JPH0325856A - Manufacture of electrode for fuel cell - Google Patents

Manufacture of electrode for fuel cell

Info

Publication number
JPH0325856A
JPH0325856A JP1159926A JP15992689A JPH0325856A JP H0325856 A JPH0325856 A JP H0325856A JP 1159926 A JP1159926 A JP 1159926A JP 15992689 A JP15992689 A JP 15992689A JP H0325856 A JPH0325856 A JP H0325856A
Authority
JP
Japan
Prior art keywords
silicon carbide
sheet
polytetrafluoroethylene
fuel cell
carbide whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1159926A
Other languages
Japanese (ja)
Other versions
JPH0697612B2 (en
Inventor
Mitsuo Enomoto
榎本 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP1159926A priority Critical patent/JPH0697612B2/en
Publication of JPH0325856A publication Critical patent/JPH0325856A/en
Publication of JPH0697612B2 publication Critical patent/JPH0697612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain a sheet-shaped electrode having high porosity and uniform pore size for an SPE type fuel cell by adding fine fibrus silicon carbide whiskers as a raw material ingredient. CONSTITUTION:Silicon carbide whiskers covered with carbon films are added to ingredients comprising carbon powder, a platinum catalyst, and polytetrafluoroethylene, then they are kneaded. The kneaded mixture is formed in a sheet, heat treated, then treated with ion exchange resins. This silicon carbide whisker is formed in such a way that silicon carbide whiskers are dispersed in a solution of high carbonizable resin such as phenol resin and furan resin or a solution prepared by dissolving pitch in an organic solvent, then this dispersion is dried, and baked in an inert atmosphere at about 1800 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固体高分子電解質型(SPE型)の燃料電池
に用いる電極の製造方法に関する.〔従来の技術〕 燃料電池は電解質の種類によって分頻されているが、電
解賞がカチオン交換膜あるいはアニオン交換膜などの固
体高分子で構威される燃料電池は固体高分子電解質型(
SPE型: 561id PolymerElecto
lyte)と呼ばれて他の燃料電池と区別されている. このSPE型燃料電池に用いられる電極の製造方法には
、カーボン粉末と触媒粉末にバインダーおよび撥水剤と
して機能するポリテトラフルオロエチレンを混合して固
体高分子電解質とともにホットプレスする方法、固体高
分子電解質となるイオン交換膜の表面に化学メッキ法で
触媒金属を析出させる方法が知られているが、後者はカ
ーボンあるいは酸化物などの添加威分を結合しにくい難
点があるため前者のホットプレス法が主流となっている
. 〔発明が解決しようとする課題〕 しかしながら、カーボン粉末、白金触媒およびポリテト
ラフルオロエチレンの三戒分を原料としてポットプレス
法で製造した電極は、気孔率が低く、気孔径も一定化し
ない問題点がある.このため、電極材料として圧損が大
きく、ガス流路を別に形戒する必要が生じるなどの関係
で、効率およびコンパクト化の点で不利な面がある.し
たがって、本発明の目的はカーボン粉末、白金触媒およ
びポリテトラフルオロエチレンを主体成分として、優れ
た気孔率と均質な気孔径を備えるシート状のSPE型燃
料電池用電極を製造するための方法を提供するところに
ある. 〔課題を解決するための手段〕 上記の目的を達威するための本発明による燃料電池用電
極の製造方法は、カーボン粉末、白金触媒およびポリテ
トラフルオロエチレン(PTFE)からなる戒分系に、
表面を炭素膜で被覆した炭化けい素ウィスカーを加えて
混練し、混線物をシート化したのち熱処理、イオン交換
樹脂処理を施すことを構戒上の特徴とするものである. カーボン粉末としては、比表面積が大きくストラクチャ
ーの発達した導電性のカーボンブラックが好適に使用さ
れる.白金触媒には、粒径0.5〜1.0μ一の白金黒
が用いられる。ポリテトラフルオロエチレン(PTFE
)はバインダーおよび撥水剤として機能する成分である
が、本発明ではこれを気孔形或剤としての利用が図られ
る.このため、剪断力を加えることにより繊維化する特
性をもつポリテトラフルオ口エチレンを選択使用するこ
とが望ましい態様となる.繊維化可能なポリテトラフル
オロエチレンとしては、例えば三井デュポンフロロケミ
カル■製の“テフロンK−10J″、ダイキン工業■製
の“ポリフロンF−103”F−202″等を挙げるこ
とができる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an electrode used in a solid polymer electrolyte type (SPE type) fuel cell. [Prior Art] Fuel cells are classified according to the type of electrolyte, but fuel cells whose electrolyte is composed of solid polymers such as cation exchange membranes or anion exchange membranes are of the solid polymer electrolyte type (
SPE type: 561id PolymerElecto
lyte) to distinguish it from other fuel cells. Methods for manufacturing the electrodes used in this SPE fuel cell include a method in which carbon powder and catalyst powder are mixed with polytetrafluoroethylene, which functions as a binder and a water repellent, and hot-pressed together with a solid polymer electrolyte; A known method is to deposit catalytic metals on the surface of an ion-exchange membrane, which serves as an electrolyte, by chemical plating, but the latter method has the disadvantage of making it difficult to bind additives such as carbon or oxides, so the hot pressing method of the former is difficult. has become the mainstream. [Problem to be solved by the invention] However, electrodes manufactured by the pot press method using carbon powder, platinum catalyst, and polytetrafluoroethylene as raw materials have a problem that the porosity is low and the pore diameter is not constant. There is. For this reason, there are disadvantages in terms of efficiency and compactness, as the electrode material has a large pressure drop and the gas flow path must be designed separately. Therefore, an object of the present invention is to provide a method for producing a sheet-shaped SPE fuel cell electrode having excellent porosity and uniform pore diameter, which is mainly composed of carbon powder, platinum catalyst, and polytetrafluoroethylene. It's there. [Means for Solving the Problems] A method for producing a fuel cell electrode according to the present invention to achieve the above-mentioned object includes a chemical system consisting of carbon powder, a platinum catalyst, and polytetrafluoroethylene (PTFE);
The constructional feature is that silicon carbide whiskers whose surfaces are covered with a carbon film are added and kneaded, and the mixture is made into a sheet, which is then subjected to heat treatment and ion exchange resin treatment. As the carbon powder, conductive carbon black with a large specific surface area and a developed structure is preferably used. As the platinum catalyst, platinum black with a particle size of 0.5 to 1.0 μm is used. Polytetrafluoroethylene (PTFE)
) is a component that functions as a binder and water repellent, but in the present invention it is intended to be used as a pore-forming agent. For this reason, it is desirable to select and use polytetrafluoroethylene, which has the property of forming into fibers by applying shearing force. Examples of the polytetrafluoroethylene that can be made into fibers include "Teflon K-10J" manufactured by DuPont Mitsui Fluorochemicals (■) and "Polyflon F-103" (F-202) manufactured by Daikin Industries (■).

