JPH03259719A - Method and instrument for measuring quantity of produced gas from body to be measured - Google Patents

Method and instrument for measuring quantity of produced gas from body to be measured

Info

Publication number
JPH03259719A
JPH03259719A JP5933490A JP5933490A JPH03259719A JP H03259719 A JPH03259719 A JP H03259719A JP 5933490 A JP5933490 A JP 5933490A JP 5933490 A JP5933490 A JP 5933490A JP H03259719 A JPH03259719 A JP H03259719A
Authority
JP
Japan
Prior art keywords
gas
liquid
generated
measured
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5933490A
Other languages
Japanese (ja)
Inventor
Kenji Kobiki
謙治 木挽
Kazuhisa Kinoshita
木下 和久
Takefumi Uehara
上原 健文
Tsutomu Takeo
竹尾 務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP5933490A priority Critical patent/JPH03259719A/en
Publication of JPH03259719A publication Critical patent/JPH03259719A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately grasp the quantity of produced gas even when the quantity of produced gas is small by admitting the produced gas from the collected body to be measured to a constant space by substitution with the liquid stored in the constant space, measuring the weight of the discharged liquid, and converting the measurement result into volume. CONSTITUTION:A vapor-liquid substitution part is equipped with the liquid storage space S which contains the liquid previously and receives and substitutes the produced gas collected by a recovery part with the stored liquid. Then the body to be measured is inserted into the combustion part of a siliconit furnace 3 which is raised in temperature and gas is produced from a molding sand sample for neutrons. Consequently, water is discharged from a dispensing funnel 11 by the same volume with the produced gas and dripped in a measuring cylinder, so its weight is measured automatically and recorded by a personal computer 15.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、液体中にガスを導入して、導入されたガスで
同体積の液体を置換することにより、導入されたガスの
体積を測定する方法に関し、例えば、鋳物を鋳造すると
き内側の形を整える中子用鋳物砂から発生するガス量を
予測して工程管理を行うため、中子用鋳物砂サンプルを
加熱して発生させたガス量を測定する被測定物からの発
生ガス量の測定方法および測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention measures the volume of the introduced gas by introducing a gas into a liquid and replacing the same volume of liquid with the introduced gas. For example, in order to control the process by predicting the amount of gas generated from core molding sand that adjusts the inner shape when casting a casting, the gas generated by heating a core molding sand sample is used. The present invention relates to a method and apparatus for measuring the amount of gas generated from an object to be measured.

上記中子用鋳物砂にはコーテツドサンドと呼ばれる鋳物
砂がよく用いられる。コーテツドサンドは珪砂に粘結剤
として約2重量%から3重量%のフェノールレシンが添
加されている。硬化促進材として小量のへキサメチレン
テトラミンを添加したものもある。これらの添加剤は力
11熱されると分解してガスを発生ずる。ところが、鋳
型鋳造時に発生するガス量が多ずぎると、1ノを型の設
計に支障を来すので、予めガス発生量を予測する必要が
ある。特に再生鋳物砂として繰り返し使用する場合、ガ
ス発生量が大きくばらつくので、これを管理範囲に入る
よう調整するために、ガス発生量の予測が重要な管理項
目になっている。
Foundry sand called coated sand is often used as the foundry sand for the core. Coated sand is made by adding about 2% to 3% by weight of phenol resin as a binder to silica sand. Some contain a small amount of hexamethylenetetramine as a curing accelerator. These additives decompose and produce gas when heated. However, if the amount of gas generated during mold casting is too large, it will interfere with the design of the mold, so it is necessary to predict the amount of gas generated in advance. In particular, when repeatedly used as recycled foundry sand, the amount of gas generated varies greatly, so predicting the amount of gas generated is an important control item in order to adjust this to within a control range.

