JPH03251688A - Manufacture of tube member for heat exchanger - Google Patents

Manufacture of tube member for heat exchanger

Info

Publication number
JPH03251688A
JPH03251688A JP5054190A JP5054190A JPH03251688A JP H03251688 A JPH03251688 A JP H03251688A JP 5054190 A JP5054190 A JP 5054190A JP 5054190 A JP5054190 A JP 5054190A JP H03251688 A JPH03251688 A JP H03251688A
Authority
JP
Japan
Prior art keywords
tubular member
ultra
hole
heat exchanger
inner fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5054190A
Other languages
Japanese (ja)
Inventor
Hironaka Sasaki
広仲 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP5054190A priority Critical patent/JPH03251688A/en
Publication of JPH03251688A publication Critical patent/JPH03251688A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To obtain an ultra-thin type tube member, in which a pressure resistant strength can be ensured properly and which can contribute to the improvement of heat exchanging molding, by a method wherein a flat profile with many holes is formed through extrusion molding so as to have a plurality of inner fins on both side surfaces of the partitioning wall thereof. CONSTITUTION:The configuration of a profile 1 to be formed is a flat type with many holes, in which a plurality of hollow parts 3 are formed therein by partitioning walls 2. A multitude of rows of inner fins 4, extended lengthwisely and formed with recesses and projections for expanding the heat transfer area, are provided on the inner peripheral walls surrounding the hollow parts 3 including the partitioning walls 2. Next, the formed flat profile 1 with many boles is collapsed in the direction of the thickness thereof to flatten a tubular member 5 further. In this case, the partitioning walls 2 of the tubular member 5 are deformed through compression deforming under upright condition without generating any buckling and, therefore, the deterioration of strength will never be generated. According to this method, a tubular member of ultra- thin type, in which pressure resistant strength is ensured optimally and heat exchanging performance is improved, can be manufactured.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えばカークーラー用コンデンサー、オイ
ルクーラー、ラジェーター等の熱交換器に使用されるア
ルミニウム等の金属製チューブ材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a metal tube material such as aluminum used for heat exchangers such as car cooler condensers, oil coolers, and radiators.

従来の技術 熱交換器用チューブとして、従来より、内部に仕切壁を
設けて幅方向に複数個の中空部を区画形成した押出型材
による扁平多穴チューブ材が広く実用に供されている。
2. Description of the Related Art As tubes for heat exchangers, flat multi-hole tube materials made of extruded materials having internal partition walls and a plurality of hollow portions defined in the width direction have been widely put into practical use.

この扁平多穴チューブは、その仕切壁の作用により、耐
圧強度に優れ、かつ内部に広い伝熱面積が確保されて熱
交換性能の向上に寄与しうるというメリットを有してい
る。
This flat multi-hole tube has the advantage of having excellent pressure resistance and ensuring a wide heat transfer area inside due to the effect of its partition walls, which can contribute to improving heat exchange performance.

ところで、最近、熱交換性能の更なる向上という要請が
強まり、種々の研究が進められているが、その一つに上
記扁平多穴チューブ材の高さを低くして超薄型化を図ろ
うというものがある。
By the way, recently there has been a growing demand for further improvements in heat exchange performance, and various studies are being carried out, one of which is to reduce the height of the flat multi-hole tube material mentioned above to make it ultra-thin. There is such a thing.

つまり、チューブの超薄型化は、熱交換器のチューブ間
の間隔を広くすることにつながり、熱交換器を前後方向
に流通する空気の圧力損失を少なくして熱交換性能を向
上するのに極めて有効な手段である。
In other words, making the tubes ultra-thin leads to widening the spacing between the tubes of the heat exchanger, which reduces the pressure loss of the air flowing back and forth through the heat exchanger and improves heat exchange performance. This is an extremely effective method.

しかし、現在の押出技術では、扁平チューブ材の薄型化
には限界がある。
However, with current extrusion technology, there is a limit to how thin a flat tube material can be made.