これらの成分系に加えられる表面を炭素膜で被覆した炭
化けい素ウィスカーは、炭化けい素ウィスカーをフェノ
ール系樹脂、フラン系樹脂のような高炭化性の樹脂溶液
やピッチを有機溶媒に溶かした溶液などに分散させたの
ち濾過、乾燥し、これを不活性雰囲気下で1800℃程
度の温度域で焼戒処理することによって形威することが
できる.使用する炭化けい素ウィスカーは可及的に直径
およびアスベクト比の均等なものであることがよく、と
くに直径0.3〜0.6 a■、長さ30〜60uIM
の性状範囲を選択することが好ましい.また、表面を炭
素膜で被覆した炭化けい素ウィスカーの添加量は、カー
ボン粉末、白金触媒およびポリテトラフルオロエチレン
の戒分量に対し100〜300重量%の範囲に設定する
ことが望ましく、この範囲を外れると気孔率を向上させ
る効果が減退する.上記の原料或分は、捏合機のような
混練装置に入れて十分な剪断力を与えながら混練する.
この際、混練助剤として流動バラフィン、液状ポリエチ
レングリコール等を添加することができる。
Silicon carbide whiskers whose surfaces are coated with a carbon film can be added to these component systems by dissolving silicon carbide whiskers in a highly carbonizable resin solution such as phenolic resin or furan resin, or in a solution of pitch dissolved in an organic solvent. After dispersing it in water, it can be filtered and dried, and then burned in an inert atmosphere at a temperature of about 1800°C. The silicon carbide whiskers used are preferably of uniform diameter and aspect ratio, especially those with a diameter of 0.3 to 0.6 a and a length of 30 to 60 uIM.
It is preferable to select a range of properties. In addition, it is desirable to set the amount of silicon carbide whiskers whose surface is coated with a carbon film in the range of 100 to 300% by weight based on the amount of carbon powder, platinum catalyst, and polytetrafluoroethylene. If it is removed, the effect of improving porosity will be reduced. A certain amount of the above raw materials are put into a kneading device such as a kneader and kneaded while applying sufficient shearing force.
At this time, liquid paraffin, liquid polyethylene glycol, etc. can be added as a kneading aid.

