JPH03248534A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH03248534A
JPH03248534A JP2044628A JP4462890A JPH03248534A JP H03248534 A JPH03248534 A JP H03248534A JP 2044628 A JP2044628 A JP 2044628A JP 4462890 A JP4462890 A JP 4462890A JP H03248534 A JPH03248534 A JP H03248534A
Authority
JP
Japan
Prior art keywords
film
contact hole
insulating film
layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2044628A
Other languages
Japanese (ja)
Other versions
JP2892421B2 (en
Inventor
Yusuke Harada
原田 裕介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2044628A priority Critical patent/JP2892421B2/en
Priority to US07/658,239 priority patent/US5192713A/en
Publication of JPH03248534A publication Critical patent/JPH03248534A/en
Application granted granted Critical
Publication of JP2892421B2 publication Critical patent/JP2892421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76889Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances by forming silicides of refractory metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain an excellent semiconductor element having no discontinuity by burying a W film only in a deep contact hole of a wafer having both shallow and deep contact holes simultaneously. CONSTITUTION:After an element isolating insulating film 32 is formed on a semiconductor substrate 3 and a diffused layer 33 is formed, a first interlayer insulating film 34 is formed. After a high melting point W poliside film 35 containing As is formed on the layer 34, a second interlayer insulating film 36 is formed, a deep contact hole 37 is formed on the layer 33, a shallow contact hole 38 is formed on the layer 35, and a W film 39 is buried in the degree of not generating a step from the film 36 only in the hole 37. Accordingly, even if a wiring layer 40 is formed in a later step, the hole 39 is not raised to a level for deteriorating the step coverage of the layer 40 with the hole 38. Thus, a disconnection due to the deterioration of the coverage can be prevented, and a wiring structure having high reliability can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体素子におけるコンタクト孔埋込み配
線形成に際し、深いコンタクト孔も浅いコンタクト孔の
両方ともに断線することなく、良好に形成できるように
した半導体素子の製造方法に関するものである。
[Detailed Description of the Invention] (Industrial Field of Application) The present invention enables the formation of buried wiring in contact holes in semiconductor devices, in which both deep contact holes and shallow contact holes can be formed satisfactorily without disconnection. The present invention relates to a method for manufacturing a semiconductor element.

(従来の技術) 半導体素子において、配線構造は従来第3図に示すよう
に形成されている。この第3図において、まず、IC基
板1に素子分離のための絶縁膜2(例えば5iJ) 、
拡散層3を形成した後、絶縁膜4(例えばBPSG)を
CVD法にて形成する。
(Prior Art) In a semiconductor device, a wiring structure is conventionally formed as shown in FIG. In FIG. 3, first, an insulating film 2 (for example, 5iJ) for element isolation is placed on an IC substrate 1.
After forming the diffusion layer 3, an insulating film 4 (for example, BPSG) is formed by CVD.

その後、コンタクトとなる開孔部5を形成し、その後配
線となるAl−5i系合金膜6をスパッタ法で形成し、
配線パターンをホトリソ・エツチングで得る。これによ
って半導体素子が完成する。
After that, an opening 5 that will become a contact is formed, and then an Al-5i alloy film 6 that will become a wiring is formed by sputtering.
Obtain the wiring pattern by photolithography and etching. This completes the semiconductor device.

しかしながら、集積度が増加するにつれて、コンタクト
の開孔部5の径は小さくなり、アスペクト比(径と深さ
の比)が大きくなるにつれて、第3図の従来の製造方法
では、Al−5i合金膜6のステップカバレージが悪く
なり、断線となる。そのため、コンタクト孔内部を金属
で埋め込む技術が開発されてきている。
However, as the degree of integration increases, the diameter of the aperture 5 of the contact becomes smaller, and as the aspect ratio (ratio of diameter to depth) becomes larger, the conventional manufacturing method shown in FIG. The step coverage of the film 6 deteriorates, resulting in disconnection. Therefore, techniques have been developed to fill the inside of the contact hole with metal.

