JPH032599A - Stimulable phosphor plate - Google Patents

Stimulable phosphor plate

Info

Publication number
JPH032599A
JPH032599A JP13557389A JP13557389A JPH032599A JP H032599 A JPH032599 A JP H032599A JP 13557389 A JP13557389 A JP 13557389A JP 13557389 A JP13557389 A JP 13557389A JP H032599 A JPH032599 A JP H032599A
Authority
JP
Japan
Prior art keywords
light
excitation light
stimulable phosphor
hole
stimulable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13557389A
Other languages
Japanese (ja)
Inventor
Shiro Takeda
武田 志郎
Fumihiro Namiki
並木 文博
Yuichi Sugiyama
雄一 杉山
Nobuhiro Iwase
信博 岩瀬
Shinji Tadaki
進二 只木
Nagaaki Etsuno
越野 長明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13557389A priority Critical patent/JPH032599A/en
Priority to EP90905637A priority patent/EP0426865B1/en
Priority to PCT/JP1990/000434 priority patent/WO1990012405A1/en
Priority to DE69024610T priority patent/DE69024610T2/en
Publication of JPH032599A publication Critical patent/JPH032599A/en
Priority to US08/079,951 priority patent/US5444266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

PURPOSE:To remove scattering to simulating light and a stimulable phosphor by forming extremely small holes, used for the latent image formation of picture elements, in a mutually incoherent state. CONSTITUTION:Extremely small holes 26 where stimulable phosphors 6 are embedded are provided in hole formation parts 2 which are worked in a exciting light nontransmissive state at respective intersection positions in crossing directions and the plate consists of light transmissive sealing materials 4 which are arranged on the light transmission side and the stimulable phosphors 6. Then the X-ray energy of a subject pattern which is transmitted by irradiating a subject with X rays is distributed in the stimulable phosphors in the extremely small holes 26 and accumulated. When an electric signal pattern is outputted, the exciting light scans extremely small holes 26 in one of the crossing directions, but the stimulable phosphors 6 which are irradiated are in the stimu lating light nontransmissive hole walls 2, so the light is never scattered.

Description

【発明の詳細な説明】 [概 要] 励起光、又は励起光及び輝尽蛍光体光に対する散乱防止
手段を用いた輝尽蛍光光に関し、励起光、輝尽蛍光光に
対する散乱性を除くことを目的とし、 ほぼ等しい大きさで励起光不透過性に加工された穴形成
部内に輝尽蛍光体を埋設した微***を交差方向の各交差
位置に設けて構成し、又交差方向の各交差位置毎に、ほ
ぼ等しい大きさで励起光不透過性に加工された穴形成部
と、該穴形成部の光透過側に配置された光透過性封止材
と、穴形底部形成基板の光透過側の面とは反対側の面に
配置された封止材と、前記光透過性封止材と前記封止材
とによって封止された前記穴形成部内に充填された輝尽
蛍光体とで構成した。
[Detailed Description of the Invention] [Summary] Regarding stimulated fluorescent light using a scattering prevention means for excitation light or excitation light and stimulated fluorescent light, it is possible to eliminate the scattering property of the excitation light and stimulated fluorescent light. In order to achieve this goal, micro holes with approximately the same size and stimulable phosphor embedded within hole-forming portions processed to be opaque to excitation light are provided at each intersecting position in the intersecting direction, and at each intersecting position in the intersecting direction. For each, there is a hole-forming part that is processed to be opaque to excitation light and has a substantially equal size, a light-transmitting sealing material placed on the light-transmitting side of the hole-forming part, and a light-transmitting part of the hole-shaped bottom forming substrate. a sealing material disposed on a surface opposite to the side surface, and a stimulable phosphor filled in the hole forming portion sealed by the light-transmissive sealing material and the sealing material. Configured.

(産業上の利用分野〕 本発明は、励起光又は励起光及び輝尽蛍光光に対する散
乱防止手段を用いた輝尽蛍光体板に関する。
(Industrial Application Field) The present invention relates to a stimulable phosphor plate using scattering prevention means for excitation light or excitation light and stimulated fluorescent light.