混線物のシート化は、通常の抄紙法、ドクターブレード
法のようなシート化手段を用いておこなうことができる
. 威形されたシートは、ついで不活性気流中で340℃前
後の温度で熱処理し、必要に応じてプレスする.このシ
ートには最終的にイオン交換樹脂処理が施される.イオ
ン交換樹脂処理は、スチレンージビニルベンゼンスルフ
ォン酸粉末、バーフルオロカーボンスルフォン酸の低級
脂肪族アルコールなどと水との混合溶媒溶液(ナフイオ
ン溶液)を上記シートに含浸する方法によっておこなわ
れる. 〔作 用〕 本発明において原料或分として添加される微小繊維状の
炭化けい素ウィスカーは、組織の気孔形成化に機能し、
表面層の炭素膜が電極の性能向上に寄与する.とくに繊
維化性のポリテトラフルオ口エチレンを使用した場合に
は、これが混練過程の剪断力で繊維化して上記した炭化
けい素ウィスカーによる気孔形或化を助長するとともに
、相互の絡み現象により多孔組織を強化する作用を発揮
する.また、ポリテトラフルオ口エチレンの繊維化時に
はカーボンブラックが織維表面に付着してネットを形或
するため、導電性を増大させる働きもなす. これらの相乗的な作用を介して優れた気孔率と均質な粒
子径を有する高IIF:性のシート電極が形威される. また、得られたシートは適度の柔軟性を有しており、セ
ル組立の面でも有利となる。
The mixed material can be made into a sheet using conventional paper-making methods, doctor blade methods, and other sheet-forming methods. The shaped sheet is then heat treated at a temperature of around 340°C in an inert air stream and pressed if necessary. This sheet is finally treated with an ion exchange resin. The ion exchange resin treatment is carried out by impregnating the sheet with a mixed solvent solution (nafion solution) of water and styrene-divinylbenzenesulfonic acid powder, lower aliphatic alcohol of barfluorocarbonsulfonic acid, etc. [Function] The microfibrous silicon carbide whiskers added as a part of the raw material in the present invention function to form pores in the tissue,
The carbon film on the surface layer contributes to improving the performance of the electrode. In particular, when fibrous polytetrafluoroethylene is used, it becomes fibrous due to the shearing force during the kneading process, which promotes the formation of pores by the silicon carbide whiskers described above, and also forms a porous structure due to the mutual entanglement phenomenon. It has the effect of strengthening the Furthermore, when polytetrafluoroethylene is made into fibers, carbon black adheres to the surface of the woven fibers and forms a net, which also serves to increase electrical conductivity. Through these synergistic effects, a high IIF: sheet electrode with excellent porosity and uniform particle size is produced. Furthermore, the obtained sheet has appropriate flexibility, which is advantageous in terms of cell assembly.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と対比して説明する. 実施例1〜6 (1)直径0.3〜0.6μ―、長さ30〜60μ■の
炭化けい素ウィスカー50gをフェノール樹脂〔群栄化
学■製、”PGA−4508″〕のエタノール溶液50
〇一に投入して十分に攪拌分散させたのち濾過し、10
0〜150″Cで2時間乾燥した.ついでこれをアルゴ
ンガス゜気流中で30分間焼威して樹脂威分を炭化し、
表面に炭素膜を形威した. 各例の変更条件は、第1表のとおりである.第1表 (2)上記の表面に炭素膜を被覆した炭化けい素ウィス
カー25gを、導電性カーボンブラック〔東海カーボン
■製、“トーカブランク”3 B.Og、粒径0.5〜
1.0p■の白金黒2.5gおよびポリテトラフルオロ
エチレン〔ダイキン工業■製、“ポリフロンF−104
”)2.0gとともにエタノール100−に入れ、超音
波をかけながら5分間保持して均一に混合した.混合物
を小型捏合機に投入し、助剤として流動パラフィンおよ
び液状ポリエチレングリコール25gを添加して混練し
た.この段階でポリテトラフルオロエチレンは繊維化し
た. 助剤をトルエンで一旦抽出除去したのちカーターξキサ
ーで解体し、再びエタノール20〇一中で超音波により
十分に分散した.ついで分散液を、35μ一のナイロン
網を用いて抄紙してシートに或形した.このシートを5
0〜80℃で乾燥後、アルゴン気流中で330〜350
℃の温度域で約1時間熱処理し、さらに加圧プレスして
縦横100一一、厚さ0.15m−のシートに作威した
. このシートをパーフルオロカーボンスルフォン酸の低級
脂肪族アルコールによる5%水溶液に浸漬し、100℃
以下の温度で乾燥してSPE型燃料電池用の電極を製造
した. このようにして得られた各電極の特性ならびにセル性能
を第2表に示した. 比較例1〜2 実施例と同一の導電性カーボンブラック25.0g、白
金黒粉末2.5g、ポリテトラフルオロエチレン6.2
g  を底分系とし、以後の工程を実施例と同一にして
2種類のSPE型燃料電池用電極を作威した.この電極
の特性ならびにセル性能を、第2表に併せて示した. C発明の効果〕 本発明によれば、常に気孔率が大きく気孔径が揃った高
強度で適度の柔軟性を備えるシート性状の固体高分子電
解質型(SPE型)燃料電池用電極を容易に製造するこ
とが可能となる.したがって、組織的にガス拡散性に優
れているから、ガス流路を介設することなしに高度の電
池効率を得ることができる.
Examples of the present invention will be explained below in comparison with comparative examples. Examples 1 to 6 (1) 50g of silicon carbide whiskers with a diameter of 0.3 to 0.6μ and a length of 30 to 60μ were added to an ethanol solution of phenolic resin [manufactured by Gunei Chemical Co., Ltd., "PGA-4508"].
〇 Pour the mixture into 100 ml and stir well to disperse it, then filter it.
It was dried at 0 to 150"C for 2 hours. Then, it was burned in an argon gas stream for 30 minutes to carbonize the resin content.
A carbon film is formed on the surface. The change conditions for each example are shown in Table 1. Table 1 (2) 25 g of the silicon carbide whiskers whose surfaces were coated with a carbon film were mixed with conductive carbon black [manufactured by Tokai Carbon ■, "Toka Blank" 3 B. Og, particle size 0.5~
2.5 g of platinum black of 1.0 p■ and polytetrafluoroethylene [manufactured by Daikin Industries, Ltd., "Polyflon F-104"
2.0g of the mixture was placed in 100-g of ethanol and held for 5 minutes while applying ultrasonic waves to mix uniformly.The mixture was placed in a small kneading machine, and 25g of liquid paraffin and liquid polyethylene glycol were added as auxiliaries. The polytetrafluoroethylene was kneaded. At this stage, the polytetrafluoroethylene was made into fibers. After the auxiliary agent was once extracted and removed with toluene, it was disintegrated with a Carter ξ mixer and thoroughly dispersed again using ultrasonic waves in 200 ml of ethanol.Then, the dispersion liquid was was made into a sheet using a 35μ nylon mesh.This sheet was
After drying at 0-80℃, 330-350℃ in argon stream
It was heat treated at a temperature range of 100°C for about 1 hour, and then pressed under pressure to form a sheet with dimensions of 100 mm in length and width and 0.15 m in thickness. This sheet was immersed in a 5% aqueous solution of perfluorocarbon sulfonic acid in a lower aliphatic alcohol at 100°C.
An electrode for an SPE fuel cell was manufactured by drying at the following temperature. Table 2 shows the characteristics of each electrode and cell performance obtained in this way. Comparative Examples 1 to 2 25.0 g of conductive carbon black, 2.5 g of platinum black powder, and 6.2 g of polytetrafluoroethylene as in the example.
Using g as the bottom fraction system, two types of SPE type fuel cell electrodes were produced using the same subsequent steps as in the example. The characteristics of this electrode and cell performance are also shown in Table 2. C. Effects of the Invention According to the present invention, it is possible to easily produce a solid polymer electrolyte (SPE type) fuel cell electrode in the form of a sheet with high porosity, uniform pore diameter, high strength, and appropriate flexibility. It becomes possible to do so. Therefore, since it has structurally excellent gas diffusivity, a high level of cell efficiency can be obtained without intervening a gas flow path.

