JPH03247770A - Plasma cvd system - Google Patents

Plasma cvd system

Info

Publication number
JPH03247770A
JPH03247770A JP4131990A JP4131990A JPH03247770A JP H03247770 A JPH03247770 A JP H03247770A JP 4131990 A JP4131990 A JP 4131990A JP 4131990 A JP4131990 A JP 4131990A JP H03247770 A JPH03247770 A JP H03247770A
Authority
JP
Japan
Prior art keywords
substrate
discharge electrode
lines
film
magnetic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4131990A
Other languages
Japanese (ja)
Other versions
JP2821932B2 (en
Inventor
Yasuaki Hayashi
林 康明
Yukinobu Hibino
日比野 幸信
Yoshiyuki Ukishima
禎之 浮島
Masamichi Matsuura
正道 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP4131990A priority Critical patent/JP2821932B2/en
Publication of JPH03247770A publication Critical patent/JPH03247770A/en
Application granted granted Critical
Publication of JP2821932B2 publication Critical patent/JP2821932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a film having extremely uniform thickness in magnetron plasma CVD by forming the component of line of magnetic force formed on the surface of a discharge electrode with only the component in the plane orthogonal to the substrate including the relative moving direction of the substrate. CONSTITUTION:A line of magnetic force 4 is formed by a magnet 3 on the surface of the discharge electrode 1 in a vacuum chamber 2, a raw gas is decomposed by the high density plasma confined by the line of magnetic force 4, and a film is formed on the substrate 5 traveled by a conveyor tray 10 in direction of the arrow 6. At this time, the magnet 3 is constituted by mounting three bar magnets 3a, 3b and 3c in parallel on the rear of the discharge electrode 1 so that their polarities are alternated, and the line of magnetic force 4 having only the component in the plane orthogonal to the substrate 5 including the moving direction 6 of the substrate 5 is generated on the surface of the discharge electrode 1. Consequently, high density plasma is uniformly produced on the right and left-hand sides in the moving direction 6 of the substrate 5, and a film is formed on the substrate 5 in uniform thickness.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、真空室内で相対的に移動する基板に例えば硬
質炭素膜の成膜を施すプラズマCVD装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a plasma CVD apparatus that forms, for example, a hard carbon film on a substrate that moves relatively within a vacuum chamber.

(従来の技術) 従来、グロー放電プラズマを利用した成膜装置として、
高速で成膜処理を行うために、例えば第7図乃至第9図
に見られるような、磁場によるプラズマの拘束作用を利
用するプレーナマグネトロン式のものが知られている 
(特公昭59、5982号公報)。この成膜装置は、真
空室内に用意した放電電極a内にループ状の磁石すを置
き、該放電電極aと基板dとの間でプラズマ放電を発生
させ、該プラズマを該放電電極aから出て再びこれに戻
る磁力線Cの近傍に拘束して高密度化するもので、プラ
ズマ中の電子は磁力線Cに垂直な面内を回転運動するが
、磁石すの組み込まれた放電電極aが陰極である場合は
、電子は該電極aと衝突する前に反発され、その結果該
電極aの近傍でサイクロイド運動を繰り返し、高密度の
プラズマが該電極aの近傍に拘束されるようになる。こ
の成膜装置が、化学反応を応用した成膜装置である場合
は、該電極aの近傍のプラズマ中で真空室内に導入した
原料ガスが分解し、活性種となって拡散により輸送され
、該電極aと対向して設けた放電電極e上の基板dに到
達して薄膜に成長していく。
(Conventional technology) Conventionally, as a film forming apparatus using glow discharge plasma,
In order to perform high-speed film formation processing, planar magnetron type devices that utilize the plasma restraint effect by a magnetic field are known, as shown in FIGS. 7 to 9, for example.
(Special Publication No. 5982). This film forming apparatus places a loop-shaped magnet in a discharge electrode a prepared in a vacuum chamber, generates plasma discharge between the discharge electrode a and a substrate d, and emits the plasma from the discharge electrode a. The electrons in the plasma move in rotation in a plane perpendicular to the magnetic field lines C, but the discharge electrode a, which has a built-in magnet, is a cathode. In some cases, the electrons are repelled before colliding with the electrode a, resulting in repeated cycloidal motion in the vicinity of the electrode a, resulting in a high-density plasma being confined in the vicinity of the electrode a. When this film-forming apparatus is a film-forming apparatus that applies chemical reactions, the raw material gas introduced into the vacuum chamber decomposes in the plasma near the electrode a, becomes active species, and is transported by diffusion. It reaches the substrate d on the discharge electrode e provided opposite the electrode a and grows into a thin film.

