JPH03257948A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03257948A
JPH03257948A JP2057190A JP5719090A JPH03257948A JP H03257948 A JPH03257948 A JP H03257948A JP 2057190 A JP2057190 A JP 2057190A JP 5719090 A JP5719090 A JP 5719090A JP H03257948 A JPH03257948 A JP H03257948A
Authority
JP
Japan
Prior art keywords
oxide film
silicon substrate
thermal oxide
deposited
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2057190A
Other languages
Japanese (ja)
Inventor
Yasuhiro Takasu
高須 保弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2057190A priority Critical patent/JPH03257948A/en
Publication of JPH03257948A publication Critical patent/JPH03257948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable high-reliability isolation by etching a specified region of a semiconductor substrate, forming an insulating layer in a deep region of the etched section by ion implantation, and burying the etched section by epitaxial growth after that. CONSTITUTION:After a thermal oxide film 6 was deposited on a silicon substrate 5, a window 7 is provided by photolithography. After the removal of the resist, a thermal oxide film is deposited so that the exposed surface of the silicon substrate 5 in the etched section may not become defective by ion implantation from above the thermal oxide film 6 deposited on the surface of the silicon substrate 5. Then ion 8 implantation by oxygen is conducted, and an insulating layer 9 is formed in the direction of the depth of the etched section. After that, a silicon single crystal 10 is buried by using selective epitaxy. As the interface of this epitaxial layer is a semiconductor layer, the impurity distribution has no disorder, and elements 11 have no dispersion of threshold voltage or leakage currents also when the elements 11 are formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a method of manufacturing a semiconductor device.

従来の技術 近年、単一の半導体基板に多数の機能素子を組み込む集
積回路技術が発達している。このような集積回路におけ
る高集積度を促進するための一手段として局部酸化LO
GOS (LocalOxidation of 5i
licon)法がある。LOCO3法には素子の微細化
につれて種々の問題点が生じることか知られている。こ
のためLOCO8法に変わる方法として改良LOCO8
法、溝分離法。
BACKGROUND OF THE INVENTION In recent years, integrated circuit technology that incorporates a large number of functional elements on a single semiconductor substrate has been developed. Local oxidation LO is a means to promote high density in such integrated circuits.
GOS (Local Oxidation of 5i
licon) law. It is known that various problems arise in the LOCO3 method as elements become smaller. Therefore, as an alternative to the LOCO8 method, the improved LOCO8 method is
method, groove separation method.

選択エピタキシャル法が提案されている。ここではエピ
タキシャル法について述べる。第2図、第3図は従来の
選択エピタキシャルを用いた分離構造を持つ半導体装置
の製造方法を示す断面図である。
A selective epitaxial method has been proposed. Here, we will discuss the epitaxial method. FIGS. 2 and 3 are cross-sectional views showing a conventional method of manufacturing a semiconductor device having an isolation structure using selective epitaxial method.

第2図、第3図において、1は半導体基板、2は素子形
成領域、3は酸化膜、4は素子である。
In FIGS. 2 and 3, 1 is a semiconductor substrate, 2 is an element formation region, 3 is an oxide film, and 4 is an element.

次に半導体装置の製造方法を説明する。第2図は半導体
基板lを酸化膜3をマスクにドライエツチングし、さら
に酸化膜3、窒化膜を堆積させ、ドライエツチングによ
って窒化膜、酸化膜3底面部を除去し、ウェル形成のた
めのイオン注入を行った後、選択エピタキシャル成長に
よって素子形成領域2を形成する方法である。
Next, a method for manufacturing a semiconductor device will be explained. FIG. 2 shows that a semiconductor substrate 1 is dry-etched using an oxide film 3 as a mask, then an oxide film 3 and a nitride film are deposited, the bottoms of the nitride film and oxide film 3 are removed by dry etching, and ions are used to form a well. In this method, after implantation, the element forming region 2 is formed by selective epitaxial growth.

第3図は半導体基板1上に分厚い酸化膜3を堆積し、ド
ライエツチングで素子形成する所定領域の酸化膜3を除
去し、ウェル形成用のイオン注入を行った後、選択エピ
タキシャル成長によって素予形成領域2を堆積する方法
である。
FIG. 3 shows that a thick oxide film 3 is deposited on a semiconductor substrate 1, the oxide film 3 is removed in a predetermined area where elements are to be formed by dry etching, ions are implanted for forming wells, and then preliminary formation is performed by selective epitaxial growth. This is the method for depositing region 2.

