凝固時の柱状晶の粒径、すなわち柱
状晶の粒間隔を凝固段階で微細にすることにより、リジ
ングを防止できることを、以下のような試験により新た
に知見した。
In addition, for irregularities on the surface of the steel plate called ridging,
The ferrite grain size before hot rolling, that is, the grain spacing of columnar crystals in the slab, has an influence.Especially in α single phase steel where the solidified structure is columnar crystals, destruction of the solidified structure is necessary to prevent ridging. It is well known that this is necessary. In the method of the present invention, in order to improve the properties of the non-oriented electrical steel sheet, measures must be taken to prevent ridging in order to lower the rolling reduction during hot rolling compared to the conventional method. In order to solve this problem, the present inventors conducted a new experiment using the following tests to find that ridging can be prevented by making the grain size of the columnar crystals during solidification, that is, the grain spacing of the columnar crystals, finer during the solidification stage. I found out.

下記第2表に示す溶鋼を肉厚50〜150mの鋳鋼鋳型
と水冷式銅鋳型を用いて鋳片厚30mに鋳造することに
より、柱状粒間隔0.3〜18mの全量柱状晶からなる
鋳片を作製した。
By casting the molten steel shown in Table 2 below to a slab thickness of 30 m using a cast steel mold with a wall thickness of 50 to 150 m and a water-cooled copper mold, a slab consisting entirely of columnar crystals with a columnar grain spacing of 0.3 to 18 m is obtained. was created.

これらの鋳片を1100℃に加熱した後、熱間圧延を施
し、板厚2.0〜2.2mm+”の熱延板とした。また
、この時の熱延仕上げ温度は680〜790℃であった
After heating these slabs to 1,100°C, they were hot-rolled to produce hot-rolled sheets with a thickness of 2.0 to 2.2 mm+.The hot-rolling finishing temperature at this time was 680 to 790°C. there were.

なお、熱延板焼鈍、冷圧、焼鈍の各条件は第1図の試験
条件と同一とした。また、Nα6mについては、vf造
後、鋳片の冷却段階で600’Cを下回ることなく 1
100℃の加熱炉に装入後、熱延した。また、同じ<N
a6鋼については、上述したNa5fljiと同様に熱
延板焼鈍後、板温100℃での温間圧延を行った。
The conditions for hot-rolled sheet annealing, cold pressing, and annealing were the same as the test conditions shown in FIG. In addition, regarding Nα6m, after VF production, the temperature does not drop below 600'C during the cooling stage of the slab.
After charging into a heating furnace at 100°C, it was hot rolled. Also, the same <N
As for the a6 steel, the hot rolled sheet was annealed and then warm rolled at a sheet temperature of 100° C. in the same manner as the above-mentioned Na5flji.

第     2    表 (%It  %) 第2図は、以上のようにして得られた鋼板について、柱
状晶の粒間隔と鋼板のりジング高さおよび磁束密度との
関係を示したものである。これによれば、柱状晶の粒間
隔を2m以下に抑えることでリジングを適切に防止でき
ることが判る。一方、柱状晶の粒間隔が0.5閣未満に
なると、凝固速度を大きくしなければならず、このよう
な凝固速度を得ることは実操業上困難である。
Table 2 (%It %) FIG. 2 shows the relationship between the grain spacing of columnar crystals, the steel sheet sliding height, and the magnetic flux density for the steel sheets obtained as described above. According to this, it can be seen that ridging can be appropriately prevented by suppressing the grain interval of columnar crystals to 2 m or less. On the other hand, if the grain spacing of the columnar crystals is less than 0.5 degrees, the solidification rate must be increased, and it is difficult to obtain such a solidification rate in actual operation.

また、柱状晶の粒間隔が0.5m未満になると、表層部
にチル晶と呼ばれる結晶方位のランダムな組織が形成さ
れるため、第2図に示すように磁束密度の低下を招く。
Furthermore, if the grain spacing of the columnar crystals is less than 0.5 m, a structure with random crystal orientation called chill crystals is formed in the surface layer, resulting in a decrease in magnetic flux density as shown in FIG.