その一つとして、選択WCVD法を例に用いて第4図に
より説明する。この第4図において、IC基板11に先
程と同様に素子分離絶縁膜12゜拡散層13を形成した
後絶縁膜14を形成し、コンタクトとなる開孔部15を
形成する。そして、選択WCVD法により、Wl111
6を開孔部15と絶縁膜14の段差が生じない程度に形
成する。その後、Al−5i系合金膜17をスパッタ法
で形成し、ホトリソ・エツチングによりパターニングす
る。
As one of them, the selective WCVD method will be explained with reference to FIG. 4 as an example. In FIG. 4, an element isolation insulating film 12 and a diffusion layer 13 are formed on an IC substrate 11 in the same manner as before, and then an insulating film 14 is formed, and an opening 15 that becomes a contact is formed. Then, by selective WCVD method, Wl111
6 is formed to such an extent that no difference in level between the opening 15 and the insulating film 14 occurs. Thereafter, an Al-5i alloy film 17 is formed by sputtering and patterned by photolithography and etching.

このような方法によれば、コンタクト孔内を金属で埋め
込めるため、ステップカバレージの悪化による断線を防
ぐことができ、信鯨性の高い配線構造を得ることができ
る。
According to such a method, since the inside of the contact hole can be filled with metal, disconnection due to deterioration of step coverage can be prevented, and a wiring structure with high reliability can be obtained.

しかしながら、実際に用いられる半導体素子のコンタク
ト孔は第5図のように、拡散層23上だけではなく、電
極層25上も存在する。
However, as shown in FIG. 5, the contact holes of the semiconductor element actually used exist not only on the diffusion layer 23 but also on the electrode layer 25.

すなわち、第5図において、第4図の場合と同様にIC
基板21上に素子分離絶縁膜22.拡散層23を形成し
た後、絶縁膜24を形成し、この絶縁膜24内に電極層
25を埋め込み、拡散層23上と電極層25上のコンタ
クト孔26.27を形成した後、コンタクト孔26.2
7にそれぞれW膜2B、29を形成し、しかる後に、A
l−3i系台金膜30を形成してパターニングする。
That is, in FIG. 5, as in the case of FIG.
An element isolation insulating film 22 is formed on the substrate 21. After forming the diffusion layer 23, an insulating film 24 is formed, an electrode layer 25 is embedded in the insulating film 24, contact holes 26 and 27 are formed on the diffusion layer 23 and the electrode layer 25, and then the contact hole 26 is formed. .2
W films 2B and 29 are formed on A and A, respectively.
An l-3i base metal film 30 is formed and patterned.

(発明が解決しようとする課題) このように、第5図の例では、拡散層27上および電極
層25上のコンタクト孔26.コンタクト孔27を同時
に選択WCVD法でW膜28.W膜29を形成すること
になる。
(Problem to be Solved by the Invention) As described above, in the example of FIG. 5, the contact hole 26 on the diffusion layer 27 and the electrode layer 25. Contact hole 27 is simultaneously selected by WCVD method to form W film 28. A W film 29 will be formed.

この2種類のコンタクト孔26.コンタクト孔27のう
ち、コンタクト孔27の方が浅いため、埋め込まれるW
膜29の厚さはコンタクト孔27における絶縁膜24と
段差が生じない程度に抑えなければならない。
These two types of contact holes 26. Among the contact holes 27, since the contact hole 27 is shallower, the buried W
The thickness of the film 29 must be suppressed to such an extent that no difference in level from the insulating film 24 in the contact hole 27 occurs.

したがって、深い方のコンタクト孔26内のW膜28の
厚さはW膜29と同じであるため、コンタクト孔26は
完全に埋め込まれておらず、配線層となるAl−5i系
合金膜30をスパッタ法で形成する際、ステップカバレ
ージの悪化により、コンタクト孔26内では、Al−5
i系合金膜30が断線する可能性がある。
Therefore, since the thickness of the W film 28 in the deeper contact hole 26 is the same as that of the W film 29, the contact hole 26 is not completely filled, and the Al-5i alloy film 30 serving as the wiring layer is When forming the contact hole 26 by sputtering, due to deterioration of step coverage, Al-5
There is a possibility that the i-based alloy film 30 will be disconnected.