Claims (1)

【特許請求の範囲】 1、カーボン粉末、白金触媒およびポリテトラフルオロ
エチレン(PTFE)からなる成分系に、表面を炭素膜
で被覆した炭化けい素ウィスカーを加えて混練し、混練
物をシート化したのち熱処理、イオン交換樹脂処理を施
すことを特徴とする燃料電池用電極の製造方法。 2、剪断力を加えることにより繊維化する特性のポリテ
トラフルオロエチレンを用いる請求項1記載の燃料電池
用電極の製造方法。
[Claims] 1. Silicon carbide whiskers whose surfaces are covered with a carbon film are added to a component system consisting of carbon powder, a platinum catalyst, and polytetrafluoroethylene (PTFE) and kneaded, and the kneaded product is formed into a sheet. A method for producing an electrode for a fuel cell, which is characterized by subjecting it to subsequent heat treatment and ion exchange resin treatment. 2. The method for producing an electrode for a fuel cell according to claim 1, wherein polytetrafluoroethylene is used which has the property of becoming fibrous when subjected to shearing force.
JP1159926A 1989-06-22 1989-06-22 Method for manufacturing fuel cell electrode Expired - Lifetime JPH0697612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1159926A JPH0697612B2 (en) 1989-06-22 1989-06-22 Method for manufacturing fuel cell electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1159926A JPH0697612B2 (en) 1989-06-22 1989-06-22 Method for manufacturing fuel cell electrode