X線画像のような放射線画像は、病気診断用などに多く
用いられている。このX線画像を得るために、被写体を
透過したX線を蛍光体層(蛍光スクリーン)に照射し、
そこから可視光を生じさせてこの可視光を、銀塩を使用
したフィルムに照射して現像した、いわゆる放射線写真
が利用されているが、この従来の銀塩感光剤をシート状
に塗布したフィルムに間接、或いは直接に放射線の二次
元像を記録するX線撮像装置に代わるシステムとして、
高感度、高解像度のX線撮像システムが開発されている
Radiographic images such as X-ray images are often used for disease diagnosis. In order to obtain this X-ray image, X-rays that have passed through the subject are irradiated onto a phosphor layer (fluorescent screen).
The so-called radiography is used in which visible light is generated and developed by irradiating this visible light onto a film using silver salt, but this conventional film is coated with a silver salt photosensitive agent in the form of a sheet. As a system to replace the X-ray imaging device that records two-dimensional images of radiation indirectly or directly,
High sensitivity, high resolution X-ray imaging systems have been developed.

〔従来の技術〕[Conventional technology]

その高感度、高解像度のXvA撮像装置は、蓄積性蛍光
体を使用するシステムである。このような方式に関して
の基本的な方式は、米国特許箱3゜859.527号に
詳しく述べられている。このシステムに使用される蛍光
体は、X線などの放射線のエネルギーを受けると、その
エネルギーの部を蓄積する。この状態は比較的安定であ
り、しばらく或いは長時間にわたって保持される。この
状態にある蛍光体に、励起光として働く第一の光を照射
すると、蓄積されているエネルギーが第二の光となって
放出される。この時、第一の光は、可視光に限らず、赤
外線から紫外線の範囲の広い波長の光が使われる。ただ
し、その選択は、使われる蛍光体材料によって異なる。
The high sensitivity, high resolution XvA imager is a system that uses stimulable phosphors. The basic approach for such a system is described in detail in US Pat. No. 3,859,527. When the phosphors used in this system receive the energy of radiation, such as X-rays, they store a portion of that energy. This state is relatively stable and is maintained for a while or for a long time. When the phosphor in this state is irradiated with the first light that acts as excitation light, the stored energy is released as second light. At this time, the first light is not limited to visible light, but has a wide wavelength range from infrared to ultraviolet. However, the choice depends on the phosphor material used.

第二の光も赤外線のものから紫外線のものまで各種ある
。その違いも、使用する蛍光体材料に依存する。この第
二の電磁波を受光し、光電変換器で電気信号に変換した
後ディジタル信号化してディジクル画像情報として得る
ようにして成るものである。
There are various types of secondary light, ranging from infrared to ultraviolet light. The difference also depends on the phosphor material used. This second electromagnetic wave is received, converted into an electric signal by a photoelectric converter, and then converted into a digital signal to obtain digital image information.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来用いられてきた輝尽蛍光体層は第一の光すなわち励
起光に対しても、第二の光すなわち輝尽発光光に対して
も透明ではなく、強度の散乱現象を示していた。そのた
め1画素と同じ程度或いは以下の大きさの励起光光束を
輝尽蛍光体層に照射しても励起光光束は非常に幅広く散
乱し、例えば0.3mmの厚さの蛍光体層に直径0.1
mM1の励起光光束を照射すると照射面と反対の面にお
いては直径1 mm以上の大きさ、場合によっては直径
3mm以上にまで広がってしまうことが観測されている
(第3図の(A)参照)。このような励起光の散乱は、
上記例の場合に、若し1画素の大きさが0.1mm角の
大きさであるとすると、1画素を読み取るとき隣接する
100乃至900画素の部分の情報の一部を誤差として
取り込む結果、得られる画像の空間分解能が著しく劣化
したものとなり著しく不鮮鋭な画像となることは当然で
ある。この励起光散乱の現象を緩和する試みは幾つかな
されている。
Conventionally used stimulable phosphor layers were not transparent to either the first light, ie, excitation light, or the second light, ie, stimulated emission light, and exhibited a strong scattering phenomenon. Therefore, even if a photostimulated phosphor layer is irradiated with an excitation light beam of the same size or smaller than that of one pixel, the excitation light beam will be scattered very widely. .1
It has been observed that when an excitation light beam of mM1 is irradiated, the beam spreads to a diameter of 1 mm or more on the opposite side of the irradiated surface, and in some cases to a diameter of 3 mm or more (see (A) in Figure 3). ). Such scattering of excitation light is
In the case of the above example, if the size of one pixel is 0.1 mm square, when reading one pixel, part of the information of the adjacent 100 to 900 pixels is taken in as an error. Naturally, the spatial resolution of the resulting image is significantly degraded, resulting in an extremely unsharp image. Several attempts have been made to alleviate this phenomenon of excitation light scattering.