発明が解決しようとする課題 第2図の従来方法では側壁の酸化膜3を残すために窒化
膜をマスクにドライエツチングされるが酸化膜3と窒化
膜のエツチングレートが興なるため窒化膜が酸化膜3よ
り出っ張った形となり、この状態で選択エピタキシャル
成長を行い、素子形成領域2を形成すると窒化膜で影に
なる部分には単結晶が成長しないでボイドが形成される
。また、酸化膜3に接する部分の結晶は側壁の酸化膜3
によって歪められるため転位等の結晶欠陥を生じる。こ
れらのことは素子4を形成したときにリーク電流が大き
くなる等素子特性を劣化させる誘因になる。
Problems to be Solved by the Invention In the conventional method shown in FIG. 2, dry etching is performed using the nitride film as a mask in order to leave the oxide film 3 on the sidewalls, but since the etching rate of the oxide film 3 and the nitride film increases, the nitride film is oxidized. The shape protrudes from the film 3, and when selective epitaxial growth is performed in this state to form the element forming region 2, a void is formed in the portion shaded by the nitride film without the single crystal growing. In addition, the crystal in the part that is in contact with the oxide film 3 is the oxide film 3 on the side wall.
This causes crystal defects such as dislocations to occur. These factors cause deterioration of device characteristics, such as an increase in leakage current when the device 4 is formed.

第3図の従来方法ではドライエツチングによって酸化膜
3をエツチングするが酸化膜3の形状がテーパー形状や
逆テーパー形状あるいは中細り形状であるとエピタキシ
ャル成長を行い、素子形成領域2を形成した場合、上記
第2図の従来方法と同様にボイドが発生したり、結晶欠
陥を生じることになる。このため酸化膜3を完全に垂直
にエツチングする必要があるが、ドライエツチングでそ
のような形状を実現することが困難で、再現性に乏しい
In the conventional method shown in FIG. 3, the oxide film 3 is etched by dry etching, but when the shape of the oxide film 3 is tapered, reverse tapered, or tapered, epitaxial growth is performed to form the element forming region 2. Similar to the conventional method shown in FIG. 2, voids and crystal defects occur. For this reason, it is necessary to etch the oxide film 3 completely vertically, but it is difficult to achieve such a shape by dry etching, and reproducibility is poor.

また、両方法ともに共通して酸化113に隣接した部分
ではエピタキシャル成長層に含まれる不純物は酸化膜3
の中に拡散するため隣接部分のエピタキシャル成長層の
不純物濃度が低くなり素子4の電気的特性を劣化させる
In addition, in both methods, impurities contained in the epitaxial growth layer are removed from the oxide film 3 in the area adjacent to the oxide 113.
As the impurity diffuses into the epitaxial growth layer, the impurity concentration in the adjacent epitaxial growth layer decreases, deteriorating the electrical characteristics of the element 4.

課題を解決するための手段 本発明の半導体装置の製造方法は上記課題を解決するた
めに半導体基板の所定領域をエツチングし、イオン注入
によってエツチング部の深い領域に絶縁層を形成した後
、エピタキシャル成長によってエツチング部を埋め込む
方法である。
Means for Solving the Problems In order to solve the above problems, the method for manufacturing a semiconductor device of the present invention etches a predetermined region of a semiconductor substrate, forms an insulating layer deep in the etched region by ion implantation, and then performs epitaxial growth. This is a method of embedding an etched part.

作用 本発明の半導体装置の製造方法によればエピタキシャル
層が絶縁層に接して成長しない。
Effect: According to the method of manufacturing a semiconductor device of the present invention, the epitaxial layer does not grow in contact with the insulating layer.

実施例 第1図は本発明の半導体装置の製造方法を説明するため
の工程断面図を示す。
Embodiment FIG. 1 shows process cross-sectional views for explaining the method of manufacturing a semiconductor device of the present invention.