そして、該電極aの近傍のプラズマ密度が高い程ガスの
分解が効率的になされ、基板dに到達する活性種の量が
増え、高速成膜が実現できる。
The higher the plasma density near the electrode a, the more efficiently the gas is decomposed, the more active species reach the substrate d, and the faster the film formation can be realized.

(発明が解決しようとする課題) 前記の装置においては、基板dを相対的に移動させなが
らこれに成膜を施す場合、第7図乃至第9図に見られる
ように、その移動方向fと同方向の成分を有する磁力線
C,以外に該移動方向fと交叉する方向の成分を有する
磁力線C−2が存在し、これらの2種の磁力線Cに拘束
された高密度プラズマ中の電子が原料ガスを分解し、そ
の近傍の基板面に膜を堆積させる。
(Problem to be Solved by the Invention) In the above-mentioned apparatus, when forming a film on the substrate d while relatively moving it, as shown in FIGS. 7 to 9, the direction of movement f and In addition to the lines of magnetic force C, which have components in the same direction, there are lines of magnetic force C-2, which have a component in the direction that intersects the moving direction f, and the electrons in the high-density plasma that are restrained by these two types of lines of magnetic force C are the raw material. The gas is decomposed and a film is deposited on the substrate surface near it.

そのため、基板dの移動方向fに対する両側の周辺部に
は、厚い膜が堆積し、基板dの膜厚分布が不均一になる
不都合があった。特に、原料ガスの分解性が大きい場合
には、膜厚分布の不均一がより大きくなって好ましくな
い。
Therefore, a thick film is deposited on the peripheral portions on both sides of the substrate d in the moving direction f, resulting in an inconvenience that the film thickness distribution of the substrate d becomes non-uniform. In particular, when the decomposability of the raw material gas is high, the non-uniformity of the film thickness distribution increases, which is undesirable.

本発明は、上記の不都合を解決して、移動する基板の成
膜面に均一な膜厚分布で成膜できるプラズマCVD装置
を提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a plasma CVD apparatus that can solve the above-mentioned disadvantages and form a film with a uniform thickness distribution on a film-forming surface of a moving substrate.

(課題を解決するための手段) 本発明では、上記目的を達成するため、真空室内に、互
いに対向し且つ相対的に移動する基板と放電電極とを設
け、該放電電極の表面に該表面から出て再び該表面に戻
る磁力線を磁石により形成し、該基板と放電電極間に供
給された分解性の原料ガスを該放電電極の表面の磁力線
で拘束したプラズマにより分解して該基板上に薄膜状に
堆積させるプラズマCVD装置に於て、該放電電極の表
面に形成される磁力線の成分が、相対的な基板の移動方
向を含み基板と直交する面内の成分のみで形成されるよ
うに該磁石を配置するようにした。
(Means for Solving the Problems) In the present invention, in order to achieve the above object, a substrate and a discharge electrode that face each other and move relatively are provided in a vacuum chamber, and the surface of the discharge electrode is Lines of magnetic force that exit and return to the surface are formed by a magnet, and the decomposable raw material gas supplied between the substrate and the discharge electrode is decomposed by the plasma restrained by the lines of magnetic force on the surface of the discharge electrode, forming a thin film on the substrate. In a plasma CVD apparatus that deposits the discharge electrode in the form of I started placing magnets.

この場合、好ましくは、磁石により表面に磁力線が形成
された放電電極を固定し、その表面に沿って基板を回転
或いは直線的に移動させ、その移動軸線を含み基板と直
交する面内の成分のみを有する磁力線を該表面に発生す
るように該磁石が設けられ、また、前記磁石により放電
電極の表面に形成される磁力線が、互いに逆方向で同数
の磁力線となるように該磁石が配置される。
In this case, preferably, a discharge electrode with magnetic lines of force formed on its surface is fixed by a magnet, and the substrate is rotated or linearly moved along the surface of the discharge electrode, and only components in a plane that includes the movement axis and perpendicular to the substrate are fixed. The magnet is provided so as to generate lines of magnetic force on the surface thereof, and the magnet is arranged so that the lines of magnetic force formed by the magnet on the surface of the discharge electrode are the same number of lines of force in opposite directions. .