また、前記ステップカバレージを良くするために、コン
タクト孔26のW膜28の膜厚を厚くすると、コンタク
ト孔27でのW膜29が絶縁膜24よりあふれ、上方お
よび左右へW膜が成長するため、平坦性の悪化および、
層内ショートという問題が発生する。
Furthermore, if the thickness of the W film 28 in the contact hole 26 is increased in order to improve the step coverage, the W film 29 in the contact hole 27 overflows from the insulating film 24, causing the W film to grow upward and to the left and right. , worsening of flatness and
A problem of intralayer short circuit occurs.

これらのために、深さの異なるコンタクト孔への選択W
CVD法は技術的に満足できるものは得られなかった。
For these reasons, selection of contact holes with different depths W
The CVD method did not yield a technically satisfactory result.

この発明は前記従来技術が持っている問題点のうち、深
さの異なるコンタクト孔に選択WCVD法を用いる際、
浅いコンタクト孔を埋め込んでも、深いコンタクト孔は
完全に埋め込むことができないために、配線層となるA
l−3i系合金膜をスパッタする際、ステップカバレー
ジ悪化による断線が生じるという問題点について解決し
た半導体素子の製造方法を提供するものである。
This invention addresses the problems of the prior art when using selective WCVD for contact holes with different depths.
Even if shallow contact holes are filled, deep contact holes cannot be completely filled, so A
The present invention provides a method for manufacturing a semiconductor device that solves the problem of wire breakage occurring due to poor step coverage when sputtering an l-3i alloy film.

この発明は前記問題点を解決するために半導体素子の製
造方法において、半導体基板上に素子分離用の絶縁膜を
形成して拡散層形成後に第1の層間絶縁膜を形成する工
程と、Asを含む高融点のWポリサイド膜を第1の層間
絶縁膜上に形成した後筒2の層間絶縁膜を形成して拡散
層上には深いコンタクト孔を形成し、かつWポリサイド
膜上には浅いコンタクト孔を形成する工程と、深いコン
タクト孔のみにW膜を埋め込み、かつ浅いコンタクト孔
にはW膜を埋め込まない工程とを導入したものである。
In order to solve the above-mentioned problems, the present invention provides a method for manufacturing a semiconductor device, including a step of forming an insulating film for device isolation on a semiconductor substrate and forming a first interlayer insulating film after forming a diffusion layer; A high melting point W polycide film including a high melting point W polycide film is formed on the first interlayer insulating film, and a deep contact hole is formed on the diffusion layer, and a shallow contact is formed on the W polycide film. This method introduces a step of forming a hole and a step of filling only the deep contact hole with the W film and not filling the shallow contact hole with the W film.

(作 用) この発明によれば、半導体素子の製造方法において、以
上のような工程を導入したので、浅いコンタクト孔と深
いコンタクト孔の形成後、選択WCVD法によりW膜を
形成させると、深いコンタクト孔のみに第2の層間絶縁
膜と段差の生じない程度にW膜を埋め込まれ、浅いコン
タクト孔はその下地となるWポリサイド膜にはAsが含
まれているから、W膜が成長しなくなり、後工程で、配
線層を形成しても、浅いコンタクト孔での配線層のステ
ップカバレージを悪化するレベルまで浅いコンタクト孔
が盛り上がらなくなり、したがって前記問題点を除去で
きる。
(Function) According to the present invention, since the above-described steps are introduced in the method for manufacturing a semiconductor element, when a W film is formed by selective WCVD after forming a shallow contact hole and a deep contact hole, a deep contact hole is formed. Only the contact hole is filled with the W film to such an extent that there is no difference in level from the second interlayer insulating film, and the W film that forms the base of the shallow contact hole contains As, so the W film does not grow. Even if a wiring layer is formed in a post-process, the shallow contact hole does not swell to a level that deteriorates the step coverage of the wiring layer in the shallow contact hole, and thus the above-mentioned problem can be eliminated.