たとえば特開昭55−146447号公報、特開昭58
−58500号公報に示されている蛍光体層の中に白色
微粒子を分解させる方法、あるいは特開昭61−170
740号公報に示されている励起光を吸収するような着
色剤を添加する方法、あるいは特開昭62−21.1.
600号公報に示されているような輝尽蛍光体の支持基
板に着色剤或いは白色微粒子を形成する方法などがある
。このような方法は従来のX線フィルムの増感紙に対し
ても為されてきた鮮鋭度改良のための方法ではあるが、
しかし、励起光散乱を完全に除去する方法でないことは
明らかである。また、特開昭60171500号公報な
どに示されている輝尽蛍光体の層の中に垂直方向に亀裂
を形成させたり、ハニカム構造を形成する方法或いは基
板表面に凹凸パターンやモザイクパターンを形成して、
散乱を防ごうとする試みもある。しかし、これらの方法
も完全に励起光の散乱を防止するものではなく、得られ
た画像にモアレパターンを形成させる可能性を生じさせ
る。
For example, JP-A-55-146447, JP-A-58
- A method of decomposing white fine particles in a phosphor layer as shown in Japanese Patent Publication No. 58500, or Japanese Patent Application Laid-Open No. 61-170
A method of adding a coloring agent that absorbs excitation light as shown in Japanese Patent Publication No. 740, or Japanese Patent Application Laid-open No. 62-21.1.
There is a method of forming a coloring agent or white fine particles on a supporting substrate of a photostimulable phosphor, as shown in Japanese Patent No. 600. Although this method has been used to improve the sharpness of conventional X-ray film intensifying screens,
However, it is clear that this is not a method that completely eliminates excitation light scattering. Furthermore, methods such as forming vertical cracks in a layer of stimulable phosphor or forming a honeycomb structure, as shown in Japanese Patent Application Laid-Open No. 60171500, or forming an uneven pattern or a mosaic pattern on the substrate surface, are also available. hand,
There are also attempts to prevent scattering. However, these methods do not completely prevent the scattering of excitation light, and there is a possibility that a moiré pattern will be formed in the obtained image.

本発明は斯かる技術的課題に鑑みて創作されたもので、
励起光、輝尽蛍光光に対する散乱性のない輝尽蛍光体板
を提供することをその目的とする。
The present invention was created in view of such technical problems,
The object of the present invention is to provide a photostimulated phosphor plate that does not scatter excitation light and stimulated fluorescent light.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理構造図を示す。この図に示すよう
に、本発明はほぼ等しい大きさで励起光不透過性に加工
された穴形成部2内に輝尽蛍光体6を埋設した微***2
6を交差方向の各交差位置に設けて構成され、又交差方
向の各交差位置毎に、ほぼ等しい大きさで励起光不透過
性に加工された穴形成部2と、該穴形成部2の光透過側
に配置された光透過性封止材4と、前記穴形酸部形成基
板の光透過側の面とは反対側の面に配置された封止材5
と、前記光透過性封止材4と前記封止材5とによって封
止された前記穴形成部2内に充填された輝尽蛍光体6と
で構成される。
FIG. 1 shows a principle structural diagram of the present invention. As shown in this figure, the present invention has a micro-hole 2 in which a stimulable phosphor 6 is embedded in a hole-forming part 2 of approximately the same size and processed to be opaque to excitation light.
6 at each intersecting position in the intersecting direction, and at each intersecting position in the intersecting direction, there is a hole forming part 2 of approximately the same size and processed to be opaque to excitation light, and a A light-transmitting sealing material 4 disposed on the light-transmitting side, and a sealing material 5 disposed on the surface opposite to the light-transmitting side of the hole-shaped acid part forming substrate.
and a stimulable phosphor 6 filled in the hole forming portion 2 sealed by the light-transmissive sealing material 4 and the sealing material 5.

〔作 用〕[For production]

被写体にX線を照射されてこれを透過した被写体パター
ンのX線エネルギーは、輝尽蛍光体板に規則的に配列さ
れている微***内26の輝尽蛍光体6の各々に分布して
蓄積される。このエネルギー分布パターンを有する輝尽
蛍光体板に対し励起光を走査し、そこにエネルギー分布
パターンとして形成されている被写体パターンを電気信
号パターンを取り出してその利用に供される。
The X-ray energy of the object pattern transmitted through the X-rays irradiated onto the object is distributed and accumulated in each of the photostimulable phosphors 6 in the micro holes 26 regularly arranged on the photostimulable phosphor plate. Ru. Excitation light is scanned against the stimulable phosphor plate having this energy distribution pattern, and an electrical signal pattern is extracted from the subject pattern formed there as an energy distribution pattern and used.