[従来の技術1 このため、従来は第5図に示すよ・うに予め水を満たし
たメスシリンダーの開「]部を士にして水中に保持し、
被測定物の一例である鋳物砂のサンプルを加熱して発生
したガスをこのメスシリンダー内に補集し、補集したガ
スとメスシリンダー内に残った水の境界面の目盛りを読
んで補集した体積を測定していた。
[Prior art 1] For this reason, conventionally, as shown in Fig. 5, a graduated cylinder filled with water in advance is held in water with the open part as the
The gas generated by heating a sample of foundry sand, which is an example of the object to be measured, is collected in this graduated cylinder, and the scale is collected by reading the scale at the interface between the collected gas and the water remaining in the graduated cylinder. The volume was measured.

[発明が解決しようとする課題1 ところが、上記鋳物砂のサンプルの場合、発生するガス
量自体が少ないため、目視による前記従来の測定方法で
は、メスシリンダーの僅かな傾きや、計測時の目の位置
、最小目盛り間の目測等に起因する相対誤差が大きくな
り、従って、正確なガス発生量を知ることができなかっ
た。本発明はこのように発生ガス量が少ない場合におい
ても、その発生量を正確に把握できる測定方法と装置を
提供することにある。
[Problem to be Solved by the Invention 1] However, in the case of the above-mentioned molding sand sample, the amount of gas itself generated is small, so the conventional measurement method using visual observation is difficult to detect due to slight inclination of the graduated cylinder or Relative errors due to position, scale measurements between minimum scales, etc. became large, and therefore, it was not possible to accurately determine the amount of gas generated. The object of the present invention is to provide a measuring method and apparatus that can accurately determine the amount of gas generated even when the amount of gas generated is small.

[課題を解決するための手段] この目的を達成するための測定方法の第1の手段は、被
測定物からの発生ガスを回収し、その回収した発生ガス
を一定空間内の収容液体との置換によって前記一定空間
内に導入し、前記置換によって前記一定空間内から排除
された液体の重量を測定し、前記測定結果を体積に換算
して発生ガスの体積を知る被測定物からの発生ガス量の
測定方法であり、第2の手段は、被測定物からの発生ガ
スを回収し、その回収した発生ガスを液体中に導入し、
液中におけるガスの浮力を測定し、測定結果からAi前
記ガスと同体積の液体の重量を知り、その重量を液体の
体積に換算し、換算した体積から前記発生ガスの体積を
知る被測定物からの発生ガス量の測定方法である。
[Means for Solving the Problem] The first means of the measurement method for achieving this purpose is to collect the generated gas from the object to be measured and to combine the collected generated gas with a liquid contained in a certain space. The gas generated from the object to be measured is introduced into the certain space by displacement, the weight of the liquid removed from the certain space by the displacement is measured, and the volume of the gas generated is determined by converting the measurement result into a volume. The second method is to collect the generated gas from the object to be measured, introduce the collected generated gas into a liquid, and
An object to be measured that measures the buoyancy of a gas in a liquid, determines the weight of a liquid having the same volume as the Ai gas from the measurement results, converts the weight to the volume of the liquid, and determines the volume of the generated gas from the converted volume. This is a method of measuring the amount of gas generated from