即ち、チューブ材の高さを低くすることは、その中空部
を形成する押出ダイスのオス型マンドレルを薄型化、小
型化することにつながり、該マンドレルの強度不足を招
いてダイスの破損を起こしてしまうという問題がある。
That is, lowering the height of the tube material leads to making the male mandrel of the extrusion die that forms the hollow part thinner and smaller, leading to insufficient strength of the mandrel and causing damage to the die. There is a problem with putting it away.

そこで、最近あらたに、押出と圧延との組合わせによる
超薄型扁平多穴チューブ材の製造法が検討され始めてい
る。
Therefore, recently, a new method of manufacturing ultra-thin flat multi-hole tube materials using a combination of extrusion and rolling has begun to be investigated.

この方法は、まず、第2図(イ)に示されるような扁平
多穴型材(51)を押出成形し、そしてこの型材(51
)に厚さ方向の圧延を施して、第2図(ロ)に示される
ようにその周壁の高さを、求める所定の高さに成形し、
もって高さの低い超薄型の扁平多穴チューブ材(52)
を得るというものである。
In this method, first, a flat multi-hole molding material (51) as shown in FIG. 2(A) is extruded, and then this molding material (51
) is rolled in the thickness direction to shape the height of the peripheral wall to the desired predetermined height as shown in Figure 2 (b),
Ultra-thin flat multi-hole tube material with low height (52)
It is to obtain.

この方法によれば、押出のみによる方法の限界を越えた
超薄型の扁平多穴チューブ材の製作が可能となる。
According to this method, it is possible to produce an ultra-thin flat multi-hole tube material that exceeds the limitations of a method using only extrusion.

発明が解決しようとする課題 しかしながらその一方で、この方法には、チューブ材(
52)の耐圧性能を著しく低下せしめてしまうという欠
点がある。
Problems to be Solved by the Invention However, on the other hand, this method requires the use of tube material (
52) has the disadvantage of significantly lowering the pressure resistance performance.

即ち、第2図(イ)に示される扁平多穴型材(51)に
厚さ方向の圧延を施すと、仕切壁(53)・・・が圧縮
力を受けて高さ方向の中間部において屈曲して同図(ロ
)に示されるような座屈(53a)を起こし、その部分
の著しい強度低下を来たしてしまう。
That is, when the flat multi-hole shaped material (51) shown in FIG. This causes buckling (53a) as shown in FIG.

それでは、チューブ材の耐圧強度保持という仕切壁の重
要な機能の一つが阻害される結果となり、熱交換器に使
用した場合に内部を流通する熱交換媒体の圧力によりチ
ューブに膨らみを生じる等積々の弊害が生じる結果とな
る。
This will hinder one of the important functions of the partition wall, which is to maintain the pressure resistance of the tube material, and when used in a heat exchanger, the tube will bulge due to the pressure of the heat exchange medium flowing inside. This results in negative effects.

この発明は、上記のような従来の問題を解決し、熱交換
性能の更なる向上に寄与し、かつ仕切壁の強度低下を抑
制して耐圧強度にも優れた超薄型(例えば1〜2.5厘
)の熱交換器用チューブ材を製造することができる方法
を提供することを目的とする。
This invention solves the conventional problems as described above, contributes to further improvement of heat exchange performance, suppresses the decrease in strength of partition walls, and provides an ultra-thin type (e.g. 1 to 2 The purpose of the present invention is to provide a method capable of manufacturing a tube material for a heat exchanger of .5 liters.