その電気信号パターンを出力する際に、輝尽蛍光体板の
規則配列された微***26をその交差方向の1つの方向
に沿って励起光が走査される。その励起光を照射される
輝尽蛍光体は励起光不透過性の穴壁2の中に入っている
から、散乱することはない。従って、空間分解能が低下
されるのを完全に防止することができる。
When outputting the electrical signal pattern, excitation light is scanned along one of the intersecting directions of the regularly arranged microholes 26 of the stimulable phosphor plate. Since the stimulable phosphor irradiated with the excitation light is inside the hole wall 2 that is not transparent to the excitation light, it is not scattered. Therefore, it is possible to completely prevent the spatial resolution from decreasing.

〔実施例] 第2図を参照して本発明の輝尽蛍光体板の製造方法を以
下に説明する。この製造方法はエツチングによる方法で
ある。
[Example] A method for manufacturing a photostimulable phosphor plate of the present invention will be described below with reference to FIG. This manufacturing method is an etching method.

先ず、薄いステンレス板に微***を形成するためのレジ
ストパターン(第4図参照)を公知のCAD技法を用い
て製作する。そのパターンの穴対応部分の大きさは微小
穴の大きさより小さ目とする。このレジストパターンを
用いてステンレス板20I面にマスク22.23を形成
する(第2図の(])参照)。24はマスク22.23
のマスク穴である。形成されたマスク穴24を介してス
テンレス板20ヘエツチング剤を作用させて第2図の(
2)に示すように微***26を形成する。28は穴壁で
ある。その穴壁板面域29にスクリーン印刷によって接
着剤30を塗布する(第2図の(3))。
First, a resist pattern (see FIG. 4) for forming microholes in a thin stainless steel plate is manufactured using a known CAD technique. The size of the hole-corresponding portion of the pattern is made smaller than the size of the minute hole. Using this resist pattern, masks 22 and 23 are formed on the surface of the stainless steel plate 20I (see ( ) in FIG. 2). 24 is mask 22.23
It is a hole in the mask. A etching agent is applied to the stainless steel plate 20 through the mask hole 24 formed, as shown in FIG.
2) A microhole 26 is formed as shown in FIG. 28 is a hole wall. An adhesive 30 is applied to the hole wall plate surface area 29 by screen printing ((3) in FIG. 2).

この接着剤30の塗布は、第2図の(4)に示すように
、間に挟まれるステンレス板202についてはその両面
に、又挟むステンレス板20..20.については、そ
のステンレス板202を挟むステンレス板面にのみ施さ
れる。第2図の(4)において、32はガラス板である
。接着処理完了後に、重合された3枚のステンレス板2
0I乃至203に形成されている、より深くなっている
微***26内に粉末の輝尽蛍光体6 (BaFBr :
 Bu”)を充填した後(第2図の(5)参照)、その
上にポリエステルの保護層34(第2図の(6)参照)
を形成して輝尽蛍光体板を製造した(第4図参照前記微
***26の壁面は光学面を有し、励起光及び輝尽発光光
を効率よく反射する。これにより、微***の壁面を介し
て励起光は透過せず、励起光照射によって輝尽蛍光体か
ら放出される輝尽蛍光光は効率よく集光することができ
る(第3図の(B)参照)。従って、画像の空間分解能
の低下を】 0 防止することができる。又、上述のような重合により、
励起光照射で輝尽蛍光体から放出される輝尽蛍光光量の
増大が図れる。それによる空間分解能の低下はない。
As shown in FIG. 2 (4), the adhesive 30 is applied to both sides of the stainless steel plate 202 sandwiched between the stainless steel plates 202 and 20. .. 20. This is applied only to the surfaces of the stainless steel plates that sandwich the stainless steel plate 202. In (4) of FIG. 2, 32 is a glass plate. After the adhesion process is completed, the three polymerized stainless steel plates 2
Powdered stimulable phosphor 6 (BaFBr:
After filling (see (5) in Figure 2), a protective layer 34 of polyester (see (6) in Figure 2) is applied.
(see Figure 4) The wall surface of the microhole 26 has an optical surface and efficiently reflects the excitation light and the stimulated luminescence light. The excitation light does not pass through the phosphor, and the stimulated fluorescent light emitted from the stimulable phosphor by excitation light irradiation can be efficiently collected (see (B) in Figure 3). [0] Decrease in spatial resolution can be prevented.Also, by polymerization as described above,
The amount of stimulated fluorescence light emitted from the photostimulated phosphor can be increased by irradiation with excitation light. There is no decrease in spatial resolution due to this.