半導体基板として、結晶方位(100)のシリコン基板
5に熱酸化膜6を4000A堆積した後、ホトリソグラ
フィーを用いて所定領域にレジストパターンを形成し、
レジストをマスクにフレオン系ガスによるドライエツチ
ングを行って、熱酸化膜6に窓7を開ける。さらに熱酸
化膜6とレジストをマスクにフレオン系ガスを用いてシ
リコン基板5を深さ2μmドライエツチングする(第1
図a)。
After depositing a thermal oxide film 6 of 4000A on a silicon substrate 5 with crystal orientation (100) as a semiconductor substrate, a resist pattern is formed in a predetermined area using photolithography.
Using the resist as a mask, dry etching is performed using Freon gas to open windows 7 in the thermal oxide film 6. Furthermore, using the thermal oxide film 6 and the resist as masks, the silicon substrate 5 is dry-etched to a depth of 2 μm using Freon gas (the first
Diagram a).

この後、レジストを除去し、シリコン基板5表面の熱酸
化膜6の上から、エツチング部のシリコン基板5の露出
面がイオン注入によって欠陥が発生しないように熱酸化
膜を400A堆積する。この後、酸素によるイオン8注
入を行いエツチング部の深さ方向に絶縁層(ここでは酸
化層〉9を形成する(第1図b)。イオン注入条件は加
速電圧100ke″V、 ドーズ量5X1016/cj
で行った。
Thereafter, the resist is removed, and a thermal oxide film of 400 Å is deposited on the thermal oxide film 6 on the surface of the silicon substrate 5 to prevent defects from occurring on the exposed surface of the silicon substrate 5 at the etched portion due to ion implantation. After this, ion implantation using oxygen is performed to form an insulating layer (in this case, an oxide layer) 9 in the depth direction of the etched area (Fig. 1b). The ion implantation conditions are an acceleration voltage of 100 ke''V and a dose of 5 x 1016/ cj
I went there.

この後、選択エピタキシャルを用いてシリコン単結晶1
0を埋め込む(第1図C)。選択エピタキシャル成長条
件はガス系にS 1H2c 12  HC1−H2、シ
リコン基板5温度950℃、ガス圧力50To r r
である。
After this, silicon single crystal 1 is formed using selective epitaxial technique.
Embed 0 (Figure 1C). Selective epitaxial growth conditions are S1H2C12HC1-H2 gas system, silicon substrate 5 temperature 950°C, gas pressure 50Torr.
It is.

この後、選択エピタキシャル層とエツチング領域以外の
基板にプレーナー技術を用いて素子11を形成する(第
1図d)。
Thereafter, a device 11 is formed using a planar technique on the substrate other than the selective epitaxial layer and the etched region (FIG. 1d).

ここでは第1図aで熱酸化膜6の厚さを400OAにし
ているが、この厚さは絶縁層9形威時にエツチング領域
以外の部分にイオンが注入されることを防ぐためのもの
であるためイオンの加速電圧を変えて絶縁層9形威領域
の深さを変えるとそれにつれて変化させる必要がある。
Here, the thickness of the thermal oxide film 6 is set to 400 OA in FIG. Therefore, if the depth of the insulating layer 9 shape region is changed by changing the ion accelerating voltage, it is necessary to change the depth accordingly.

ここで絶縁層9を形成するために酸素イオンを用いたが
窒素イオンを用いて窒化層を形成しても良い。
Although oxygen ions were used to form the insulating layer 9 here, a nitride layer may be formed using nitrogen ions.

また、ここでは選択エピタキシャル成長を用いたが、単
にエピタキシャル成長を行った後、表面にレジストを筒
布、平坦化してレジストとシリコン基板5のエツチング
レートが一定となるドライエツチング条件でエツチング
し、シリコン単結晶10の埋め込み部表面を平坦化する
エッチバックを用いても良い。
In addition, although selective epitaxial growth was used here, after simply performing epitaxial growth, a resist was coated on the surface, and the silicon substrate 5 was etched under dry etching conditions such that the etching rate of the resist and the silicon substrate 5 was constant. Etch-back may be used to flatten the surface of the buried portion 10.

発明の効果 本発明の半導体装置の製造方法を用いることによって、
エピタキシャル層の界面は半導体層であるため不純物分
布の乱れがなく素子を形成したときにも素子の閾値電圧
のばらつきやリーク電流がない。
Effects of the Invention By using the method for manufacturing a semiconductor device of the present invention,
Since the interface of the epitaxial layer is a semiconductor layer, there is no disturbance in impurity distribution, and there is no variation in threshold voltage or leakage current of the device even when the device is formed.