(実施例) 以下、この発明の半導体素子の製造方法の実施例につい
て図面に基づき説明する。第1図(a)ないし第1図(
c)はその一実施例の工程断面図であり、まず第1図(
a)に示すように、半導体基板としてSt基板31に素
子分離のための絶縁膜32(例えば5ift )を形成
し、拡散層33を形成した後、第1の層間絶縁膜34(
例えばBPSG)をCVD法にて5000人形成する。
(Example) Hereinafter, an example of the method for manufacturing a semiconductor device of the present invention will be described based on the drawings. Figure 1(a) to Figure 1(
c) is a process cross-sectional view of one example, and first of all, Fig. 1 (
As shown in a), after forming an insulating film 32 (for example, 5ift) for element isolation on an St substrate 31 as a semiconductor substrate and forming a diffusion layer 33, a first interlayer insulating film 34 (
For example, 5,000 people (BPSG) are formed using the CVD method.

次いで、この第1の層間絶縁膜34の表面を平坦にさせ
るフロー熱処理を行う。この熱処理はNt雰囲気で95
0°C215分行う。
Next, flow heat treatment is performed to flatten the surface of this first interlayer insulating film 34. This heat treatment was carried out at 95°C in an Nt atmosphere.
Perform at 0°C for 215 minutes.

次に、第1の層間絶縁膜34が平坦になった後、電極と
なるWポリサイド(WSix)膜35を形成する。この
作成方法は、まずポリシリコン膜をCVD法にて100
0〜1500人形成スル、ソの後、ドーパントとなる不
純物をポリシリコンに含ませる0通常リン(P)が−船
釣であるが、ここでは、選択Wの成長を行わせないこと
が目的であるので、Asをイオンインプランテーション
法によって打ち込む。
Next, after the first interlayer insulating film 34 is flattened, a W polycide (WSix) film 35 that will become an electrode is formed. In this production method, first, a polysilicon film with a thickness of 100% is formed using the CVD method.
After the formation of 0 to 1500 people, an impurity that will become a dopant is added to the polysilicon. Normally, phosphorus (P) is used for boat fishing, but here the purpose is to prevent the growth of selection W. Therefore, As is implanted by the ion implantation method.

このイオンインプランテーションの条件は、40KeV
  I XIQI6tons/cdで行う、そして、W
 S i膜をスパッタ法にて1500人形成し、前述の
ポリシリコン層/WSi層をホトリソ・エツチングでパ
ターニングする。そして、第2の層間絶縁膜36(例え
ばBPSG)をCVD法にて5000人形成し、平坦に
させるフロー熱処理を行う。
The conditions for this ion implantation are 40KeV
Performed with I XIQI6tons/cd, and W
A 1,500 Si film is formed by sputtering, and the aforementioned polysilicon layer/WSi layer is patterned by photolithography and etching. Then, a second interlayer insulating film 36 (for example, BPSG) is formed using the CVD method, and a flow heat treatment is performed to flatten the film.

この熱処理条件はN!雰囲気で950°C115分行う
。この熱処理によって、前述のポリシリコン層/WSi
層はAsを含む高融点金属のWポリサイド膜35となる
This heat treatment condition is N! It is carried out in an atmosphere at 950°C for 115 minutes. By this heat treatment, the aforementioned polysilicon layer/WSi
The layer is a W polycide film 35 of a high melting point metal containing As.

その後、第1図(b)に示すように、ホトリソ・エツチ
ングにより拡散層33上およびWポリサイド膜35上に
コンタクト孔37.38をそれぞれ形成する。
Thereafter, as shown in FIG. 1(b), contact holes 37 and 38 are respectively formed on the diffusion layer 33 and the W polycide film 35 by photolithography and etching.

コンタクト孔37.38のエツチングはRIE(リアク
ティブ・イオン・エツチング)を用い、RIEはClF
315 sccm+、 CHF3205ec(圧力80
pa、 RFパワー400Wで行う。
The contact holes 37 and 38 are etched using RIE (reactive ion etching), and RIE is performed using ClF.
315 sccm+, CHF3205ec (pressure 80
pa, RF power of 400W.