なお、前記実施例における薄いステンレス板は、薄い他
の金属板若しくはプラスチック板等としてもよい。薄い
金属板あるいはプラスチック板等に多数の微***を形成
する方法は、エツチングによる方法2機械加工による方
法など種々あるが、その方法による限定はない。
Note that the thin stainless steel plate in the above embodiment may be replaced with another thin metal plate, a plastic plate, or the like. There are various methods for forming a large number of microholes in a thin metal plate, plastic plate, etc., such as etching method 2 and machining method, but the method is not limited to these methods.

微***の形成方法には、制限はないが、材料及び形成手
段によって、形成される微***26は多様な形をとる(
第5図及び第6図参照)。たとえば厚さ0.1mmのス
テンレス板に直径0.08mmの穴を縦横のピッチがそ
れぞれ0.1柵でエツチングによって形成したとすると
、穴の形状は完全にストレートなものとなることはなく
、エツチングの方法たとえば片面からのみエツチングす
る場合は片方が大きくなり、両面からエツチングする場
合は中央がくびれだ形状になったり、あるいはマスクの
穴の形成の仕方によっては別の形状にもなる。あるいは
放電加工によって穴を形成するときには比較的ストレー
トな形状になるなど、多様な形状を取り得るが、形状に
無関係に本発明を実施することは可能である。微***の
形状は特に限定されないが、しかし、実際には円形、楕
円状、正方形。
There is no limit to the method of forming the microholes, but the microholes 26 formed can take various shapes depending on the material and forming means.
(See Figures 5 and 6). For example, if a hole with a diameter of 0.08 mm is formed in a stainless steel plate with a thickness of 0.1 mm by etching with a vertical and horizontal pitch of 0.1, the shape of the hole will not be completely straight; For example, if etching is done from only one side, one side will be larger; if etching is done from both sides, the center will be constricted, or depending on how the hole in the mask is formed, it will become a different shape. Alternatively, when a hole is formed by electrical discharge machining, it can take a variety of shapes, such as a relatively straight shape, but the present invention can be practiced regardless of the shape. The shape of the microhole is not particularly limited, but in practice it may be circular, oval, or square.

長方形あるいは多角形が製造上用いられる(第5図参照
)。こうして形成される微***の壁面がその材料の性質
により励起光を透過するものである場合は励起光を透過
しないものを微***の壁面に塗布したり、蒸着するなど
で励起光の透過を防くことが必要である。また、穴の壁
面が光学的な意味で面精度が出ていないときには樹脂の
塗布によって滑らかにし、その上に金属など反射率の高
い層を形成することがを効である。
Rectangular or polygonal shapes are used in manufacturing (see Figure 5). If the wall surface of the microhole formed in this way allows the excitation light to pass through due to the nature of the material, a material that does not transmit the excitation light can be coated or deposited on the wall surface of the microhole to prevent the transmission of the excitation light. It is necessary to Furthermore, if the wall surface of the hole does not have surface precision in an optical sense, it is effective to smooth it by coating with resin and then form a layer with high reflectance such as metal on top of it.

また、微***の大きさは特に限定の必要はないが、ある
程度の厚さの微***に輝尽蛍光体を埋め込む技術的な困
難性の故に、大きさの下限は0.01画程度であり、ま
たX線画像診断に要求される空間分解能の点から上限は
0.4mm程度である。輝尽蛍光体板の面に対する微小
穴の方向は垂直方向であるが、完全に垂直であってもよ
いが斜めであってもよい。斜めの微***は、たとえば、
内径が微***の径と同じ多数の毛細管を正方配列して束
ね、あるいは−層ずつ重ね、毛細管の間に接着剤を充填
、硬化後、斜めに切断、研磨、洗浄することで製作する
ことができる。また、穴内部の形状はストレートであっ
ても、上下の大きさが異なっていてもよい。穴を形成す
る材料も穴を形成した後、ある程度の機械的強度がある
ものならなんでもよい。
In addition, there is no need to limit the size of the microhole, but due to the technical difficulty of embedding stimulable phosphor in a microhole with a certain thickness, the lower limit of the size is about 0.01 picture. , and the upper limit is about 0.4 mm in view of the spatial resolution required for X-ray image diagnosis. The direction of the microholes relative to the surface of the stimulable phosphor plate is perpendicular, and may be completely perpendicular or oblique. For example, a diagonal microhole is
It can be manufactured by bundling a large number of capillaries whose inner diameter is the same as the diameter of the microhole in a square array, or stacking them layer by layer, filling adhesive between the capillaries, and after curing, cutting diagonally, polishing, and cleaning. can. Further, the shape of the inside of the hole may be straight, or the upper and lower sizes may be different. The material for forming the hole may be any material as long as it has a certain degree of mechanical strength after the hole is formed.