また、エピタキシャル層は絶縁層に接していないため結
晶欠陥はなく、ボイドの発生もない。
Furthermore, since the epitaxial layer is not in contact with the insulating layer, there are no crystal defects and no voids are generated.

エツチング領域内に半導体基板が露出しているため、エ
ピタキシャル成長によるボイドの発生はなく、エピタキ
シャル成長で半導体単結晶を埋め込むことができ、信頼
性の高い分離が可能である。
Since the semiconductor substrate is exposed within the etching region, no voids are generated due to epitaxial growth, and semiconductor single crystals can be buried by epitaxial growth, allowing highly reliable separation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である半導体装置の製造方法
を示す工程断面図、第2図、第3図は従来の半導体装置
の製造方法を示す工程断面図である。 1・・・・・・半導体基板、2・・・・・・素子形成領
域、3・・・・・・酸化膜、4,11・・・・・・素子
、5・・・・・・シリコン基板、6・・・・・・熱酸化
膜、7・・・・・・窓、8・・・・・・イオン、9・・
・・・・絶縁層、lO・・・・・・シリコン単結晶。
FIG. 1 is a process sectional view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention, and FIGS. 2 and 3 are process sectional views showing a conventional method for manufacturing a semiconductor device. 1... Semiconductor substrate, 2... Element formation region, 3... Oxide film, 4, 11... Element, 5... Silicon Substrate, 6... thermal oxide film, 7... window, 8... ion, 9...
...Insulating layer, lO...Silicon single crystal.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の素子形成領域に溝を形成する工程と、前記
溝にイオン注入によって前記溝の底面より深い領域に絶
縁体層を形成する工程と、前記溝をエピタキシャル成長
膜によって埋め込む工程を備えた半導体装置の製造方法
A semiconductor device comprising: forming a groove in an element formation region of a semiconductor substrate; forming an insulating layer in a region deeper than the bottom of the groove by ion implantation into the groove; and filling the groove with an epitaxial growth film. manufacturing method.
JP2057190A 1990-03-08 1990-03-08 Manufacture of semiconductor device Pending JPH03257948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2057190A JPH03257948A (en) 1990-03-08 1990-03-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2057190A JPH03257948A (en) 1990-03-08 1990-03-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03257948A true JPH03257948A (en) 1991-11-18

Family

ID=13048569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2057190A Pending JPH03257948A (en) 1990-03-08 1990-03-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03257948A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265017B2 (en) 2003-07-31 2007-09-04 Kabushiki Kaisha Toshiba Method for manufacturing partial SOI substrates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265017B2 (en) 2003-07-31 2007-09-04 Kabushiki Kaisha Toshiba Method for manufacturing partial SOI substrates

Similar Documents

Publication Publication Date Title
CA1159966A (en) Process of forming recessed dielectric regions in a monocrystalline silicon substrate
US4104086A (en) Method for forming isolated regions of silicon utilizing reactive ion etching
US4755477A (en) Overhang isolation technology
JPH1174460A (en) Manufacture of device
JPS6340337A (en) Method of isolating integrated circuit
JPS598346A (en) Integrated circuit completely isolated with dielectric and method of forming same
JPS58118113A (en) Method of producing semiconductor device
EP0068275B1 (en) Method for producing semiconductor devices including the use of reactive ion etching
JPH0237745A (en) Manufacture of semiconductor device
US4775644A (en) Zero bird-beak oxide isolation scheme for integrated circuits
JPH0582441A (en) Silicon carbide bipolar semiconductor device and its manufacture
KR0140655B1 (en) Device isolation method of semiconductor apparatus
JPH03257948A (en) Manufacture of semiconductor device
KR0179555B1 (en) Isolation method of semiconductor device
JPH0684938A (en) Manufacture of semiconductor device
JPH07297174A (en) Manufacture of semiconductor device
JPH0257701B2 (en)
JPH02174140A (en) Manufacture of semiconductor device
JPS6231492B2 (en)
JPH079930B2 (en) Method for manufacturing semiconductor device
KR0167600B1 (en) Element isolation method of semiconductor apparatus
EP0233248A1 (en) Dielectric isolation structure for integrated circuits
JPS62254444A (en) Manufacture of semiconductor device
JP2563206B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS5893343A (en) Forming method for isolation region of semiconductor integrated circuit