(作 用) 真空室内に、磁石により表面に磁力線が形成された放電
電極と、基板とを互いに対向して設け、該真空室内に分
解性のある原料ガスを導入し、該放電電極に通電してプ
ラズマを発生させると、プラズマが該磁力線に拘束され
て高密度のプラズマとなり、原料ガスが高密度プラズマ
により分解され、これにより発生する活性種が膜状に基
板面に堆積する。こうした作用は従来のプラズマCVD
装置の場合と同様であるが、本発明の装置では、該基板
が、表面に磁力線を有する放電電極に対して相対的に移
動する場合に生じる膜厚分布の不均一を解消するために
、該磁力線を発生させる磁石が基板の移動方向を含み基
板と直交する面内の成分のみの磁力線を発生ずるように
配置されており、その移動方向を含まない成分の磁力線
が存在しないので、基板の該移動方向に対しての左右の
周辺部にも他の部分と同様の厚さの膜を形成することが
できる。
(Function) A discharge electrode with magnetic lines of force formed on its surface by a magnet and a substrate are provided in a vacuum chamber to face each other, a decomposable raw material gas is introduced into the vacuum chamber, and electricity is applied to the discharge electrode. When plasma is generated, the plasma is restrained by the magnetic lines of force and becomes a high-density plasma, the raw material gas is decomposed by the high-density plasma, and the active species generated thereby are deposited in a film on the substrate surface. This effect is similar to that of conventional plasma CVD.
As in the case of the device, in the device of the present invention, in order to eliminate the non-uniformity of the film thickness distribution that occurs when the substrate moves relative to the discharge electrode having magnetic lines of force on the surface, The magnets that generate lines of magnetic force are arranged so as to generate lines of magnetic force only in a plane that includes the direction of movement of the substrate and is orthogonal to the substrate, and there are no lines of magnetic force that do not include the direction of movement of the substrate. A film having the same thickness as the other portions can also be formed on the left and right peripheral portions with respect to the moving direction.

(実施例) 本発明の実施例を図面第1図乃至第3図に基づき説明す
ると、これらの図面において、符号(1)は適当な真空
排気手段により真空化された真空室(2)内に設けられ
た放電電極を示し、該放電電極(1)の表面にはその背
後に設けた磁石(3)によって磁力線(4)が形成され
る。(5)はプラズマCVDにより成膜が施される基板
で、該基板(5)は搬送トレイ(]0)に取り(=1け
られ、放電電極(1)の表面に沿って矢印(6)の方向
に移動される。
(Embodiment) An embodiment of the present invention will be explained based on drawings 1 to 3. In these drawings, reference numeral (1) indicates a vacuum chamber (2) evacuated by an appropriate evacuation means. A discharging electrode is shown, and lines of magnetic force (4) are formed on the surface of the discharging electrode (1) by a magnet (3) disposed behind it. (5) is a substrate on which a film is to be formed by plasma CVD, and the substrate (5) is taken on a transport tray (]0) and marked with an arrow (6) along the surface of the discharge electrode (1). is moved in the direction of

該真空室(2)内に、原料ガスとして炭化水素系の例え
ばエチレンガスの原料ガスを導入し、該原料ガスが、放
電電極(1)の表面の磁力線(4)で拘束することによ
り発生する高密度プラズマで分解されると、その分解で
発生した活性種が該基板(5)に堆積して硬質炭素膜が
形成される。該基板(5)への活性種の堆積は、該基板
(5)が放電電極(1)の表面を通過して移動するとき
に行われるが、該放電電極(1)の表面には基板(5)
の矢印(6)の移動方向を含み基板(5〉と直交する面
内の成分のみを有する磁力線(4)(4)が発生するよ
うに磁石(3)が線対称に配置され、その表面では矢印
(7) (7)で示すように電子がドリフトし、基板(
5)の移動方向に向かって左右に均一な高密度プラズマ
が形成されるので、基板(5)の表面に堆積する膜の厚
さもその移動方向に向かって左右の周辺部がその中央部
よりも厚くなることがない。
A hydrocarbon-based raw material gas, such as ethylene gas, is introduced into the vacuum chamber (2) as a raw material gas, and the raw material gas is generated by being restrained by magnetic lines of force (4) on the surface of the discharge electrode (1). When decomposed by high-density plasma, active species generated by the decomposition are deposited on the substrate (5) to form a hard carbon film. Deposition of active species on the substrate (5) takes place when the substrate (5) moves past the surface of the discharge electrode (1); 5)
The magnets (3) are arranged line-symmetrically so that lines of magnetic force (4) (4) having only components in the plane perpendicular to the substrate (5〉) including the movement direction of the arrow (6) are generated, and on its surface, As shown by the arrow (7) (7), the electrons drift and the substrate (
Since uniform high-density plasma is formed left and right in the direction of movement of the substrate (5), the thickness of the film deposited on the surface of the substrate (5) is also greater in the left and right peripheral areas than in the center in the direction of movement. It never gets thick.