コンタクト孔37.38開孔後、選択WCVD(化学気
相反応)法にてW膜39を深いコンタクト孔37内には
、この層間絶縁膜36と段差が生じない程度に形成する
。この時、Wポリサイド膜35上の浅いコンタクト孔3
8には、AsをWポリサイド内に含有させているために
、W膜の成長はなく、コンタクト孔38があいたままの
状態となっている。
After the contact holes 37 and 38 are opened, a W film 39 is formed in the deep contact hole 37 by selective WCVD (chemical vapor phase reaction) to such an extent that no difference in level from the interlayer insulating film 36 occurs. At this time, the shallow contact hole 3 on the W polycide film 35
In No. 8, since As is contained in the W polycide, there is no growth of the W film, and the contact hole 38 remains open.

その後、第1図(c)に示すように、配線層となるAl
−5i系合金膜40をスパッタ法にて6000人形成し
た後、ホトリソ・エツチングを行い、配線パターンを得
る。
After that, as shown in FIG. 1(c), Al
After forming 6,000 -5i alloy films 40 by sputtering, photolithography and etching are performed to obtain wiring patterns.

また、Asはポリシリコン層形成後だけとは限らず、コ
ンタクト孔37.38を形成した後に浅いコンタクト孔
38に選択的にイオンインプランテーションにより打ち
込んでもよい。Pの濃度よりもAsの濃度の方が高い時
にW膜の成長は起こらなくなる。
Furthermore, As is not limited to being implanted only after forming the polysilicon layer, but may also be implanted selectively into the shallow contact hole 38 by ion implantation after the contact holes 37 and 38 are formed. When the As concentration is higher than the P concentration, the W film does not grow.

第2図はこのW膜の成長が起こらない様子を顕微鏡写真
から転写して示した図であり、図中のWポリサイドAの
領域でWがついていないことが示されている(図中空白
で示す部分)。
Figure 2 is a diagram transcribing from a microscopic photograph showing how this W film does not grow, and it is shown that there is no W attached in the region of W polycide A in the figure (blank in the figure). (part shown).

Pを用いてWポリサイド膜35を形成した場合には、選
択WCVD法でコンタクト孔37内にW膜39を形成す
る時、浅いコンタクト孔38内には選択Wの成長が正常
に起こるのに対して、Asを用いて、Wポリサイド膜3
5を形成後に選択WCVD法でコンタクト孔37にW膜
39を形成すると、浅いコンタクト孔38内W膜の成長
が起こらないのは、Wポリサイド膜35の表面の状態に
違いがあると考えられるが、詳しいことはよくわかって
いない。
When the W polycide film 35 is formed using P, selective W growth normally occurs in the shallow contact hole 38 when the W film 39 is formed in the contact hole 37 by the selective WCVD method. Then, using As, a W polycide film 3 is formed.
When the W film 39 is formed in the contact hole 37 by the selective WCVD method after the formation of the W polycide film 35, the reason why the W film does not grow in the shallow contact hole 38 is thought to be that there is a difference in the surface condition of the W polycide film 35. , the details are not well known.

(発明の効果) 以上詳細に説明したように、この発明によれば、浅いコ
ンタクト孔の下地をAsを含むWポリサイド膜としたの
で、Siが下地である深いコンタクト孔が同時に存在す
るウェハに選択WCVDを行っても、Wポリサイドが下
地である浅いコンタクト孔にはWは成長されなくなり、
深いコンタクト孔に選択W膜を埋込むことができ、深い
コンタクト孔でのスパッタAl−5i系合金膜のステッ
プカバレージの悪化はなくなる。
(Effects of the Invention) As explained in detail above, according to the present invention, since the base of the shallow contact hole is a W polycide film containing As, it is selected for use in a wafer in which there is also a deep contact hole with Si as the base. Even if WCVD is performed, W will no longer grow in shallow contact holes with W polycide as the base.
The selective W film can be buried in the deep contact hole, and step coverage of the sputtered Al-5i alloy film in the deep contact hole does not deteriorate.