課題を解決するための手段 上記目的において、この発明は、仕切壁によって内部が
幅方向に複数個の中空部に区画された扁平多穴型材を押
出成形したのち、該型材を厚さ方向−に圧潰して周壁を
求める所定の高さに更に扁平化せしめる熱交換器用チュ
ーブ材の製造方法であって、前記扁平多穴型材を、その
仕切壁の両側面に複数本のインナーフィンを有するもの
に押出成形することを特徴とする熱交換器用チューブ材
の製造方法を要旨とする。
Means for Solving the Problems To achieve the above object, the present invention extrudes a flat multi-hole shaped material whose inside is partitioned into a plurality of hollow sections in the width direction by a partition wall, and then extrudes the shaped material in the thickness direction. A method for manufacturing a tube material for a heat exchanger which is further flattened to a predetermined height to obtain a peripheral wall by crushing, the flat multi-hole tube material having a plurality of inner fins on both sides of the partition wall. The gist of the present invention is a method of manufacturing a tube material for a heat exchanger, which is characterized by extrusion molding.

作用 上記方法では、押出成形すべき扁平多穴型材の内部仕切
壁をその両側面に複数本のインナーフィンを有するもの
としている。そのため、この扁平多穴型材に厚さ方向の
圧潰を施すと、仕切壁は、圧縮力を受けて変形していく
過程でその隣り合うインナーフィン同士が干渉しあうこ
と、及び/又は仕切壁の高さ方向に圧縮力に強いインナ
ーフィンのある部分と圧縮力に相対的に弱いくびれ部分
とが交互配置となされクツション作用を起こしつつ変形
すること等により、屈曲して座屈を起こすというような
ことなく直立状態を保持しつつ圧縮変形していく。従っ
て、圧潰成形後の仕切壁の強度低下が抑制され、得られ
たチューブ材の耐圧強度が適正に確保される。
Function: In the above method, the internal partition wall of the flat multi-hole material to be extruded has a plurality of inner fins on both sides thereof. Therefore, when this flat multi-hole material is crushed in the thickness direction, the adjacent inner fins may interfere with each other and/or the partition wall may deform in the process of being deformed under compression force. In the height direction, parts with inner fins that are strong against compressive force and narrow parts that are relatively weak against compressive force are arranged alternately and deform while creating a cushioning effect, which causes bending and buckling. It compresses and deforms while maintaining its upright state. Therefore, a decrease in the strength of the partition wall after crushing is suppressed, and the pressure resistance strength of the obtained tube material is appropriately ensured.

実施例 以下に、実施例を説明する。Example Examples will be described below.

本発明方法は、押出工程と、圧潰工程とからなる。The method of the present invention consists of an extrusion step and a crushing step.

押出工程は、第1図(イ)に示されるような型材(1)
を押出成形する工程である。
In the extrusion process, a mold material (1) as shown in Figure 1 (a) is used.
This is the process of extrusion molding.

この工程で成形すべき型材(1)の形状は、仕切壁(2
)・・・によって内部が幅方向に複数個の中空部(3)
・・・に形成された扁平多穴形である。そして各中空部
(3)・・・を囲む内周壁には、例えばオス型ベアリン
グ部に周方向に凹凸を形成したダイスを用いて、仕切壁
(2)・・・を含めて型材(1)の長さ方向に延びる伝
熱面積拡大用のインナーフィン(4)・・・が多数列設
されたものに成形する。また、形材(1)の高さ(hl
)は、ダイスの破損を招かないような、例えば2〜5履
に設定する。
The shape of the mold material (1) to be formed in this process is the shape of the partition wall (2
)... has multiple hollow parts in the width direction (3)
It is a flat multi-hole shape formed in... Then, on the inner peripheral wall surrounding each hollow part (3)..., for example, a die having a male bearing part with unevenness formed in the circumferential direction is used to form the shape material (1) including the partition wall (2)... The inner fins (4) for expanding the heat transfer area extending in the length direction are formed in multiple rows. Also, the height of the profile (1) (hl
) is set to, for example, 2 to 5 so as not to cause damage to the dice.

圧潰工程は、押出工程で得られた扁平多穴型材(1)を
その厚さ方向に圧潰して第1図(ロ)に示されるような
熱交換器用チューブ材(5)に更に扁平化する工程であ
る。
In the crushing step, the flat multi-hole material (1) obtained in the extrusion step is crushed in its thickness direction to further flatten it into a heat exchanger tube material (5) as shown in Figure 1 (b). It is a process.