Publications (2)

Publication Number Publication Date
JPH0325856A true JPH0325856A (en) 1991-02-04
JPH0697612B2 JPH0697612B2 (en) 1994-11-30

Family

ID=15704172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1159926A Expired - Lifetime JPH0697612B2 (en) 1989-06-22 1989-06-22 Method for manufacturing fuel cell electrode

Country Status (1)

Country Link
JP (1) JPH0697612B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722034A (en) * 1993-06-30 1995-01-24 Sanyo Electric Co Ltd Manufacture of solid polyelectrolyte fuel cell electrode
US7094492B2 (en) 2001-10-11 2006-08-22 Honda Giken Kogyo Kabushiki Kaisha Electrode for polymer electrolyte fuel cell
JP2007115574A (en) * 2005-10-21 2007-05-10 Aisin Chem Co Ltd Gas diffusion layer for fuel cell electrode and its manufacturing method
JP2007257886A (en) * 2006-03-20 2007-10-04 Toyota Motor Corp Fuel cell, and method for fabrication same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722034A (en) * 1993-06-30 1995-01-24 Sanyo Electric Co Ltd Manufacture of solid polyelectrolyte fuel cell electrode
US7094492B2 (en) 2001-10-11 2006-08-22 Honda Giken Kogyo Kabushiki Kaisha Electrode for polymer electrolyte fuel cell
JP2007115574A (en) * 2005-10-21 2007-05-10 Aisin Chem Co Ltd Gas diffusion layer for fuel cell electrode and its manufacturing method
JP2007257886A (en) * 2006-03-20 2007-10-04 Toyota Motor Corp Fuel cell, and method for fabrication same

Also Published As

Publication number Publication date
JPH0697612B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US8133306B2 (en) Gas diffusion substrate
US3899354A (en) Gas electrodes and a process for producing them
US4894355A (en) Flexible, water-repellent baked carbon plate, its production, fuel cell electrode, fuel cell electrode plate and its production and fuel cell
EP0867048A1 (en) Gas diffusion electrode for polymer electrolyte membrane fuel cells
DE4243600A1 (en) Electrolyte membrane for fuel cells esp. for cars - comprises three=dimensional structure of crosslinked polymer, pref. PVA, contg. uniformly distributed polyelectrolyte
EP1944819A1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
KR20080055510A (en) Electrode for fuel cell, preparing method thereof, and fuel cell employing the same
DE102004032999A1 (en) Gas diffusion electrodes, methods of making gas diffusion electrodes and fuel cells using such gas diffusion electrodes
KR101142309B1 (en) Production of gas diffusion electrodes
WO2003052844A1 (en) Diffusion film, electrode having the diffusion film, and process for producing diffusion film
EP0896741B1 (en) Process for producing a cation-exchanging polymer electrolyte membrane (pem)
DE102011014137A1 (en) Coating a substrate with nanoparticles involves depositing a solution comprising an organometallic compound on a substrate, drying the solution, and partially oxidizing an organic component of the organometallic compound
US4446210A (en) Fuel cell electrode
JPH0325856A (en) Manufacture of electrode for fuel cell
JPH09180730A (en) Electrode for solid high molecular fuel cell and manufacture thereof
DE2924669C2 (en) Process for the production of a porous electrode for fuel cells
CN107946621A (en) A kind of feature graphene, which is modified, improves Carbon fibe or the corrosion resistant method of carbon fiber composite
JPS5944749B2 (en) gas diffusion electrode
DE10362173B4 (en) fuel cell
JPH07230811A (en) Gas diffusion electrode, and manufacture thereof
JPH02162650A (en) Manufacture of catalyst
WO2021132103A1 (en) Catalyst layer, membrane electrode assembly for solid polymer type fuel cell, and solid polymer type fuel cell
JPS59169069A (en) Electrode for fuel cell
JPH07130374A (en) Water repellent treating method for carbon paper in fuel cell electrode
KR100187430B1 (en) Method of manufacturing electrolyte matrix for phosphorus fuel cell made of sic whisker