下記第3表に示す溶鋼を、水冷式銅鋳型および肉厚5o
−iso■の鋳鋼鋳型で厚さ5〜200m+ 、柱状粒
間隔0.16〜l1mの全量柱状晶からなる鋳片とした
。これらの鋳片を1100℃に加熱、均熱後、熱間圧延
し、板厚2.0〜2.3閣 の熱延板とした。この時の
仕上げ温度は680〜800℃であった。なお。
The molten steel shown in Table 3 below was placed in a water-cooled copper mold with a wall thickness of 50m.
A cast slab having a thickness of 5 to 200 m+ and consisting entirely of columnar crystals with a columnar grain spacing of 0.16 to 11 m was made using an iso■ cast steel mold. These slabs were heated to 1100° C., soaked, and then hot rolled to obtain hot rolled sheets having a thickness of 2.0 to 2.3 mm. The finishing temperature at this time was 680 to 800°C. In addition.

鋼&9の厚さ10Illt以上のスラブについては、鋳
造後、鋳片の冷却段階で600℃を下回ることなく11
00℃に加熱し、熱間圧延を行った。これらの熱延板に
それぞれ900℃X 2m1n(Nci T鋼)、10
00℃X2 win (8118鋼)、 1050℃X
 2m1n(& 9鋼)の熱延板焼鈍を施した後、板厚
0.5mまで冷間圧延(鬼9鋼は板温100℃で温間圧
延)した、冷圧後の焼鈍は、25%H,−75%N2雰
囲気中でそれぞれ、880℃×2w1n(Na7鋼)、
 960℃X2m1n(Naa鋼)−1,000”CX
 2w1n(N[19鋼)の均熱、空冷により実施した
For slabs of steel & 9 with a thickness of 10Illt or more, after casting, the temperature should not drop below 600℃ during the cooling stage of the slab.
It was heated to 00°C and hot rolled. Each of these hot-rolled plates was heated at 900°C x 2m1n (Nci T steel), 10
00℃X2 win (8118 steel), 1050℃X
After annealing a hot rolled sheet of 2m1n (& 9 steel), it was cold rolled to a thickness of 0.5m (Oni 9 steel was warm rolled at a sheet temperature of 100°C), and the annealing after cold rolling was 25%. 880°C x 2w1n (Na7 steel) in H, -75% N2 atmosphere, respectively.
960℃X2m1n (Naa steel) -1,000”CX
The test was carried out by soaking 2w1n (N [19 steel)] and air cooling.

第     3     表 (帆 %) 第3図は、以上のようにして得られた鋼板のうねり高さ
、リジング高さおよび磁束密度を、熱間圧延時の圧下率
と鋳片の柱状晶の粒間隔との関係で示したものであり、
第1図および第2図と同様の結果が得られていることが
判る。
Table 3 (Sail %) Figure 3 shows the waviness height, ridging height, and magnetic flux density of the steel plate obtained as described above, as well as the rolling reduction during hot rolling and the grain spacing of columnar crystals in the slab. This is shown in relation to
It can be seen that the same results as in FIGS. 1 and 2 are obtained.

このように、凝固時の組織が0.5〜2閣の粒間隔の柱
状晶からなる鋳片を熱延時に80〜95%の圧下率で圧
延することにより、磁気特性および鋼板の表面性状に優
れた無方向性電磁鋼板を製造することが可能となる。
In this way, the magnetic properties and surface texture of the steel sheet can be improved by rolling the slab, which has a solidified structure consisting of columnar crystals with a grain spacing of 0.5 to 2 degrees, at a reduction rate of 80 to 95% during hot rolling. It becomes possible to manufacture excellent non-oriented electrical steel sheets.

次に1本発明の構成要件について具体的に説明する。Next, one component of the present invention will be specifically explained.

まず、成分組成の限定理由は以下の通りである。First, the reason for limiting the component composition is as follows.