又、測定装置の特徴手段は、被測定物からの発生ガスを
回収するガス回収部を設け、液体を予め収容すると共に
回収部によって回収した発生ガスを導入して前記収容液
体と置換するための液体収容空間を備えた気液置換部と
、前記液体収容空間から発生ガスとのW換によって排除
された液体の重量を測定する測定部と、該測定部による
測定結果を体積に換算する演算部とを有することにある
。前記気液置換部を構成するに、内部に前記液体収容空
間を形成する密閉容器を設け、前記密閉容器の上部に前
記ガス回収部に対する接続口を設け、−上部に前記発生
ガスとの置換によって排除される液体の排出口を設けて
あるもよい。また、前記気液置換部を構成するに、上部
を密閉した第1空間(S1)と上部を開放した第2空間
(S2)を設け、両空間を下部で連通させて前記液体収
容空間(S)を形成し、前記第1空間の1一部に前記ガ
ス回収部に対する接続口を設け、前記第2空間上部に前
記発生ガスとの置換によって排除される液体をオーバー
フローさせるための排出口を設けてもよい。
Further, the characteristic means of the measuring device is that it is provided with a gas recovery section for recovering generated gas from the object to be measured, and that a liquid is stored in advance and the generated gas recovered by the recovery section is introduced to replace the stored liquid. a gas-liquid displacement section including a liquid storage space; a measurement section that measures the weight of the liquid removed from the liquid storage space by W exchange with generated gas; and a calculation section that converts the measurement result by the measurement section into a volume. The purpose is to have the following. The gas-liquid replacement section is configured by providing a closed container that forms the liquid storage space therein, providing a connection port for the gas recovery section in the upper part of the closed container, An outlet for the liquid to be removed may also be provided. Further, in configuring the gas-liquid replacement section, a first space (S1) whose upper part is sealed and a second space (S2) whose upper part is open are provided, and both spaces are communicated with each other at the lower part to form the liquid storage space (S1). ), a connection port for the gas recovery section is provided in a part of the first space, and a discharge port is provided in the upper part of the second space for overflowing the liquid removed by replacement with the generated gas. It's okay.

[作 用1 つまり、第1の手段では、発生ガスで同体積の液体を排
除し、排除された液体の重量を測定するごとができる。
[Function 1] That is, in the first means, the same volume of liquid can be removed with the generated gas and the weight of the removed liquid can be measured.

第2の手段では、発生ガスを液中に導入し、その浮力を
測定するすることができる。
In the second method, the generated gas can be introduced into the liquid and its buoyancy can be measured.

」二記第1の手段によって、液中に導入されたガスと同
体積の液体の重量を、または第2の手段によって、液中
に導入されたガスと同体積の液体の重量に等しい浮力を
測定することができる。
2.By the first means, the weight of the liquid is equal to the volume of the gas introduced into the liquid, or by the second means, the buoyancy force is equal to the weight of the liquid of the same volume as the gas introduced into the liquid. can be measured.

[発明の効果] これらは何れも力を測定する方法であるから、秤量機器
を用いて機械的に測定し、その結果を液体の体積に換算
することによって、これと同体積の発生ガス量を正確に
求めることができる。
[Effect of the invention] Since these are all methods of measuring force, by mechanically measuring it using a weighing device and converting the result to the volume of liquid, it is possible to calculate the amount of gas generated by the same volume. can be determined accurately.

これによって、発生ガス量の少ないときでも、精度よく
その体積を求めることができる。また、測定を連続的に
行い、測定」6よび測定結果の記録を自動的に行わせる
こともできる。又、比重の大きい液体を使用すれば測定
の感度を」二げることもできる。
Thereby, even when the amount of generated gas is small, its volume can be determined with high accuracy. It is also possible to perform measurements continuously and automatically record the measurement results. Furthermore, the sensitivity of measurement can be increased by using a liquid with a high specific gravity.