この圧潰工程では、同図(イ)に示される扁平多穴型材
(1)を1〜2. 5amの高さ(h2)に圧潰し、第
1図(ロ)に示されるような熱交換器用チューブ材(5
)に加工する。なお、圧潰は、例えば圧延、プレス等に
よって実施される。
In this crushing step, the flat multi-hole shaped material (1) shown in FIG. It is crushed to a height (h2) of 5 am and made into a heat exchanger tube material (5 m) as shown in Fig.
). Note that the crushing is performed, for example, by rolling, pressing, or the like.

この圧潰工程において、仕切壁(2)は、その両側面に
複数本のインナーフィン(4)・・・を有するものとな
されているので、インナーフィン(4)・・・同士の相
互干渉作用、及び/又はインナーフィン(4)・・・と
それらの間のくびれ部(6)・・・との交互配置による
強度の強弱の交互組合わせに起因したクツション作用等
によって、屈曲を抑制され、座屈することなく直立状態
のまま圧縮変形されることになる。
In this crushing process, since the partition wall (2) has a plurality of inner fins (4) on both sides thereof, mutual interference between the inner fins (4), And/or the inner fins (4)... and the constrictions (6)... between them are arranged alternately to suppress bending and seated due to the cushioning effect caused by the alternating combination of strong and weak strengths. It will be compressed and deformed while remaining upright without bending.

上記の押出工程、圧潰工程を経て製造されたチューブ材
(5)は、上述のようにその仕切壁(2)・・・が座屈
を生じることなく直立状態を保持しつつ圧縮変形されて
いるので、その強度劣化を来たすことがなく、そのため
、このチューブ材(5)を熱交換器に使用した場合に、
チューブ間の空気流通間隙を大きくして空気の圧力損失
を少なくし熱交換性能の向上を図ることができることは
もとより、チューブの耐圧強度を適正に保ち、熱交換中
にチューブに膨らみを生じる等の弊害の発生を有効に防
止しうる。
The tube material (5) manufactured through the above-mentioned extrusion process and crushing process is compressed and deformed while its partition wall (2) maintains an upright state without buckling as described above. Therefore, when this tube material (5) is used in a heat exchanger, its strength does not deteriorate.
In addition to increasing the air flow gap between tubes to reduce air pressure loss and improving heat exchange performance, it is also possible to maintain appropriate pressure resistance of the tubes and prevent bulges from occurring in the tubes during heat exchange. The occurrence of harmful effects can be effectively prevented.

発明の効果 上述の次第で、この発明方法は、押出成形すべき扁平多
穴型材を、その仕切壁の両側面に複数本のインナーフィ
ンを有するものとしたから、前述した理由により、内部
仕切壁が屈曲して座屈を起こすというようなことなく直
立状態を保持しつつ圧縮変形するものとなり、従って、
圧潰成形後の仕切壁の強度低下が抑制され、耐圧強度が
適正に確保された超薄型の、熱交換性能の向上に寄与し
うるチューブ材に製造することができる。
Effects of the Invention As described above, in the method of the present invention, the flat multi-hole material to be extruded has a plurality of inner fins on both sides of the partition wall. It will compress and deform while maintaining an upright state without bending and buckling, and therefore,
A decrease in the strength of the partition wall after crushing is suppressed, and an ultra-thin tube material with appropriate pressure resistance can be manufactured, which can contribute to improving heat exchange performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を示すもので、同図(イ)は押出工
程によって得られた多穴扁平型材の横断面図、同図(ロ
)は圧潰工程を経て得られたチューブ材の横断面図であ
る。第2図(イ)(ロ)は従来法による各工程で得られ
た型材、チューブ材の横断面図である。 (1)・・・扁平多穴型材、(2)・・・仕切壁、(3
)・・・中空部、(4)・・・インナーフィン、(5)
・・・熱交換器用チューブ材。 以上 3a 第2図
Figure 1 shows the method of the present invention, in which (a) is a cross-sectional view of a multi-hole flat material obtained through the extrusion process, and (b) is a cross-sectional view of a tube material obtained through the crushing process. It is a front view. FIGS. 2(a) and 2(b) are cross-sectional views of the shapes and tube materials obtained in each process according to the conventional method. (1)... Flat multi-hole material, (2)... Partition wall, (3
)...Hollow part, (4)...Inner fin, (5)
...Tube material for heat exchangers. Above 3a Figure 2