C:Cは磁気特性の中の鉄損を劣化させ、さらに磁気時
効をもたらす有害な元素であるだけでなく、柱状組織の
(100) <uvw>の配向性を低下させる。このた
め、 !!m段階で0.005%以下とする必要がある
C: C is a harmful element that not only deteriorates iron loss in the magnetic properties and causes magnetic aging, but also reduces the (100) <uvw> orientation of the columnar structure. For this reason, ! ! It needs to be 0.005% or less in m stages.

Si : Siは鋼の比抵抗を高め、鉄損を低下させる
効果がある。また、1.7%以上添加することによりα
−γ変態が消失し、凝固時に生成する(100)  <
uvw>柱状組織を維持することができる。このためS
iの下限は1.7%とする。−方、Siを7.0%以上
添加しても、特に磁気特性を向上させないため、上限を
7.0%とする。
Si: Si has the effect of increasing the specific resistance of steel and reducing iron loss. In addition, by adding 1.7% or more, α
-γ transformation disappears and is generated during solidification (100) <
uvw>A columnar structure can be maintained. For this reason, S
The lower limit of i is 1.7%. - On the other hand, since adding 7.0% or more of Si does not particularly improve the magnetic properties, the upper limit is set to 7.0%.

AQ :AQはSiと同様に鋼の比抵抗を高め鉄損を低
減させる効果があるが、1.5%を超えて添加すると冷
延性を低下させるため、その上限を1.5%とする。一
方、溶鋼の脱酸を十分行うためには、0.001%以上
含有しなければならない。
AQ: Similar to Si, AQ has the effect of increasing the resistivity of steel and reducing iron loss, but if added in an amount exceeding 1.5%, it reduces cold rollability, so the upper limit is set at 1.5%. On the other hand, in order to sufficiently deoxidize molten steel, the content must be 0.001% or more.

NUNは窒化物を形成してフェライト粒の粒成長性を低
下させ、鉄損を劣化させるため、0.003%以下とす
る必要がある。
NUN forms nitrides, reduces grain growth of ferrite grains, and deteriorates iron loss, so it needs to be 0.003% or less.

Si+Al:SiとAQはいずれも鉄損を低下させるた
めに有効な元素であるが、Si十AQが7.5%を超え
ると圧延性が著しく劣り、冷延時の鋼板の割れの原因と
なるため、Si+AI2は7.5%以下とする必要があ
る。
Si + Al: Both Si and AQ are effective elements for reducing iron loss, but if Si + AQ exceeds 7.5%, the rollability will be significantly inferior and cause cracks in the steel plate during cold rolling. , Si+AI2 must be 7.5% or less.

素材鋼の上記以外の成分については、特に限定するもの
ではないが、以下のような範囲とすることが好ましい。
The components of the steel material other than those listed above are not particularly limited, but are preferably within the following ranges.

Mn : 0.01〜2.0% P :50.1% S :≦o、oos% 上記成分が好ましい理由は以下のとおりである。Mn: 0.01-2.0% P:50.1% S:≦o, oos% The reasons why the above components are preferable are as follows.

Mn : Mnは、磁気特性に有害な固溶SをMnSと
して析出させるため、0.01%以上添加することが望
ましい。しかし、2%を超えると冷延性が著しく劣化す
るため、2.0%以下が望ましい。
Mn: Since Mn precipitates solid solution S, which is harmful to magnetic properties, as MnS, it is desirable to add 0.01% or more. However, if it exceeds 2%, the cold rollability will deteriorate significantly, so it is preferably 2.0% or less.

FDPは鋼の比抵抗を増加させるため、その添加によっ
て鉄損低下を図ることができるが、0.1%を超えると
冷延性が著しく劣化するため、0.1%以下が望ましい
Since FDP increases the specific resistance of steel, it is possible to reduce iron loss by adding it, but if it exceeds 0.1%, cold rollability will deteriorate significantly, so it is preferably 0.1% or less.

S:Sは固溶状態で鉄損を劣化させるため。S: S deteriorates iron loss in a solid solution state.

o、oos%以下が望ましい。o,oos% or less is desirable.