[実施例] 次に実施例を示す。第1図に示すように、被測定物であ
る中子用鋳物砂サンプルからの発生ガスを回収するガス
回収部を構成するに、変圧器(1)、温度制御レギュレ
ータ(2)、シリコニット炉(3) 、PRメタルシー
ス熱電対(4) 、6A燃焼管(5)、シリコンゴム栓
(6)、シリコンゴム栓(61)、Y型アダプタ(7)
、シリコンゴム管(8)、シリコンゴ1、栓(9)、ア
ダプター(10)を設け、液体を予め収容すると共に回
収部によって回収した発生ガスを導入して前記収容液体
と置換するための液体収容空間(S)を備えた気液置換
部を構成するに、分液ロー1− (11)を三脚架(1
2)で保持して設り、前記液体収容空間から発生ガスと
の置換によって排除された液体の重量を測定する測定部
を構成するに、メスシリンダー(13)、電子秤量器(
14)を設け、該測定部による測定結果を体積に換算す
る演算部を構成するにパソコン(15)を設け、前記ガ
ス回収部、前記気液置換部、前記測定部、前記演算部に
よって被測定物からの発生ガス量の測定装置を構成しで
ある。
[Example] Next, an example will be shown. As shown in Fig. 1, the gas recovery section that recovers the gas generated from the foundry sand sample for cores that is the object to be measured consists of a transformer (1), a temperature control regulator (2), a silicone furnace ( 3) , PR metal sheath thermocouple (4), 6A combustion tube (5), silicone rubber plug (6), silicone rubber plug (61), Y-type adapter (7)
, a silicone rubber tube (8), a silicone tube 1, a stopper (9), and an adapter (10) are provided, and the liquid is stored in advance and the generated gas collected by the collection section is introduced to replace the stored liquid. To configure a gas-liquid displacement section with a space (S), separate liquid separation row 1- (11) is mounted on a tripod stand (1
2), a measuring cylinder (13), an electronic scale (
14), and a personal computer (15) constituting a calculation unit for converting the measurement result by the measurement unit into volume, and a personal computer (15) configured to convert the measurement result by the measurement unit into a volume, and It constitutes a device for measuring the amount of gas generated from an object.

シリコニット炉(3)は変圧器(1)、温度制御レギュ
レータ(2) 、PRメタルシース熱を対(4)によっ
て温度制御ができるようにしである。被測定物として中
子用鋳物砂ザンプルをアルミナボー1・に5g秤り取っ
ておく。前記ザンプルは、測定時にシリコニット炉(3
)の6A燃焼管(5)中央部に配置するようにしである
。6A燃焼管(5)の一端(図では右側手前)はシリコ
ンゴム栓(6)で栓をする。シリコンゴム栓(6)には
Y型アダプタ(7)の一端を貫通させて6A燃焼管(5
)からの発生ガスをシリコンゴム管(8)を通して取り
出せるように、また、非酸化性雰囲気中での発生ガス量
を測定できるように、必要に応じY型アダプタ(7)の
他の一端の窒素ガス送入口(16)から窒素ガスを6A
燃焼管(5)と分液ロー1− (11)内に送入できる
ようにしである。次に、分液ロー ) (11)のコッ
クを閉じた状態で分液ロート(11)に水を満たす。こ
の場合、分液ロート内を全部水で満たず必要はなく、上
部に多少空間が残っていても差し支えない。6A燃焼管
(5)どシリコンゴム管および分液ロート(11)内の
空気を窒素ガスで置換した後、窒素ガス送入口(16)
を閉鎖し、6A燃焼管(5)の他端をシリコンゴム栓(
61)で、分液ロート(11)の上部受は入れ口をシリ
コンゴム栓(9)で閉鎖する。6Ai焼管(5)とシリ
コンゴム管(8)と分液ロート内の上部の空間は互いに
連通して密閉空間を形成している。
The temperature of the silicone furnace (3) can be controlled by a transformer (1), a temperature control regulator (2), and a PR metal sheath heat pair (4). As an object to be measured, 5 g of a sample of foundry sand for cores was weighed out onto a 1.5mm alumina bowl. The sample was placed in a siliconite furnace (3
) 6A combustion tube (5) is placed in the center. One end of the 6A combustion tube (5) (front right side in the figure) is plugged with a silicone rubber plug (6). Pass one end of the Y-shaped adapter (7) through the silicone rubber stopper (6) and insert the 6A combustion tube (5).
) at the other end of the Y-type adapter (7), if necessary, so that the generated gas can be taken out through the silicone rubber tube (8) and the amount of generated gas can be measured in a non-oxidizing atmosphere. 6A of nitrogen gas from the gas inlet (16)
It is arranged so that it can be fed into the combustion tube (5) and the separating row 1- (11). Next, the separating funnel (11) is filled with water with the cock of the separating funnel (11) closed. In this case, it is not necessary to completely fill the inside of the separating funnel with water, and there is no problem even if some space remains at the top. After replacing the air in the 6A combustion tube (5), silicone rubber tube, and separating funnel (11) with nitrogen gas, open the nitrogen gas inlet (16).
Close the other end of the 6A combustion tube (5) with a silicone rubber stopper (
At 61), the upper receiver of the separating funnel (11) closes the inlet with a silicone rubber stopper (9). The 6Ai baked tube (5), the silicone rubber tube (8), and the upper space in the separating funnel communicate with each other to form a sealed space.