Claims (1)

【特許請求の範囲】[Claims] 仕切壁によって内部が幅方向に複数個の中空部に区画さ
れた扁平多穴型材を押出成形したのち、該型材を厚さ方
向に圧潰して周壁を求める所定の高さに更に扁平化せし
める熱交換器用チューブ材の製造方法であって、前記扁
平多穴型材を、その仕切壁の両側面に複数本のインナー
フィンを有するものに押出成形することを特徴とする熱
交換器用チューブ材の製造方法。
After extrusion molding a flat multi-hole molded material whose interior is partitioned into a plurality of hollow parts in the width direction by partition walls, the molded material is crushed in the thickness direction to further flatten it to a predetermined height to obtain a peripheral wall. A method for producing a tube material for a heat exchanger, the method comprising extruding the flat multi-hole material into a material having a plurality of inner fins on both sides of its partition wall. .
JP5054190A 1990-03-01 1990-03-01 Manufacture of tube member for heat exchanger Pending JPH03251688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5054190A JPH03251688A (en) 1990-03-01 1990-03-01 Manufacture of tube member for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5054190A JPH03251688A (en) 1990-03-01 1990-03-01 Manufacture of tube member for heat exchanger

Publications (1)

Publication Number Publication Date
JPH03251688A true JPH03251688A (en) 1991-11-11

Family

ID=12861874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5054190A Pending JPH03251688A (en) 1990-03-01 1990-03-01 Manufacture of tube member for heat exchanger

Country Status (1)

Country Link
JP (1) JPH03251688A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476141A (en) * 1993-04-19 1995-12-19 Sanden Corporation Flat-type refrigerant tube having an improved pressure-resistant strength
JPH08247678A (en) * 1995-03-10 1996-09-27 Nagano Haruo Heat-exchanger made of aluminum
JPH0972680A (en) * 1995-09-05 1997-03-18 Akutoronikusu Kk Structure of porous flat tube and manufacture thereof
WO2002046678A2 (en) * 2000-12-07 2002-06-13 Brazeway, Inc. Multivoid heat exchanger tubing with ultra small voids and method for making the tubing
US7059399B2 (en) * 2003-09-04 2006-06-13 Lg Electronics Inc. Heat exchanger with flat tubes
JP2007136224A (en) * 1996-12-31 2007-06-07 Procter & Gamble Co Heat pack comprising a number of separate heat cells
JP2007167681A (en) * 1996-12-31 2007-07-05 Procter & Gamble Co Disposable thermal body pad
JP2007190398A (en) * 1996-12-31 2007-08-02 Procter & Gamble Co Disposable thermal back wrap
JP2008232600A (en) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the heat exchanger
JP2008261518A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Heat exchanger and air conditioner comprising the same
JP2010002093A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the heat exchanger
US20110000657A1 (en) * 2008-01-10 2011-01-06 Jens Ruckwied Extruded tube for a heat exchanger
JP2015055415A (en) * 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger
WO2015177237A1 (en) * 2014-05-23 2015-11-26 Valeo Systemes Thermiques Rolled tube having a double row of channels