また、AQNが微細に析出し、最終焼鈍時にフェライト
粒成長性を劣化させるような場合、BをB/N : 0
.5〜2.0の範囲で添加することにより粒成長性を改
善することができる。これはAQN粒子に比べて粗大な
りN粒子が優先的に析出するためである。また、AQを
添加しない鋼においても、Bを添加することにより固溶
NをBNとして固定することで鉄損を改善できる。
In addition, if AQN is finely precipitated and deteriorates ferrite grain growth during final annealing, B may be reduced to B/N: 0.
.. Grain growth properties can be improved by adding in a range of 5 to 2.0. This is because coarse N particles preferentially precipitate compared to AQN particles. Further, even in steel without adding AQ, iron loss can be improved by adding B to fix solute N as BN.

無方向性電磁鋼板は、一般に0.50あるいは0.35
−が製品板厚である。また、一般に、無方向性電磁鋼板
の冷圧においては、60〜80%の圧下を施すことによ
り良好な集合組織が得られることが知られており、この
ような観点から、熱延板を冷圧により製品板厚とするた
めには熱延板厚を1.0〜2.5閣にする必要がある。
Non-oriented electrical steel sheets are generally 0.50 or 0.35
− is the product board thickness. In addition, it is generally known that a good texture can be obtained by applying a reduction of 60 to 80% in cold rolling of non-oriented electrical steel sheets, and from this point of view, hot rolled sheets are cold rolled. In order to achieve the product thickness by pressing, the hot-rolled plate thickness must be 1.0 to 2.5 mm.

したがって1本発明においては熱延時の総圧下率を80
〜95%と規定するため、鋳片の厚さは5〜50++o
とすることが望ましい。
Therefore, in the present invention, the total rolling reduction during hot rolling is 80
~95%, so the slab thickness is 5~50++o
It is desirable to do so.

また1本発明においては、薄鋳片をその冷却段階におい
て、直接または一旦常温まで放冷後、再加熱して熱延を
行う。Si+A4≧4.5%の錆においては、鋳片の冷
却時に、スラブの表層部と中央部の熱収縮の差から割れ
が発生するため、鋳片を鋳造後、その冷却段階で600
℃を下回ることなく。
Further, in one aspect of the present invention, the thin slab is hot-rolled in its cooling stage either directly or after it has been left to cool to room temperature and then reheated. In the case of rust with Si+A4≧4.5%, cracks occur when the slab is cooled due to the difference in thermal contraction between the surface layer and the center of the slab.
without falling below ℃.

直接あるいは再加熱することにより熱延することが望ま
しい。また、Si+Al<4.5%の鋼においては、ス
ラブ冷却時に割れの発生がないため、鋳造後の冷却時、
あるいは−旦常温まで冷却し再加熱した後でも熱延は可
能であり、磁気特性および鋼板の表面性状に関しては両
プロセスに差はない6但し、いずれのプロセスにおいて
も、 600℃以上で熱延を終了しなければならない。
It is desirable to hot-roll directly or by reheating. In addition, in steel with Si + Al < 4.5%, no cracks occur during slab cooling, so when cooling after casting,
Alternatively, hot rolling is possible even after cooling to room temperature and reheating, and there is no difference between the two processes in terms of magnetic properties and surface properties of the steel sheet.6However, in either process, hot rolling at 600°C or higher is possible. Must be finished.

これは、600℃以下で圧延を行うと、鋼板への歪の導
入量が増加し、これに伴い鋳片において存在する磁気特
性に好ましい(100) <uvw>組織の破壊が著し
くなるためである6以上のようなプロセスを採用するこ
とにより、従来の厚さ約200mmのスラブを再加熱し
、粗圧延および仕上げ圧延を施すプロセスに比べ、粗圧
延あるいはスラブの再加熱プロセスを省略することが可
能となり、大巾にコスト低減を図ることができる。
This is because when rolling is performed at temperatures below 600°C, the amount of strain introduced into the steel sheet increases, and as a result, the destruction of the (100) <uvw> structure, which is favorable for magnetic properties and exists in slabs, becomes significant. By adopting the process described above, it is possible to omit the rough rolling or slab reheating process compared to the conventional process of reheating a slab with a thickness of about 200 mm and performing rough rolling and finish rolling. Therefore, it is possible to significantly reduce costs.