また、選択W膜が成長しない浅いコンタクト孔はスパッ
タAl−5i系合金のステップカバレージが悪化するレ
ベルではなく、断線のない良好な半導体素子の実現が可
能となる。
Further, the shallow contact hole in which the selective W film does not grow is not at a level where the step coverage of the sputtered Al-5i alloy is deteriorated, and it is possible to realize a good semiconductor device without disconnection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)ないし第1図(c)はこの発明の半導体素
子の製造方法の工程断面図、第2図は選択W膜の非成長
性の説明図、第3図ないし第5図はそれぞれ従来の異な
る半導体素子の製造方法の説明図である。 31・・・Si基板、32・・・絶縁膜、33・・・拡
散層、34・・・第1の層間絶縁膜、35・・・Wポリ
サイド膜、36・・・第2の層間絶縁膜、37.38・
・・コンタクト孔、39・・・W膜、40・・・Al−
5i系合金膜。 (b) 本発明の工程断面図 第1図 (c) 本発明の工程断面図 第 図 本発明のコンタクト孔の説明図 第 図 1 :IC基板 3:拡散層 5:開孔部 6:A4−5 系合金膜 従来の製造方法の説明図 第 3 1:IC基板 2:素子分離絶縁膜 3:拡散層 4:絶縁膜 5:開孔部 6:W膜 7:ヘノ−Si系合金膜 従来の製造方法の説明図 第 図
1(a) to 1(c) are process cross-sectional views of the method for manufacturing a semiconductor element of the present invention, FIG. 2 is an explanatory diagram of the non-growth property of the selective W film, and FIGS. 3 to 5 are FIGS. 3A and 3B are explanatory diagrams of different conventional methods of manufacturing semiconductor elements; FIGS. 31... Si substrate, 32... Insulating film, 33... Diffusion layer, 34... First interlayer insulating film, 35... W polycide film, 36... Second interlayer insulating film , 37.38・
...Contact hole, 39...W film, 40...Al-
5i alloy film. (b) Process cross-sectional diagram of the present invention Figure 1 (c) Process cross-sectional diagram of the present invention Figure Explanatory diagram of the contact hole of the present invention Figure 1: IC substrate 3: Diffusion layer 5: Opening portion 6: A4- 5-based alloy film Explanatory diagram of conventional manufacturing method Part 3 1: IC substrate 2: Element isolation insulating film 3: Diffusion layer 4: Insulating film 5: Opening portion 6: W film 7: Heno-Si alloy film Conventional Explanatory diagram of manufacturing method

Claims (1)

【特許請求の範囲】 (a)半導体基板上に素子分離用の絶縁膜の形成後拡散
層を形成し、かつ第1の層間絶縁膜を形成する工程と、 (b)上記第1の層間絶縁膜上にAsを含むWポリサイ
ド膜および第2の層間絶縁膜を形成した後このAsを含
むWポリサイド膜上に浅いコンタクト孔を形成するとと
もに上記拡散層上に深いコンタクト孔を形成する工程と
、 (c)上記深いコンタクト孔内にのみW膜を上記第2の
層間絶縁膜と段差を生じない程度にW膜を埋め込んだ後
に配線層を形成する工程と、 よりなる半導体素子の製造方法。
[Scope of Claims] (a) forming a diffusion layer after forming an insulating film for element isolation on a semiconductor substrate, and forming a first interlayer insulating film; (b) the step of forming the first interlayer insulating film; After forming a W polycide film containing As and a second interlayer insulating film on the film, forming a shallow contact hole on the W polycide film containing As and forming a deep contact hole on the diffusion layer; (c) forming a wiring layer after burying a W film only in the deep contact hole to such an extent that no difference in level from the second interlayer insulating film is formed;
JP2044628A 1990-02-27 1990-02-27 Method for manufacturing semiconductor device Expired - Lifetime JP2892421B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2044628A JP2892421B2 (en) 1990-02-27 1990-02-27 Method for manufacturing semiconductor device
US07/658,239 US5192713A (en) 1990-02-27 1991-02-20 Method of manufacturing semiconductor devices having multi-layered structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2044628A JP2892421B2 (en) 1990-02-27 1990-02-27 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH03248534A true JPH03248534A (en) 1991-11-06
JP2892421B2 JP2892421B2 (en) 1999-05-17

Family

ID=12696691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2044628A Expired - Lifetime JP2892421B2 (en) 1990-02-27 1990-02-27 Method for manufacturing semiconductor device

Country Status (2)