また、前記実施例においては、微***形成後のステンレ
ス板の片面にガラス板を使用する例を示したが、金属シ
ート等を用いることも可能であり、そのときは、そのシ
ートは励起光および輝尽発光光を反射するものであるこ
とが好ましい。あるいは、励起光は反射するが輝尽発光
光は透過するものであってもよく、その逆の場合も使用
の仕方即ち励起光の照射方向と輝尽発光光の集光の方向
の選択によっては可能である。選択ミラーの働きを有す
るカバーは両面に接着等によって形成することも効果的
である。カバーの種類は特に限定はないが、X線の後方
散乱線を防くため、励起光と輝尽発光光は通し、X線を
吸収する例えば鉛ガラスを用いることも有効である。あ
るいは鉛板を貼ることも有効である。
In addition, in the above embodiment, an example was shown in which a glass plate was used on one side of the stainless steel plate after microholes were formed, but it is also possible to use a metal sheet, etc. In that case, the sheet can be used for excitation light and Preferably, it reflects stimulated luminescence light. Alternatively, the excitation light may be reflected but the stimulated luminescence light may be transmitted, or vice versa, depending on the method of use, that is, the selection of the direction of irradiation of the excitation light and the direction of collection of the stimulated luminescence light. It is possible. It is also effective to form the cover, which functions as a selection mirror, on both sides by adhesive or the like. The type of cover is not particularly limited, but in order to prevent backscattered X-rays, it is also effective to use, for example, lead glass, which allows excitation light and stimulated emission light to pass through but absorbs X-rays. Alternatively, pasting a lead plate is also effective.

各微***に埋設される輝尽蛍光体としては、励起光の散
乱が起きるような不透明のものであっても、励起光ある
いは輝尽発光光に対し透明なものであってもよく、その
組成はどのようなものであっても適用可能であり、限定
されないし、その埋設方法についても、制限なく、粒径
5μm以下の輝尽蛍光体粉末を結合剤の溶液に分散させ
て流し込む方法、輝尽蛍光体粉末をそのまま微***に押
し込み、その後結合剤を浸み込ませる方法、リフトオフ
の方法を適用し、穴部以外の部分にあとで可溶な層を形
成し、輝尽蛍光体を蒸着等で穴内部を埋め、その後穴部
以外の輝尽蛍光体を除去する方法など種々の方法を用い
ることができる。
The stimulable phosphor embedded in each microhole may be opaque so as to cause scattering of excitation light, or may be transparent to excitation light or stimulated emission light, and its composition Any type of material can be applied and is not limited, and there are no restrictions on the embedding method. Stimulated phosphor powder is pushed directly into the micro-holes, then a binder is soaked in, and a lift-off method is applied to form a layer that is later soluble in areas other than the holes, and the stimulable phosphor is vapor-deposited. Various methods can be used, such as a method of filling the inside of the hole with etc. and then removing the stimulable phosphor outside the hole.

本発明で使用される輝尽蛍光体板表面の穴部以外の部分
が励起光を反射する性質を持っていれば、励起光ビーム
の走査時に励起光の反射が生しる。
If the portions other than the holes on the surface of the stimulable phosphor plate used in the present invention have the property of reflecting excitation light, the excitation light will be reflected when the excitation light beam is scanned.

その反射光を集光伝達して、光電変換器により電気信号
とし、その電気信号を解析することによって微***と励
起光の位置関係を検出することができる。その結果励起
光走査のタイミングや輝尽発光光の読取りのタイミング
を得るための同期信号を得ることができる。
The reflected light is condensed and transmitted, converted into an electrical signal by a photoelectric converter, and by analyzing the electrical signal, the positional relationship between the microhole and the excitation light can be detected. As a result, it is possible to obtain a synchronization signal for obtaining the timing of excitation light scanning and the timing of reading stimulated luminescence light.

又、上記実施例においては、粉末の輝尽蛍光体を微***
に充填する場合を示したが、他の種類の輝尽蛍光体を微
***に埋設してもよい。その場合には、」二連のガラス
板、保護層は必ずしも設けなくてもよい。
Further, in the above embodiment, a case where a powdered stimulable phosphor is filled into a microhole is shown, but other types of stimulable phosphor may be buried in a microhole. In that case, it is not necessary to provide two glass plates and a protective layer.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、画素の潜像形成に用
いられる微***が互いに不干渉性に形成されているから
、たとえ輝尽蛍光体が励起光に散乱性があったとしても
、それによる空間分解能の低下は完全に防止することが
き、高分解能のディジタルχ線像の提供に大いに寄与し
得る。
As described above, according to the present invention, the microholes used to form latent images of pixels are formed so as to be incoherent with each other, so even if the stimulable phosphor scatters excitation light, The resulting decrease in spatial resolution can be completely prevented and can greatly contribute to the provision of high-resolution digital chi-ray images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理ブロック図、 第2図は本発明の製造過程を示す図、 第3図は輝尽蛍光体での励起光散乱説明図、第4図は微
***円形の輝尽蛍光体板を示す図、第5図は微***の各
種平面形状を示す図、第6図は微***の各種断面形状を
示す図である。 第1図乃至第6図において、 2は穴形成部(ステンレス板20、穴壁28)、4は光
透過性封止材(保護層34)、 5は封止材(ガラス板32)、 6は輝尽蛍光体、 26は微***である。 22□            = さ12138月の 輯ンレー勺り光イむ6!j−!−コ
ニn(’ydi )μ胡第 2 図(相の1) (A) 平面図 (A) イ泡東=1燥合 (B)本発θ胎を易会 オ甲/l−勺や2ケ―イネ7Σ−#$ガじこ私さ、L 
#、Ef L七つ第3図 を政小え円形偵f影答ず光J芋f反 第4図
Figure 1 is a block diagram of the principle of the present invention, Figure 2 is a diagram showing the manufacturing process of the present invention, Figure 3 is an explanatory diagram of excitation light scattering in a photostimulated phosphor, and Figure 4 is a circular microhole for photostimulation. FIG. 5 is a diagram showing a phosphor plate, FIG. 5 is a diagram showing various planar shapes of microholes, and FIG. 6 is a diagram showing various cross-sectional shapes of microholes. 1 to 6, 2 is a hole forming part (stainless steel plate 20, hole wall 28), 4 is a light-transparent sealing material (protective layer 34), 5 is a sealing material (glass plate 32), 6 26 is a photostimulated phosphor, and 26 is a microhole. 22□ = 1213 August's calendar is shining 6! j-! -Koni n('ydi)μhu Figure 2 (Phase 1) (A) Plan view (A) Iwa East = 1 dry combination (B) Honshu θ womb wo kikai oko / l - Goya 2 K-ine7Σ-#$gajiko me, L
#, Ef L seven figure 3, political small circle reconnaissance f shadow answer light J potato f anti-figure 4

Claims (8)

【特許請求の範囲】[Claims] (1)ほぼ等しい大きさで励起光不透過性に加工された
穴形成部(2)内に輝尽蛍光体(6)を埋設した微***
(26)を交差方向の各交差位置に設けた輝尽蛍光体板
(1) Microholes (26) in which the stimulable phosphor (6) was embedded were provided at each intersecting position in the intersecting direction within the hole-forming portion (2) that had approximately the same size and was processed to be opaque to excitation light. Photostimulated phosphor board.
(2)前記輝尽蛍光体が励起光散乱性であることを特徴
とする請求項(1)記載の輝尽蛍光体板。
(2) The stimulable phosphor plate according to claim 1, wherein the stimulable phosphor has excitation light scattering properties.
(3)前記穴形成部(2)の壁面が励起光及び輝尽蛍光
光に対し反射性を有することを特徴とする請求項(1)
記載の輝尽蛍光体板。
(3) Claim (1) characterized in that the wall surface of the hole forming portion (2) has a reflective property for excitation light and stimulated fluorescence light.
The photostimulated phosphor plate described.
(4)励起光走査側の、微***以外の板表面が励起光に
対し反射性を呈することを特徴とする請求項(1)記載
の輝尽蛍光体板。
(4) The stimulable phosphor plate according to claim (1), wherein the surface of the plate other than the microholes on the side where the excitation light is scanned is reflective to the excitation light.
(5)交差方向の各交差位置毎に、ほぼ等しい大きさで
励起光不透過性に加工された穴形成部(2)該穴形成部
(2)の光透過側に配置された光透過性封止材(4)と
、 前記穴形成部(2)形成基板の光透過側の面とは反対側
の面に配置された封止材(5)と、前記光透過性封止材
(4)と前記封止材(5)とによって封止された前記穴
形成部(2)内に充填された輝尽蛍光体(6)とより成
る輝尽蛍光体板。
(5) Hole forming portions that are approximately equal in size and processed to be opaque to excitation light at each intersecting position in the intersecting direction. (2) A light transmitting hole located on the light transmitting side of the hole forming portion (2). a sealing material (4); a sealing material (5) disposed on a surface opposite to the light-transmitting side surface of the hole-forming portion (2)-forming substrate; and a light-transmitting sealing material (4). ) and a stimulable phosphor (6) filled in the hole forming part (2) sealed with the sealing material (5).
(6)前記輝尽蛍光体(6)は励起光散乱性であること
を特徴とする請求項(5)記載の輝尽蛍光体板。
(6) The stimulable phosphor plate according to claim 5, wherein the stimulable phosphor (6) has excitation light scattering properties.
(7)前記穴形成部(2)の壁面が励起光及び輝尽蛍光
光に対し反射性を有することを特徴とする請求項(5)
記載の輝尽蛍光体板。
(7) Claim (5) characterized in that the wall surface of the hole forming part (2) has a reflective property for excitation light and stimulated fluorescence light.
The photostimulated phosphor plate described.
(8)励起光走査側の、微***以外の板表面が励起光に
対し反射性を呈することを特徴とする請求項(5)記載
の輝尽蛍光体板。
(8) The stimulable phosphor plate according to claim (5), wherein the surface of the plate other than the microholes on the side where the excitation light is scanned is reflective to the excitation light.
JP13557389A 1989-04-03 1989-05-29 Stimulable phosphor plate Pending JPH032599A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13557389A JPH032599A (en) 1989-05-29 1989-05-29 Stimulable phosphor plate
EP90905637A EP0426865B1 (en) 1989-04-03 1990-03-30 Phosphor plate and method for manufacturing the phosphor plate
PCT/JP1990/000434 WO1990012405A1 (en) 1989-04-03 1990-03-30 Accelerated phosphor plate and accelerated phosphor reader
DE69024610T DE69024610T2 (en) 1989-04-03 1990-03-30 PHOSPHORIC PLATE AND METHOD FOR THE PRODUCTION THEREOF
US08/079,951 US5444266A (en) 1989-04-03 1993-06-02 Photostimulable phosphor plate and photostimulable phosphor reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13557389A JPH032599A (en) 1989-05-29 1989-05-29 Stimulable phosphor plate

Publications (1)

Publication Number Publication Date
JPH032599A true JPH032599A (en) 1991-01-08

Family

ID=15154977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13557389A Pending JPH032599A (en) 1989-04-03 1989-05-29 Stimulable phosphor plate

Country Status (1)

Country Link
JP (1) JPH032599A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327953U (en) * 1976-08-13 1978-03-09
JP2015507741A (en) * 2011-12-22 2015-03-12 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Image storage device including storage phosphor powder, method of forming image storage device, and computed radiography device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327953U (en) * 1976-08-13 1978-03-09
JP2015507741A (en) * 2011-12-22 2015-03-12 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Image storage device including storage phosphor powder, method of forming image storage device, and computed radiography device

Similar Documents

Publication Publication Date Title
US6252938B1 (en) Two-dimensional, anti-scatter grid and collimator designs, and its motion, fabrication and assembly
US6661012B2 (en) X-ray detector
US5949850A (en) Method and apparatus for making large area two-dimensional grids
US5418377A (en) Pixelized phosphor
KR20040022403A (en) Antiscatter grid or collimator, and a method of production
JP2001194462A (en) Finely processed x-ray image contrast grid
JP2012505399A (en) Grid and method for producing a grid for selective transmission of electromagnetic radiation, in particular X-rays for mammography
US6671348B2 (en) X-ray image detecting apparatus
US5444266A (en) Photostimulable phosphor plate and photostimulable phosphor reader
JP2024026391A (en) X-ray detector with focused scintillator structure for uniform imaging
JPH032599A (en) Stimulable phosphor plate
DE60017619T2 (en) Electrical signal processing method for radiographic images in a stimulable phosphor sheet
JPH02129600A (en) Phosphor plate for radiation image reading
EP0426865B1 (en) Phosphor plate and method for manufacturing the phosphor plate
JPH039300A (en) Stimulable phosphor plate
US4490615A (en) X-ray intensifying screen
CN101069089A (en) Polychromic digital radiography detector with patterned mask for single-exposure energy-sensitive X-ray imaging
JP2002071815A (en) X-ray image fluorograph
CA2186258A1 (en) Method for fabricating a pixelized phosphor
JPH02262100A (en) Accelerated phosphorescence plate
JP3576391B2 (en) X-ray line sensor
JP2002181940A (en) Wavelength conversion-type light sensor
JPH02308238A (en) Image reading system for digital x-ray image pickup device
JP2000221298A (en) Method for reading information about radiation image and stimulable phosphor sheet
JPH11248843A (en) Two-dimensional array radiation detector