このようにして得られた熱延板は、熱延板焼鈍を経た後
、冷間圧延または温間圧延される。熱延板焼鈍を行うと
、微細析出物粒子の凝集粗大化が促進され、最終焼鈍時
の焼鈍温度を低くしてもフェライト粒成長性が良好とな
り、鉄損の低減化ができる。熱延板焼鈍は、これを連続
焼鈍で行う場合には、750〜950℃で0.5〜5m
1n、オープンバッチ焼鈍の場合には、熱延板表面のス
ケールを酸洗あるいは機械的に除去した後、非酸化雰囲
気中で700〜850℃、1〜10hとすることが望ま
しい。
The hot-rolled sheet thus obtained is subjected to hot-rolled sheet annealing and then cold-rolled or warm-rolled. When hot-rolled sheet annealing is performed, agglomeration and coarsening of fine precipitate particles is promoted, and even if the annealing temperature during final annealing is lowered, ferrite grain growth is improved, and iron loss can be reduced. When hot-rolled plate annealing is carried out by continuous annealing, the temperature is 750-950°C for 0.5-5 m.
In the case of 1n, open batch annealing, it is desirable to pickle or mechanically remove scale on the surface of the hot rolled sheet and then heat the hot rolled sheet at 700 to 850°C for 1 to 10 hours in a non-oxidizing atmosphere.

このように熱延板焼鈍された熱延板は、冷間圧延または
温間圧延により製品厚さにする。ここで、Si+Afi
 <3.0%の鋼については常法により冷間圧延を実施
できるが、Si+An≧3.0%の鋼については靭性に
対する遷移温度が50℃以上となるため、熱延板を60
〜400℃に加熱して温間圧延をしなければならない、
最終焼鈍は、フェライト組織の再結晶および粒成長を行
い、鉄損と磁束密度の最適バランスとなるフェライト粒
に制御するために行われ、その条件としては露点0℃以
下の乾燥した非酸化雰囲気中にて750〜1ooo℃で
0.5〜5m1nの均熱を行うことが望ましい。
The hot-rolled sheet annealed in this manner is cold-rolled or warm-rolled to a product thickness. Here, Si+Afi
<3.0% steel can be cold rolled by a conventional method, but for steel with Si+An≧3.0%, the transition temperature for toughness is 50°C or higher, so the hot rolled sheet is rolled at 60°C.
Warm rolling must be carried out by heating to ~400°C.
Final annealing is performed to recrystallize and grow grains of the ferrite structure, and to control the ferrite grains to have an optimal balance between core loss and magnetic flux density. It is desirable to perform soaking for 0.5 to 5 ml at 750 to 100°C.

〔実施例〕〔Example〕

」粱建し上。 ” 粱 Establishment.