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476141A (en) * 1993-04-19 1995-12-19 Sanden Corporation Flat-type refrigerant tube having an improved pressure-resistant strength
JPH08247678A (en) * 1995-03-10 1996-09-27 Nagano Haruo Heat-exchanger made of aluminum
JPH0972680A (en) * 1995-09-05 1997-03-18 Akutoronikusu Kk Structure of porous flat tube and manufacture thereof
JP2007136224A (en) * 1996-12-31 2007-06-07 Procter & Gamble Co Heat pack comprising a number of separate heat cells
JP2007190398A (en) * 1996-12-31 2007-08-02 Procter & Gamble Co Disposable thermal back wrap
JP2007167681A (en) * 1996-12-31 2007-07-05 Procter & Gamble Co Disposable thermal body pad
WO2002046678A3 (en) * 2000-12-07 2003-02-13 Brazeway Inc Multivoid heat exchanger tubing with ultra small voids and method for making the tubing
WO2002046678A2 (en) * 2000-12-07 2002-06-13 Brazeway, Inc. Multivoid heat exchanger tubing with ultra small voids and method for making the tubing
US7059399B2 (en) * 2003-09-04 2006-06-13 Lg Electronics Inc. Heat exchanger with flat tubes
JP2008232600A (en) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the heat exchanger
JP4659779B2 (en) * 2007-03-23 2011-03-30 三菱電機株式会社 Heat exchanger and air conditioner equipped with the heat exchanger
JP2008261518A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Heat exchanger and air conditioner comprising the same
JP4671985B2 (en) * 2007-04-10 2011-04-20 三菱電機株式会社 Heat exchanger and air conditioner equipped with the heat exchanger
US20110000657A1 (en) * 2008-01-10 2011-01-06 Jens Ruckwied Extruded tube for a heat exchanger
JP2010002093A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the heat exchanger
JP2015055415A (en) * 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger
WO2015177237A1 (en) * 2014-05-23 2015-11-26 Valeo Systemes Thermiques Rolled tube having a double row of channels
FR3021398A1 (en) * 2014-05-23 2015-11-27 Valeo Systemes Thermiques LAMINATED TUBE WITH DOUBLE CHANNEL RANGE

Similar Documents

Publication Publication Date Title
JPH03251688A (en) Manufacture of tube member for heat exchanger
JP3113100B2 (en) Multi-hole tube extrusion die and multi-hole tube
WO2002042706A1 (en) Heat exchanger tube and heat exchanger
JP2000111290A (en) Multi-pass flat pipe
JPS62272096A (en) Hollow section for heat exchanger and manufacture thereof
JP2002153931A (en) Heat exchange tube and finless heat exchanger
US6594897B2 (en) Method for manufacturing coolant tube of heat exchanger
US7059394B2 (en) Heat exchanger
EP2085733A1 (en) Heat exchanger tube and method of producing the same
JPH09203594A (en) Folded and re-expanded heat exchanger pipe and its assembly
JP2927051B2 (en) Heat exchanger
JP2009166131A (en) Extrusion die for manufacturing tube with many small hollow portions, mandrel used for extrusion die, and multi-hollowed tube manufactured by using extrusion die
JP6636110B1 (en) Air conditioner equipped with heat exchanger, pipe expansion member, and heat exchanger
JP2891523B2 (en) Heat exchanger manufacturing method
JP2003200212A (en) Die for extruding finely perforated tube, mandrel used for the die, and perforated tube manufactured using the die
US20060118288A1 (en) Tube for heat exchanger
JP3305429B2 (en) Perforated tube material for heat exchanger, extrusion die for producing the tube material, and method for producing the tube material
JP2705826B2 (en) Method for manufacturing flat multi-hole tube material for heat exchanger
JPS63108914A (en) Manufacture of multihole flat copper tube
JP2012200769A (en) Flat tube for heat exchanger and method of manufacture the same
JPH11351791A (en) Aluminum inner face grooved tube
US3241608A (en) Heat exchanger element
JPH08178568A (en) Metal tube material for heat exchanger and manufacture thereof
JPS6167529A (en) Manufacture of heat exchanging pipe provided with inner fin
US2999304A (en) Method of manufacturing heat exchangers