該磁石(3)は、3本の棒状の磁石(3a) (3b)
(3c)を互いに平行で極性が交互になるように放電電
極(1)の背面に取り付けて構成した。
The magnet (3) is three bar-shaped magnets (3a) (3b)
(3c) were attached to the back surface of the discharge electrode (1) so that they were parallel to each other and had alternating polarities.

また、第4図及び第5図に示した本発明の第2実施例は
、回転するドラム状の基板(5)に成膜を施す場合の実
施例であり、この例では、真空室(2)内に回転自在に
設けたドラム状の基板(5)の周囲を円筒状の放電電極
(1)で囲み、該放電電極(1)の表面に基板(5)の
回転移動方向(6)を含み基板(5)と直交する成分の
みを有する磁力線(4) (4)が発生するように、該
放電電極(1)の外側に磁石(3)が設けられる。該磁
石(3)を、極性の異なる長い2個の磁石(3d)(3
e)を1組とし、その2組を各組の極性か線対称になる
ように設置することにより構成し、一方の組と他方の組
では矢印(8) (8)で示すように互いに逆方向の電
子のドリフトが得られるようにした。
The second embodiment of the present invention shown in FIGS. 4 and 5 is an embodiment in which a film is formed on a rotating drum-shaped substrate (5), and in this example, a vacuum chamber (2 ) A cylindrical discharge electrode (1) surrounds a drum-shaped substrate (5) provided rotatably in A magnet (3) is provided outside the discharge electrode (1) so that lines of magnetic force (4) (4) having only components orthogonal to the containing substrate (5) are generated. The magnet (3) is connected to two long magnets (3d) (3) with different polarities.
e) as one set, and the two sets are installed so that the polarity of each set is line symmetrical, and one set and the other set are opposite to each other as shown by arrows (8) (8). The directional drift of electrons can now be obtained.

この第2実施例も放電電極(1)の磁力線(4)(4)
で拘束されて発生する高密度のプラズマで原料ガスを分
解し、その分解で発生する活性種を基板(5)に堆積さ
せて膜の形成が行われ、その磁力線(4) (4)の成
分は基板(5)の移動方向の軸線を含み基板(5)と直
交する面内にのみ存在し、従って基板(5)の表面近傍
には第5図で上下方向に−様な磁場が発生ずるようにな
り、さらに、磁場の影響で一方向ドリフトしていく電子
については、互いに逆方向の磁力線(4)(4)により
逆方向にドリフトしていく電子によって補償され、電子
密度の分布が第5図の上下方向で均一になるので、ドラ
ム状の基板(5)に均一に膜を堆積させることができる
。第5図の(9)は、基板(5)の上下両端に取り付け
たドラム状のダミーである。
This second embodiment also has magnetic field lines (4) (4) of the discharge electrode (1).
A film is formed by decomposing the raw material gas with high-density plasma generated by being constrained by the decomposition, and depositing the active species generated by the decomposition on the substrate (5), and the components of the magnetic field lines (4) (4) exists only in a plane that includes the axis in the direction of movement of the substrate (5) and is perpendicular to the substrate (5), so a --like magnetic field is generated in the vertical direction in Fig. 5 near the surface of the substrate (5). Furthermore, electrons that drift in one direction due to the influence of the magnetic field are compensated for by electrons that drift in the opposite direction due to magnetic field lines (4) (4) in opposite directions, and the electron density distribution changes to Since the film is uniform in the vertical direction in FIG. 5, the film can be deposited uniformly on the drum-shaped substrate (5). (9) in FIG. 5 is a drum-shaped dummy attached to both the upper and lower ends of the board (5).