第4表に示す鋼成分の溶湯を水冷銅鋳型に注湯し、柱状
粒間隔が0.8〜1.2mmの柱状晶からなる厚さ30
閣1の薄鋳片を製造した。 この鋳片をその冷却段階で
1100℃に均熱後、熱間圧延を行い、最終バス出側温
度750〜820℃で板厚1.8〜2.3mの熱延板と
した(熱圧下率92〜94%)。この熱延板に1000
℃X 2m1n、空冷の熱延板焼鈍を施した後、鋼^〜
Fの熱延板は80℃で、また鋼G−Lの熱延板は室温(
15〜20℃)で、それぞれ0.5m厚さまで温間また
は冷間圧延したにれらの冷延板を25%H2−75%N
2雰囲気中で、鋼A−Fは950℃X 2m1n、空冷
、鋼G−Lは880℃X 2m1n、空冷の各条件で焼
鈍を行った。このようにして得られた鋼板の磁気特性と
うねり高さおよびリジング高さを第5表に示す。
A molten metal having the steel composition shown in Table 4 was poured into a water-cooled copper mold to form a molten metal with a thickness of 30 mm consisting of columnar crystals with a columnar grain interval of 0.8 to 1.2 mm.
A thin slab of Kaku 1 was manufactured. This slab was soaked at 1100°C during the cooling stage, and then hot rolled to form a hot rolled plate with a thickness of 1.8 to 2.3 m at a final bath outlet temperature of 750 to 820°C (thermal reduction rate 92-94%). 1000 for this hot rolled plate
℃X 2m1n, after air-cooled hot-rolled plate annealing, steel ^~
The hot-rolled sheet of steel F is heated to 80℃, and the hot-rolled sheet of steel G-L is heated to room temperature (
25%H2-75%N
In two atmospheres, steel A-F was annealed at 950° C. x 2 ml, air-cooled, and steel GL was annealed at 880° C., 2 ml, air-cooled. Table 5 shows the magnetic properties, waviness height, and ridging height of the steel plate thus obtained.

」知4忽−L2 第6表に示す鋼成分(本発明成分鋼)を第7表に示す種
々の厚さおよび柱状晶の粒間隔を有する鋳片に鋳造し、
この鋳片を同表に示すような種々の熱延条件で熱間圧延
した。この熱延板を930℃X 2m1n、空冷の条件
で熱延板焼鈍した後、室温(15〜20℃)で0.5m
厚さまで冷間圧延し、その後、25%H,−75%N2
雰囲気中で930℃X 2m1n、空冷の焼鈍を行った
にのようにして得られた鋼板の磁気特性とうねり高さお
よびリジング高さを第7表に併せて示す。
"Chi4huen-L2 The steel composition shown in Table 6 (component steel of the present invention) was cast into slabs having various thicknesses and columnar crystal grain spacing shown in Table 7,
This slab was hot rolled under various hot rolling conditions as shown in the same table. This hot-rolled sheet was annealed at 930°C x 2m1n under air cooling conditions, and then 0.5m long at room temperature (15-20°C).
Cold rolled to thickness, then 25% H, -75% N2
Table 7 also shows the magnetic properties, waviness height, and ridging height of the steel sheets obtained by annealing at 930° C. x 2 ml in an atmosphere and air cooling.

第 5 表 第 表 (wt %)No. 5 table No. table (wt %)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱間圧延時の圧下率が鋼板の磁束密度およびう
ねり高さの及ぼす影響を示すグラフである。第2図は、
鋳片の柱状晶の粒間隔が鋼板の磁束密度およびリジング
高さに及ぼす影響を示すグラフである。第3図は鋼板の
うねり高さ、リジング高さおよび磁束密度を熱間圧延時
の圧下率と鋳片の柱状晶の粒間隔との関係で示したもの
である。 MLffi時r圧下手(’/、)
FIG. 1 is a graph showing the influence of the rolling reduction during hot rolling on the magnetic flux density and waviness height of the steel sheet. Figure 2 shows
1 is a graph showing the influence of the grain spacing of columnar crystals in a slab on the magnetic flux density and ridging height of a steel plate. FIG. 3 shows the waviness height, ridging height, and magnetic flux density of the steel plate in relation to the rolling reduction during hot rolling and the grain spacing of columnar crystals in the slab. MLffi time r pressure hand ('/,)

Claims (1)