Country Link
US (1) US5192713A (en)
JP (1) JP2892421B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940010197A (en) * 1992-10-13 1994-05-24 김광호 Manufacturing Method of Semiconductor Device
JP3219909B2 (en) * 1993-07-09 2001-10-15 株式会社東芝 Method for manufacturing semiconductor device
JPH07297194A (en) * 1994-04-25 1995-11-10 Sony Corp Multichamber apparatus and manufacture of semiconductor device
US5512514A (en) * 1994-11-08 1996-04-30 Spider Systems, Inc. Self-aligned via and contact interconnect manufacturing method
JP2710221B2 (en) * 1995-01-25 1998-02-10 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP3397505B2 (en) * 1995-04-19 2003-04-14 株式会社東芝 Method for manufacturing semiconductor device
US5950099A (en) * 1996-04-09 1999-09-07 Kabushiki Kaisha Toshiba Method of forming an interconnect
TW402809B (en) * 1997-10-18 2000-08-21 United Microelectronics Corp The manufacture method of electrical charge storage structure
KR19990072936A (en) * 1998-02-27 1999-09-27 가나이 쓰도무 Isolator and modem unit using the same
KR100589490B1 (en) * 2003-12-30 2006-06-14 동부일렉트로닉스 주식회사 Method For manufacturing Semiconductor Devices

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648175A (en) * 1985-06-12 1987-03-10 Ncr Corporation Use of selectively deposited tungsten for contact formation and shunting metallization
US5108941A (en) * 1986-12-05 1992-04-28 Texas Instrument Incorporated Method of making metal-to-polysilicon capacitor
JPH069200B2 (en) * 1987-03-31 1994-02-02 株式会社東芝 Method of forming metal wiring
US4764484A (en) * 1987-10-08 1988-08-16 Standard Microsystems Corporation Method for fabricating self-aligned, conformal metallization of semiconductor wafer
JP2695861B2 (en) * 1988-09-21 1998-01-14 株式会社東芝 Method for manufacturing semiconductor device
JPH0724261B2 (en) * 1989-01-20 1995-03-15 株式会社東芝 Method for manufacturing semiconductor device
JP2578193B2 (en) * 1989-02-01 1997-02-05 沖電気工業株式会社 Method for manufacturing semiconductor device
US4933297A (en) * 1989-10-12 1990-06-12 At&T Bell Laboratories Method for etching windows having different depths
US4987099A (en) * 1989-12-29 1991-01-22 North American Philips Corp. Method for selectively filling contacts or vias or various depths with CVD tungsten

Also Published As

Publication number Publication date
JP2892421B2 (en) 1999-05-17
US5192713A (en) 1993-03-09

Similar Documents

Publication Publication Date Title
US5640041A (en) Stress relaxation in dielectric before metallization
US5476814A (en) Method of manufacturing semiconductor device utilizing selective CVD method
US5308786A (en) Trench isolation for both large and small areas by means of silicon nodules after metal etching
US5861671A (en) Process for removing seams in tungsten plugs
JPH03248534A (en) Manufacture of semiconductor element
US5700726A (en) Multi-layered tungsten depositions for contact hole filling
JPH02257640A (en) Manufacture of semiconductor element
JPH08288390A (en) Semiconductor device and manufacture thereof
JP3214445B2 (en) Method for manufacturing semiconductor device
JP3065395B2 (en) Method for manufacturing semiconductor device
JPH02162722A (en) Manufacture of semiconductor device
JP2702007B2 (en) Method for manufacturing semiconductor device
US20010016416A1 (en) Method for fabricating contact plug
US6887767B2 (en) Method for manufacturing semiconductor device
JPH01243526A (en) Manufacture of semiconductor device
JPH0234957A (en) Manufacture of semiconductor device
KR0175518B1 (en) Structure of Metallization in Semiconductor Device and Manufacturing Method Thereof
JPH04127425A (en) Manufacture of semiconductor integrated circuit
JP2840675B2 (en) Method for manufacturing semiconductor device
JPH0590207A (en) Manufacture of semiconductor device
JP2940986B2 (en) Method for manufacturing semiconductor device
JP2720567B2 (en) Method for manufacturing semiconductor device
JPH08293552A (en) Forming method of plug
JPH0521377A (en) Manufacture of semiconductor device
JPH04315425A (en) Manufacture of semiconductor device