この第2実施例の装置を使用して、エチレンプラズマに
よりドラム状の基板(5)に硬質炭素膜を成膜したとき
の基板(5)の上下方向の膜厚分布(成膜速度)の偏り
を調べたところ、第6図の曲線Aで示したように、その
偏りはわずかで全体的に略均−になった。これと比較の
ために、第7図示のようなループ状磁石を使用して成膜
したものは、曲線Bで示すようにドラム状の基板の上端
及び下端に厚い膜が形成された。
When a hard carbon film is formed on a drum-shaped substrate (5) by ethylene plasma using the apparatus of this second embodiment, there is a deviation in the film thickness distribution (film formation rate) in the vertical direction of the substrate (5). When investigated, as shown by curve A in FIG. 6, the deviation was slight and the overall distribution was approximately equal. For comparison, when a film was formed using a loop magnet as shown in FIG. 7, a thick film was formed on the upper and lower ends of the drum-shaped substrate, as shown by curve B.

また、第2実施例の装置の2組の磁石(3) (3)の
うち、1組を除去して成膜したところ、曲線Cで示すよ
うに基板の一端側で膜厚分布が偏る傾向が見られた。
Furthermore, when a film was formed by removing one of the two sets of magnets (3) (3) in the apparatus of the second embodiment, the film thickness distribution tended to be biased toward one end of the substrate, as shown by curve C. It was observed.

本発明の装置で原料ガスとしてシランガスを使用し、基
板にアモルファスシリコンを成膜することも出来、この
場合は、実験の結果からは、1組の磁石であってもかな
り良い膜厚の均一性が得られた。尚、磁石(3)は永久
磁石、電磁石のいずれでも良く、必要ならば基板を固定
し放電電極を移動させるようにしてもよい。
It is also possible to use silane gas as a raw material gas in the apparatus of the present invention to form a film of amorphous silicon on a substrate. was gotten. The magnet (3) may be either a permanent magnet or an electromagnet, and if necessary, the substrate may be fixed and the discharge electrode may be moved.

(発明の効果) 以上のように、本発明によるときは、プラズマCVD装
置のマグネトロン放電電極の表面に形成される磁力線の
成分が、相対的な基板の移動方向を含み該基板と直交す
る成分のみで形成されるように磁石を配置したので、極
めて膜厚均一性の良い成膜がマグネトロンプラズマCV
Dにより行える等の効果がある。
(Effects of the Invention) As described above, according to the present invention, the components of the magnetic lines of force formed on the surface of the magnetron discharge electrode of the plasma CVD apparatus include only the components perpendicular to the substrate, including the direction of relative movement of the substrate. Since the magnets are arranged so that the film is formed using magnetron plasma CV, the film can be formed with extremely good film thickness uniformity.
It has the advantage that it can be done by D.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の裁断側面図、第2図は第1図
の要部の平面図、第3図は第1図の裁断側面図、第4図
は本発明の第2実施例の裁断平面図、第5図は第4図の
v−v線に沿った載断面図、第6図は成膜速度の特性図
、第7図乃至第9図は従来例の説明図で、第7図は裁断
側面図、第8図は第7図の要部の平面図、第9図は第7
図の裁断側面図である。 (1)・・・放電電極 1 (3)・・・磁  石 (4)・・・磁力線 (5)・・・基  板 ]
Fig. 1 is a cut side view of an embodiment of the present invention, Fig. 2 is a plan view of the main part of Fig. 1, Fig. 3 is a cut side view of Fig. 1, and Fig. 4 is a second embodiment of the present invention. FIG. 5 is a cutaway plan view of the example, FIG. 5 is a cross-sectional view along the v-v line in FIG. , Fig. 7 is a cut side view, Fig. 8 is a plan view of the main part of Fig. 7, and Fig. 9 is a cutaway side view of Fig. 7.
FIG. (1)...Discharge electrode 1 (3)...Magnet (4)...Magnetic field lines (5)...Substrate]

Claims (4)