【特許請求の範囲】[Claims] 重量%で、Si:1.7〜7.0%、C≦0.005%
、Al:0.001〜1.5%、N≦0.003%、S
i+Al≦7.5%、残部Feおよび不可避的不純物か
らなる溶鋼を、粒間隔が0.5〜2mmの柱状晶からな
る厚さ50mm以下の薄鋳片とし、該薄鋳片を直接また
は再加熱した後、圧延終了温度600℃以上、圧下率8
0〜95%の熱間圧延を行い、該熱延板を熱延板焼鈍し
た後、冷間圧延または温間圧延を施し、しかる後焼鈍を
行うことを特徴とする無方向性電磁鋼板の製造方法。
In weight%, Si: 1.7-7.0%, C≦0.005%
, Al: 0.001-1.5%, N≦0.003%, S
Molten steel consisting of i+Al≦7.5%, balance Fe and unavoidable impurities is made into a thin slab with a thickness of 50 mm or less consisting of columnar crystals with grain spacing of 0.5 to 2 mm, and the thin slab is heated directly or reheated. After that, the rolling end temperature is 600℃ or higher and the rolling reduction rate is 8.
Production of a non-oriented electrical steel sheet, characterized in that the hot-rolled sheet is subjected to 0 to 95% hot rolling, the hot-rolled sheet is annealed, then cold rolled or warm rolled, and then annealed. Method.
JP2058141A 1990-03-12 1990-03-12 Non-oriented electrical steel sheet manufacturing method Expired - Lifetime JPH07116513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2058141A JPH07116513B2 (en) 1990-03-12 1990-03-12 Non-oriented electrical steel sheet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2058141A JPH07116513B2 (en) 1990-03-12 1990-03-12 Non-oriented electrical steel sheet manufacturing method

Publications (2)

Publication Number Publication Date
JPH03260017A true JPH03260017A (en) 1991-11-20
JPH07116513B2 JPH07116513B2 (en) 1995-12-13

Family

ID=13075714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2058141A Expired - Lifetime JPH07116513B2 (en) 1990-03-12 1990-03-12 Non-oriented electrical steel sheet manufacturing method

Country Status (1)

Country Link
JP (1) JPH07116513B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047785A (en) * 2008-08-19 2010-03-04 Nippon Steel Corp Method for producing non-oriented electrical steel sheet high in magnetic-flux density
JP2015507695A (en) * 2011-12-20 2015-03-12 ポスコ High silicon steel plate excellent in productivity and magnetic properties and method for producing the same
JP2018504518A (en) * 2014-12-05 2018-02-15 ポスコPosco High silicon steel sheet with excellent magnetic properties and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047785A (en) * 2008-08-19 2010-03-04 Nippon Steel Corp Method for producing non-oriented electrical steel sheet high in magnetic-flux density
JP2015507695A (en) * 2011-12-20 2015-03-12 ポスコ High silicon steel plate excellent in productivity and magnetic properties and method for producing the same
US10134513B2 (en) 2011-12-20 2018-11-20 Posco High silicon steel sheet having excellent productivity and magnetic properties and method for manufacturing same
JP2018504518A (en) * 2014-12-05 2018-02-15 ポスコPosco High silicon steel sheet with excellent magnetic properties and method for producing the same

Also Published As

Publication number Publication date
JPH07116513B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
JPS6160896B2 (en)
KR102164329B1 (en) Grain oriented electrical steel sheet and method for manufacturing therof
EP0019289B1 (en) Process for producing grain-oriented silicon steel strip
JPH03219020A (en) Production of nonoriented silicon steel sheet
EP0477384A1 (en) Process for producing unidirectional magnetic steel sheet excellent in magnetic characteristics
JP4268042B2 (en) Method for producing (110) [001] grain-oriented electrical steel using strip casting
JP5005873B2 (en) Method for producing directional electromagnetic steel strip
JPH0463228A (en) Manufacture of nonoriented silicon steel sheet excellent in magnetic property before and after magnetic annealing
EP0404937A1 (en) Method of manufacturing non-oriented electromagnetic steel plates
JPH03260017A (en) Manufacture of nonoriented electromagnetic steel strip
JPH0832927B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JP2784687B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH0331764B2 (en)
CN114829657B (en) Oriented electrical steel sheet and method for manufacturing same
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
KR100560173B1 (en) Method for Making High ?? Steel Sheets
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JPH0794689B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH0257125B2 (en)
JPH02133525A (en) Production of thin-gaged grain oriented electrical steel sheet having excellent magnetic characteristics