この状態で分液ロート(11)のコックを空気が入り込
まない程度に開ける。分液ローI・の真下には予め、図
のようにメスシリンダー(13)を電子標量器(14)
の上に置いである。水滴が滴下する場合は、そのままに
しておくと、上記密閉空間0 09圧が大きくなり、分液ロート内の水深に相当する水
頭は小さ(なり、前記負圧と前記水頭が等しくなったと
ころでカ11者が平衡に達し水滴が滴下しなくなる。こ
の状態を測定開始の状態とする。このようにして、昇温
させであるシリコニント炉(3)の燃焼部に被測定物を
挿入し、前記中子用鋳物砂サンプルからガスを発生させ
ると、発生ガスと同体積の水が分液ロートから排除され
てメスシリンダー内に滴下されるので、その重量を自動
的に測定し、パソコンに記録する。−(−述の場合は測
定された重量のg数が発生ガスC,C数となる。この構
成によって、例えばサンプルを1200Cまで昇温し、
発生ガス量をリアルタイムで正確に測定し、記録するこ
とができる。
In this state, open the cock of the separating funnel (11) just enough to prevent air from entering. As shown in the figure, place a measuring cylinder (13) directly under the separation row I in advance using an electronic scale (14).
It is placed on top. When water droplets drip, if you leave them as they are, the pressure in the sealed space will increase, and the water head corresponding to the water depth in the separating funnel will become small (so that when the negative pressure and the water head become equal, the 11 reaches equilibrium and water drops stop dripping.This state is taken as the state to start measurement.In this way, the object to be measured is inserted into the combustion section of the siliconint furnace (3), which is heated, and the temperature is increased. When gas is generated from the child foundry sand sample, the same volume of water as the generated gas is removed from the separatory funnel and dripped into the graduated cylinder, and its weight is automatically measured and recorded on a computer. - (- In the case mentioned above, the number of grams of the measured weight becomes the number of generated gases C and C. With this configuration, for example, when the sample is heated to 1200C,
The amount of gas generated can be accurately measured and recorded in real time.

[別実施例1 前記気液置換部を構成するに、第2図(イ)にその斜視
図、第2図(0)にその側面断面図を示すように、上部
を密閉した第1空間(S1)と上部を開放した第2空間
(S2)を設け、両空間を下部で連通させて前記液体収
容空間(S)を形成し、前記第1空間(S1)の−上部
に前記ガス回収部に対する接続「コを設り、前記第2空
間(S2)上部に前記発生ガスとの置換によって排除さ
れる液体をオーバーフローさせるための排出「1を設け
てもよい。
[Another Example 1] To configure the gas-liquid displacement section, as shown in FIG. 2(A) as a perspective view and as shown in FIG. 2(0) as a side sectional view, a first space ( S1) and a second space (S2) with an open top are provided, both spaces are communicated at the bottom to form the liquid storage space (S), and the gas recovery section is located above the first space (S1). A connection ``1'' may be provided to the second space (S2), and a discharge 1 may be provided above the second space (S2) for overflowing the liquid removed by replacement with the generated gas.

この構成を用いた気液置換部の特殊な例として、第3図
に示すように、例えば分液ロー1へ(11)の下から取
り出した液をS字状ガラス管等で一旦」―に導いてオー
バーフローさ・IJることもできる。この構成によれば
、分液ロー1・内]二部の空間は大気圧のままで測定直
前のバランスを保つことができる。従って、例えば本実
施例におけるシリコニット炉(3)を予めy温しておい
ても、前記バランスを破ることなくサンプルを容易に挿
入できるので、多数のサンプルの測定を能率よく行うこ
とができる。
As a special example of a gas-liquid displacement section using this configuration, as shown in FIG. It can also lead to overflow/IJ. According to this configuration, the balance immediately before the measurement can be maintained while keeping the atmospheric pressure in the space in the separation row 1/2. Therefore, for example, even if the silicone furnace (3) in this embodiment is heated to y in advance, samples can be easily inserted without breaking the balance, and a large number of samples can be measured efficiently.

また、第4図にその一例を示すように、回収した発生ガ
スを液体中に導入し、液中におけるガスの浮力を測定し
、その浮力測定結果から前1 2 記ガスと同体積の液体の重量を知り、その重量を液体の
体積に換算し、換算した体積からAiI記発生ガスの体
積を知ることもできる。同第4図に示すように、水を入
れた大きいビーカー(B)を標量器(14)に載置し、
水中で小さいビーカー(b)に発生ガスを補集する。小
さいビーカー(b)は水中での位置が変わらないように
外部の固定点(C)に固定して保持する。発生ガスを小
さいビーカー(1))に補集することQこよって生ずる
浮力の変化は固定点(C)に加わる力の変化に等しく、
その変化量は反作用として標量器(14)に加わる力の
変化に等しい。この標量器(14)に加わる力の変化量
を液体の比重で除して液体の体積を求め、この体積と等
しい補集された発生ガス量の体積を知ることができる。
In addition, as shown in Figure 4, the collected generated gas is introduced into a liquid, the buoyancy of the gas in the liquid is measured, and the buoyancy measurement results indicate that the same volume of liquid as the gas mentioned above is It is also possible to know the weight, convert the weight to the volume of the liquid, and find out the volume of the gas generated in AiI from the converted volume. As shown in Figure 4, place a large beaker (B) filled with water on the scale (14),
Collect the generated gas in a small beaker (b) underwater. The small beaker (b) is held fixed at an external fixed point (C) so that its position in the water does not change. The change in buoyancy caused by collecting the generated gas in a small beaker (1) is equal to the change in the force applied to the fixed point (C),
The amount of change is equal to the change in force applied to the leveler (14) as a reaction. The volume of the liquid is determined by dividing the amount of change in the force applied to the measuring device (14) by the specific gravity of the liquid, and the volume of the collected gas generated that is equal to this volume can be determined.

上記の場合は用いた液体が水であるから、標量器(14
)に加わる力の変化量のg数と補集された発生ガス量の
体積のcc数は等しい。このようにして液体をオーバー
フローさせることなく発生ガス量を正確に求めることが
できる。
In the above case, since the liquid used was water, the measuring instrument (14
) is equal to the number cc of the amount of change in the force applied to the cylinder. In this way, the amount of gas generated can be accurately determined without overflowing the liquid.

面、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Although reference numerals are written in the claims section and claims for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例による測定装置を示す概略図、第2図
(イ)は気液置換部の別実施例を示す見取図、第2図(
11)はその側面の断面図、第3図は第2図の装置と原
理的に等価な別実施例を示す側面図、第4図は浮力を検
出する別実施例の原理をボず概略図、第5図は従来の測
定方法を示す略図である。 (S)・・・・・・液体収容空間、(S1)・・・・・
・第1空間、(S2)・・・・・・第2空間。
FIG. 1 is a schematic diagram showing the measuring device according to this embodiment, FIG.
11) is a sectional view of the side, FIG. 3 is a side view showing another embodiment that is equivalent in principle to the device in FIG. 2, and FIG. , FIG. 5 is a schematic diagram showing a conventional measurement method. (S)...Liquid storage space, (S1)...
・First space, (S2)...Second space.

Claims (1)

【特許請求の範囲】 1、被測定物からの発生ガスを回収し、その回収した発
生ガスを一定空間内の収容液体との置換によって前記一
定空間内に導入し、前記置換によって前記一定空間内か
ら排除された液体の重量を測定し、前記測定結果を体積
に換算して発生ガスの体積を知る被測定物からの発生ガ
ス量の測定方法。 2、被測定物からの発生ガスを回収するガス回収部を設
け、液体を予め収容すると共に回収部によって回収した
発生ガスを導入して前記収容液体と置換するための液体
収容空間(S)を備えた気液置換部と、前記液体収容空
間から発生ガスとの置換によって排除された液体の重量
を測定する測定部と、該測定部による測定結果を体積に
換算する演算部とを有する被測定物からの発生ガス量の
測定装置。 3、前記気液置換部を構成するに、内部に前記液体収容
空間(S)を形成する密閉容器を設け、前記密閉容器の
上部に前記ガス回収部に対する接続口を設け、下部に前
記発生ガスとの置換によって排除される液体の排出口を
設けてある請求項2記載の被測定物からの発生ガス量の
測定装置。 4、前記気液置換部を構成するに、上部を密閉した第1
空間(S1)と上部を開放した第2空間(S2)を設け
、両空間を下部で連通させて前記液体収容空間(S)を
形成し、前記第1空間の上部に前記ガス回収部に対する
接続口を設け、前記第2空間上部に前記発生ガスとの置
換によって排除される液体をオーバーフローさせるため
の排出口を設けてある請求項2記載の被測定物からの発
生ガス量の測定装置。 5、被測定物からの発生ガスを回収し、その回収した発
生ガスを液体中に導入し、液中におけるガスの浮力を測
定し、その浮力測定結果から前記ガスと同体積の液体の
重量を知り、その重量を液体の体積に換算し、前記換算
した体積から前記発生ガスの体積を知る被測定物からの
発生ガス量の測定方法。
[Claims] 1. Collect the generated gas from the object to be measured, introduce the recovered gas into the fixed space by replacing it with the liquid contained in the fixed space, and by the replacement, the generated gas will be introduced into the fixed space. A method for measuring the amount of gas generated from an object to be measured, in which the weight of the liquid removed from the object is measured, and the measurement result is converted into volume to determine the volume of the gas generated. 2. A gas recovery section for recovering generated gas from the object to be measured is provided, and a liquid storage space (S) is provided in which a liquid is stored in advance and the generated gas recovered by the recovery section is introduced to replace the stored liquid. a gas-liquid displacement section, a measurement section that measures the weight of the liquid removed from the liquid storage space by replacement with the generated gas, and a calculation section that converts the measurement result by the measurement section into a volume. A device for measuring the amount of gas generated from objects. 3. To configure the gas-liquid replacement section, a closed container forming the liquid storage space (S) is provided inside, a connection port for the gas recovery section is provided in the upper part of the closed container, and a connection port for the generated gas is provided in the lower part. 3. The apparatus for measuring the amount of gas generated from the object to be measured according to claim 2, further comprising a discharge port for the liquid to be removed by replacing the liquid with the liquid. 4. The gas-liquid exchange section is configured by a first tube whose upper part is sealed.
A space (S1) and a second space (S2) with an open top are provided, both spaces are communicated at the bottom to form the liquid storage space (S), and a connection to the gas recovery section is provided at the top of the first space. 3. The apparatus for measuring the amount of gas generated from an object to be measured according to claim 2, further comprising an opening, and a discharge port provided above the second space for overflowing the liquid removed by replacement with the generated gas. 5. Collect the generated gas from the object to be measured, introduce the recovered generated gas into the liquid, measure the buoyancy of the gas in the liquid, and calculate the weight of the liquid with the same volume as the gas from the buoyancy measurement result. A method for measuring the amount of gas generated from an object to be measured, in which the weight is determined, the weight is converted into the volume of a liquid, and the volume of the gas generated is determined from the converted volume.
JP5933490A 1990-03-09 1990-03-09 Method and instrument for measuring quantity of produced gas from body to be measured Pending JPH03259719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5933490A JPH03259719A (en) 1990-03-09 1990-03-09 Method and instrument for measuring quantity of produced gas from body to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5933490A JPH03259719A (en) 1990-03-09 1990-03-09 Method and instrument for measuring quantity of produced gas from body to be measured

Publications (1)

Publication Number Publication Date
JPH03259719A true JPH03259719A (en) 1991-11-19

Family

ID=13110328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5933490A Pending JPH03259719A (en) 1990-03-09 1990-03-09 Method and instrument for measuring quantity of produced gas from body to be measured

Country Status (1)

Country Link
JP (1) JPH03259719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156684A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Apparatus and method for carrying out airtight test of sealing member
JP2010156568A (en) * 2008-12-26 2010-07-15 Nac Techno Service Co Ltd Analyzer for analyzing halogen and sulfur within organic-inorganic compound
JP2020172339A (en) * 2015-02-24 2020-10-22 アルブレヒト ホールディングス エルエルシー Fluid container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156684A (en) * 2007-12-26 2009-07-16 Toyota Motor Corp Apparatus and method for carrying out airtight test of sealing member
JP2010156568A (en) * 2008-12-26 2010-07-15 Nac Techno Service Co Ltd Analyzer for analyzing halogen and sulfur within organic-inorganic compound
JP2020172339A (en) * 2015-02-24 2020-10-22 アルブレヒト ホールディングス エルエルシー Fluid container
US11384324B2 (en) 2015-02-24 2022-07-12 Albrecht Holdings Llc Reconditioned or infused fluid containers and related methods
JP2022172370A (en) * 2015-02-24 2022-11-15 アルブレヒト ホールディングス エルエルシー container

Similar Documents

Publication Publication Date Title
Gibbs A settling tube system for sand-size analysis
JP5400541B2 (en) Gravimetric method
WO1997002893A1 (en) Method for correcting a liquid dispensing error, and a liquid dispensing device
CN107843315A (en) A kind of flowmeter verification device and its calibration method
CN104180878A (en) Container capacity automatic verification device and verification method thereof
CN108896250A (en) Air-tightness detection device and air-tightness detection method
CN108627442A (en) A kind of celluar concrete porosity device for quick testing
CN2325772Y (en) Digital displaying type instrument for investigating density
JPH03259719A (en) Method and instrument for measuring quantity of produced gas from body to be measured
CN100498255C (en) Molten cryolitic bath probe
JP4905895B2 (en) Apparatus and method for measuring apparent density of porous parts
De Keyser Differential thermobalance: a new research tool
CN209198250U (en) The automatic tester for water ratio of integral type
BR102015031286A2 (en) sampling device and set of parts
CN204115827U (en) The automatic calibrating instrument of container capacity
US6675643B2 (en) Container volume measuring device and method
WO1988009484A1 (en) Method and apparatus for measuring the volume of a gas in a container
CN110286064B (en) Mineral particle wettability measuring device and measuring method thereof
CN205786300U (en) A kind of egg device for detecting respiratory
CN205426718U (en) Be used for surveing fluidic hydrometer
US3053075A (en) Apparatus for measurement of gas in metal
CN112304841B (en) Rock pore structure simulation test system and simulation test method
CN1325900C (en) Digital display type liquefied petroleum gas density meter device
CN211602795U (en) A test container for determining barite powder density
CN211234646U (en) Automatic metrological verification device for small-scale gauge