【特許請求の範囲】[Claims] 1.真空室内に、互いに対向し且つ相対的に移動する基
板と放電電極とを設け、該放電電極の表面に該表面から
出て再び該表面に戻る磁力線を磁石により形成し、該基
板と放電電極間に供給された分解性の原料ガスを該放電
電極の表面の磁力線で拘束したプラズマにより分解して
該基板上に薄膜状に堆積させるプラズマCVD装置に於
て、該放電電極の表面に形成される磁力線の成分が、相
対的な基板の移動方向を含み基板と直交する面内の成分
のみで形成されるように該磁石を配置したことを特徴と
するプラズマCVD装置。
1. A substrate and a discharge electrode that face each other and move relatively are provided in a vacuum chamber, and lines of magnetic force are formed on the surface of the discharge electrode by a magnet that exit from the surface and return to the surface again. In a plasma CVD device, a decomposable raw material gas supplied to the discharge electrode is decomposed by plasma restrained by magnetic lines of force on the surface of the discharge electrode, and is deposited in a thin film on the substrate. A plasma CVD apparatus characterized in that the magnets are arranged so that the components of the magnetic lines of force are formed only in a plane that includes the direction of relative movement of the substrates and is orthogonal to the substrates.
2.磁石により表面に磁力線が形成された放電電極を固
定し、その表面に沿って基板を回転或いは直線的に移動
させ、その移動軸線を含み基板と直交する面内の成分の
みを有する磁力線を該表面に発生するように該磁石を設
けたことを特徴とする請求項1に記載のプラズマCVD
装置。
2. A discharge electrode with lines of magnetic force formed on its surface is fixed by a magnet, and a substrate is rotated or linearly moved along the surface of the discharge electrode, and lines of magnetic force having only a component in a plane that includes the axis of movement and perpendicular to the substrate are formed on the surface. The plasma CVD according to claim 1, wherein the magnet is provided so that the plasma CVD
Device.
3.前記磁石により放電電極の表面に形成される磁力線
が、互いに逆方向で同数の磁力線となるように該磁石を
配置したことを特徴とする請求項1又は2に記載のプラ
ズマCVD装置。
3. 3. The plasma CVD apparatus according to claim 1, wherein the magnets are arranged so that the lines of magnetic force formed by the magnets on the surface of the discharge electrode are the same in number and in opposite directions.
4.原料ガスとして炭化水素系気体を含む請求項1、2
、又は3に記載のプラズマCVD装置。
4. Claims 1 and 2 containing a hydrocarbon gas as the raw material gas.
, or the plasma CVD apparatus according to 3.
JP4131990A 1990-02-23 1990-02-23 Plasma CVD equipment Expired - Fee Related JP2821932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4131990A JP2821932B2 (en) 1990-02-23 1990-02-23 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4131990A JP2821932B2 (en) 1990-02-23 1990-02-23 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH03247770A true JPH03247770A (en) 1991-11-05
JP2821932B2 JP2821932B2 (en) 1998-11-05

Family

ID=12605197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4131990A Expired - Fee Related JP2821932B2 (en) 1990-02-23 1990-02-23 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JP2821932B2 (en)

Also Published As

Publication number Publication date
JP2821932B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
US6468387B1 (en) Apparatus for generating a plasma from an electromagnetic field having a lissajous pattern
US8597479B2 (en) Sputtering system
JP2942899B2 (en) Electrode device for plasma CVD equipment
JP2780419B2 (en) Impurity introduction device and its introduction method
JPH03247770A (en) Plasma cvd system
JPH10176262A (en) Vapor deposition device
US5178738A (en) Ion-beam sputtering apparatus and method for operating the same
KR20190058269A (en) Sputtering apparatus
JPH04221061A (en) Thin film forming device
JPH03245523A (en) Manufacture of quantum well structure
WO1998005057A1 (en) Magnetron
KR20220158064A (en) Apparatus for moving a substrate, deposition apparatus and processing system
JPS62170475A (en) Plasma treatment device
JPS6217175A (en) Sputtering device
JP2934465B2 (en) Plasma CVD equipment
WO2024143399A1 (en) Film formation device
JP2934466B2 (en) Plasma CVD equipment
JPS62174375A (en) Thin film deposition device
JPH06158311A (en) Sputtering device
JPS63262459A (en) Sputtering device
JPH09125240A (en) Sputtering device
JPS59190364A (en) Sputtering device
JP2690909B2 (en) Magnetron sputtering apparatus and film forming method using the apparatus
KR20240019019A (en) Deposition apparatus and deposition method
JPH042773A (en) High speed film forming sputtering apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees