JPH03245908A - Twist drill and manufacture thereof - Google Patents

Twist drill and manufacture thereof

Info

Publication number
JPH03245908A
JPH03245908A JP3931790A JP3931790A JPH03245908A JP H03245908 A JPH03245908 A JP H03245908A JP 3931790 A JP3931790 A JP 3931790A JP 3931790 A JP3931790 A JP 3931790A JP H03245908 A JPH03245908 A JP H03245908A
Authority
JP
Japan
Prior art keywords
drill
angle
groove
tip
twist drill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3931790A
Other languages
Japanese (ja)
Other versions
JP2879238B2 (en
Inventor
Kunio Arai
邦夫 荒井
Yasuhiko Kanetani
保彦 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP2039317A priority Critical patent/JP2879238B2/en
Publication of JPH03245908A publication Critical patent/JPH03245908A/en
Application granted granted Critical
Publication of JP2879238B2 publication Critical patent/JP2879238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching

Landscapes

  • Drilling Tools (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To improve the reliability for a step worked hole by setting the optimum cut-in quantity in the initial time to 4-6 times of the twist drill diameter, 2-3 times in the second cut-in quantity, and 1.5-3 times in the third cut-in quantity and the succeeding, and making the core thickness small on the top edge side and large on the root side, and determining the shape of the twist drill top edge. CONSTITUTION:As for a twist drill 3 for printed circuit board which carries out drilling, removing chips by blowing air at a high speed to the twist drill, the core thickness is made small on the top edge side and made large on the root side. The core thickness at the top edge is 10-25% of the twist drill diameter, groove width ratio is 1.2-2.2, top edge angle is 118-135 deg., cutter second angle is 15-20 deg., third angle is 25-30 deg., and a twist angle is 20-35 deg., and the groove sectional area at the taper end is 20% or less of the body sectional area, and a part free from groove is formed between the groove terminal edge and the body terminal edge, and the body length is set at a substrate plate thickness +. The twist drill diameter is 0.3-0.5mm, body length is 6.4-7.1mm, top edge side twist angle is 24-35 deg., and 20-24 deg. at the groove terminal edge part of the root. The initial cut-in quantity is made about five times of the twist drill diameter, about 2.5 times in the second cut-in quantity, and about two times in the third cut-in quantity. Accordingly, the twist drill free from breakage and having the superior hole position and quality can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は基板の穴明に用いる高アスペクト用ステップ加
工に最適なドリル及びその製造方法に間する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a drill that is most suitable for high aspect step machining used for drilling holes in substrates, and a method for manufacturing the same.

[従来の技術] 従来の基板の穴明装置の穴明部は第11図に示すように
高速で回転するスピンドル10でドリル3を把持し、前
記ドリル3の周辺をバッド21で押えて穴明していた。
[Prior Art] As shown in FIG. 11, the drilling section of a conventional substrate drilling device grips a drill 3 with a spindle 10 that rotates at high speed, and presses the periphery of the drill 3 with a pad 21 to drill the hole. Was.

そして前記バッド21の先端面には放射状に溝23を形
成し、かつバッド21を集塵用バキュームHHC図示せ
ず)で低圧化して外部との圧力差により前述の溝から外
気を流入させて外気の液入による気流によって、穴明に
よって生じた切粉を集塵していた。しかし、バキューム
方式では前述の外部との圧力差は最大でも1気圧であり
、必ずしも集塵に必要な′Jl遼が得られず、特にドリ
ル3の溝に硬く詰った切粉は除去されない。このため加
工された穴の内!面の絹ざが大きくなりスミアが発生し
穴内面の品質が低下した。
Grooves 23 are formed radially on the tip surface of the pad 21, and the pressure of the pad 21 is lowered by a dust collecting vacuum (HHC (not shown)) to allow outside air to flow in through the grooves due to the pressure difference with the outside. The airflow generated by the liquid was used to collect chips generated during drilling. However, in the vacuum method, the pressure difference with the outside is 1 atm at maximum, and the pressure required for dust collection cannot necessarily be obtained, and in particular, the chips that are hard in the groove of the drill 3 cannot be removed. Inside the hole machined for this purpose! The surface wrinkles became large, smear occurred, and the quality of the inner surface of the hole deteriorated.

第15図に示すエアジェツト方法は前述したドリル3の
溝の切粉残りの解消を目的に考案されたものでバッド2
1?こ高圧のエアを導いてバッド21内部に吹き出させ
ることによりドリル3に当るエアの流通を高め強制的に
ドリル3を冷却しながら溝に硬く詰った切粉を確実に除
去する。同時に穴明部から排出される切粉をもスムーズ
に除去するようにしたものである。
The air jet method shown in FIG.
1? By guiding this high-pressure air and blowing it out inside the pad 21, the circulation of the air hitting the drill 3 is increased, and while the drill 3 is forcibly cooled, the chips hardened in the groove are reliably removed. At the same time, chips discharged from the hole are also smoothly removed.

一般に穴明加工において、切粉(よアスペクト比が8以
上になるとドリル溝から排出されにくくなる。そして、
切粉の流れが悪くなると、切粉がドリルの溝内にたまり
、ざらにドリル先端で発生する切粉が押し込まれること
により、溝内で硬く詰る。すると、加工された穴の内面
と切粉が接触し、第18図に示すように、負荷の増加値
1でへ内壁絹ざが大きくなりスミアの発生も多くなった
Generally, during drilling, chips (if the aspect ratio is 8 or more, it becomes difficult to discharge from the drill groove.
When the flow of chips becomes poor, the chips accumulate in the groove of the drill, and the chips generated at the tip of the drill are pushed in and become hard and clogged in the groove. Then, the chips came into contact with the inner surface of the machined hole, and as shown in FIG. 18, when the load was increased by 1, the inner wall creases became larger and smear occurred more frequently.

また切粉詰つによってドリルのスラスト賃荀が増加しド
リルが穴の連山で曲げられ、基板の裏側の穴位置精度が
悪くなったつ、座屈してドリル折れを起すことがあった
In addition, the thrust force of the drill increases due to chip clogging, causing the drill to bend due to a series of holes, resulting in poor hole positioning accuracy on the back side of the board, which may cause buckling and breakage of the drill.

罵14図に示すステップ加工方法はこれら切粉詰りの解
、肖を目的fこしたもので、1つの穴を切粉詰つを起さ
ない切込量で連続的に何回かに分けて穴明し、毎回ドリ
ル溝に詰った切粉をスムーズに除去しながら穴明てきる
ようlこ工夫してる。
The step machining method shown in Fig. 14 is aimed at solving these chip clogging problems, and involves continuously dividing one hole into several steps at a depth of cut that does not cause chip clogging. Every time I drill a hole, I try to remove the chips that are stuck in the drill groove smoothly.

罵19図〜第21図は従来の穴明機に使用されていた高
アスペクト用ドリルで次のような形状をしていた。
Figures 19 to 21 show high aspect drills used in conventional drilling machines, which had the following shapes.

例えば、直径0.4msのドリルでは芯厚をドリル径の
約15%、溝巾比を約2.0.芯厚テーパを1.5〜2
.0/+00.ねじれ角を30635°、材質に30の
ような仕様で形成されていたが、その長さは一定jこ形
成されているため、ボディ畏、フルート畏は基板の板厚
に対して畏すぎたつまた短すぎたつした。また、切粉詰
まりを起ざないように罵21図のように外周に逃げを0
゜05Ilv(通常の2倍)とったものがあった。この
ため、ドリルの強度が低下してドリル折れが多くなった
り、穴位1精度、穴品質を低下させることがあった。
For example, for a drill with a diameter of 0.4 ms, the core thickness is approximately 15% of the drill diameter and the groove width ratio is approximately 2.0. Core thickness taper 1.5-2
.. 0/+00. It was formed with a helix angle of 30,635 degrees and a material of 30, but because the length was constant, the body and flute were too thick for the thickness of the board. It was too short. Also, in order to prevent chip clogging, there is no relief on the outer periphery as shown in Figure 21.
There was one that took ゜05Ilv (twice the normal amount). For this reason, the strength of the drill may be reduced, resulting in more drill breakage, and the hole position accuracy and hole quality may be reduced.

このようなドリルをステップ加工に使用した場合、トリ
ル断面2次モーメントの分布が罵19図のモデル図のよ
うに先#側と根本側とで差が少ないため、穴明機のテー
ブル位置決め債の残留撮動、スピンドルの振れ、ドリル
ポイント他の製作誤差、当板及び基板表面の凹凸、基板
のガラス繊維束の切削抵抗、またドリル溝が切粉詰り状
態て回転した場合の遠心力等によるラジアル方法荷重が
矢印方向にかかった場合、8部で図のようにまげられる
。そして、ドリル先端のたわみy、ζより部の最小断面
2次モーメントの大きざ及びB部の数に反比例する。つ
まり、同一長さのドリルではB部の最小断面2次モーメ
ントが小さいほど、またBa1lの数が多いほどたわみ
y、は大きくなる。そして、y、が弾性限界を超えた場
合、永久歪が起り、ドリルが根本て曲った。このため、
このようなドリルで板厚0.7mmの基板を3枚重ねて
加工した場合、基板表面の穴位置精度が悪くなるだけで
なく3枚目の穴位置ずれが大きくなるために、穴が導体
ランドからはみ出して2l通不良の原因になった。
When such a drill is used for step machining, there is little difference in the distribution of the second moment of inertia of the drill cross section between the tip # side and the root side, as shown in the model diagram in Figure 19. Radial damage due to residual imaging, spindle runout, manufacturing errors in drill points, etc., unevenness on the surface of the contact plate and substrate, cutting resistance of the glass fiber bundle on the substrate, and centrifugal force when rotating with the drill groove clogged with chips. When a load is applied in the direction of the arrow, 8 parts are bent as shown in the figure. The deflection y of the tip of the drill is inversely proportional to the size of the minimum moment of inertia of the ζ twist portion and the number of B portions. In other words, for drills of the same length, the smaller the minimum moment of inertia of section B and the larger the number of Ba1l, the larger the deflection y. When y exceeds the elastic limit, permanent deformation occurs and the drill is fundamentally bent. For this reason,
When machining three boards with a thickness of 0.7 mm using a drill like this, not only does the hole position accuracy on the board surface deteriorate, but also the positional deviation of the third hole becomes large, causing the holes to overlap conductor lands. It protruded from the wall and caused a 2L failure.

また、最初の切込工程であけた穴の入口が2度目以降の
切込工程できずつ1すられるなどのIl!I1Mがあり
実用化できなかった。
In addition, the entrance of the hole drilled in the first cutting process may be closed by 1 in the second and subsequent cutting processes. Due to I1M, it could not be put into practical use.

第7図り、巳は前述のドリルのドリル先端の曲げ負荷と
たわみとの関係を示す。
Figure 7 shows the relationship between bending load and deflection of the tip of the drill described above.

蒐8図り、Eは同上ドリルで基板を3枚重ねで穴明した
場合の3枚目の穴位置精度を示す。
Figure 8 shows the hole position accuracy for the third board when holes are drilled in three boards stacked with the same drill as above.

さらに、ドリルの強度マージンが小さいため、厚い内層
Cu箔を加工する最に切込量及び切込速度を増やすとド
リルが折れ易く、また、前述のようにドリルが曲げられ
た状態で回転した場合、ドリルの外周と穴壁面との間で
!11撞力が生じ、ドリルが途中で撚り破壊し易いだけ
でなく、穴の内壁粗さが大きくなり、加工部の温度が上
るため内層Cu箔上にスミアが発生するなど人品質向上
の問題があった。
Furthermore, since the strength margin of the drill is small, if the depth of cut and cutting speed are increased when processing a thick inner layer Cu foil, the drill is likely to break, and as mentioned above, if the drill is rotated in a bent state, , between the drill periphery and the hole wall! 11 Twisting force is generated, which not only makes it easy for the drill to twist and break in the middle, but also increases the roughness of the inner wall of the hole and increases the temperature of the machined part, causing problems in improving the quality of work, such as smearing on the inner layer Cu foil. there were.

[発明が解決しようとする課題] 従来の小径高アスペクト穴加工用のドリルは前述のよう
なドリル形状とドリル折れ、穴位置精度、穴品質及び加
工速度などとの要因について殆ど配慮されていなかった
ため、穴明の信頼性が低く、加工品の歩留りが悪く、か
つ主産牲が悪いなどの問題があ−)た。
[Problem to be solved by the invention] Conventional drills for drilling small-diameter, high-aspect holes have had little consideration given to the aforementioned factors such as drill shape, drill breakage, hole position accuracy, hole quality, and processing speed. There were problems such as low reliability of hole drilling, poor yield of processed products, and poor main productivity.

本発明の目的はドリルの形状を最適化し前記問題点を解
決することにある。
An object of the present invention is to optimize the shape of a drill to solve the above-mentioned problems.

[課題を解決するための手段] 前記目的を解決するために、ステップ加工でのドリルの
先端形状と途中の溝形状を最適化した。
[Means for solving the problem] In order to solve the above object, the shape of the tip of the drill and the shape of the groove in the middle of the step machining were optimized.

[作 用] 最初の最適切込量をドリル径りの4〜6倍、2番目の最
適切込量を2〜3倍、31目以降の最適切込量を1.5
〜3倍に決めてから、ドリルの芯厚、溝ロ比、先端角、
切刃28角、3醤角、溝ねじれ角からドリルの先端形状
を決め、溝断面積から途中及び終端の芯厚を決めた。
[Effect] The first optimum depth is 4 to 6 times the drill diameter, the second optimum depth is 2 to 3 times, and the optimum depth after 31st is 1.5.
After deciding on ~3 times, the core thickness of the drill, groove ratio, tip angle,
The tip shape of the drill was determined from the 28-square cutting edge, the 3-edge angle, and the groove helix angle, and the core thickness at the middle and end was determined from the groove cross-sectional area.

そして、ドリルの芯厚を先端側て小ざく、根本側で大き
くして、ドリル先端のたわみy、をできるだけ小さくし
た。
The core thickness of the drill was made smaller on the tip side and larger on the base side to minimize the deflection y at the tip of the drill.

また、前述のドリルに最適な外周逃げ及びボディ長を決
め前述の効果を一層高めた。
In addition, we determined the optimal outer circumference relief and body length for the aforementioned drill, further enhancing the aforementioned effects.

これにより3枚重ねの基板をステップ加工て加工した場
合の3枚目の穴位置精度を向上し、穴の導体ランドから
の喰出しをなくした。また、ドリル折れをなくした。さ
らに、穴入口の傷の発生。
This improves the accuracy of the hole position on the third board when three boards are stacked in steps and eliminates the hole protrusion from the conductor land. It also eliminates drill breakage. Furthermore, the occurrence of scratches at the hole entrance.

穴内壁粗さ及び内層Cu箔上のスミアの発生などを解決
して3枚重ね加工を実現した。
We solved problems such as the roughness of the inner wall of the hole and the occurrence of smear on the inner layer Cu foil, and realized three-layer processing.

[実施例] 以下本発明の1実施例について説明する。[Example] One embodiment of the present invention will be described below.

第13図は、本発明のドリルを通用する装置の1例を示
すもので、同図において101は穴明装厘のベツド、1
02はテーブルでベツド10】に矢印X方向に移動可能
に支持されている。
FIG. 13 shows an example of a device that can be used with the drill of the present invention.
A table 02 is supported on the bed 10 so as to be movable in the direction of the arrow X.

103はコラムヘッド101にテーブル102をまたぐ
ように固定されている。104はスピンドルキャリジで
コラム103に矢印Y方向に移動可能に支持されている
。+05は加工ヘッドでスピンドルキャリジ104に矢
印2方向に移動可能に支持されており、ドリル+08を
把持してテーブル+02上のプリント基板+09’!!
加工するスピンドル+08が固定されている。
103 is fixed to the column head 101 so as to straddle the table 102. A spindle carriage 104 is supported by the column 103 so as to be movable in the direction of arrow Y. +05 is a processing head supported by the spindle carriage 104 so as to be movable in the two directions of the arrows, and grips the drill +08 to cut the printed circuit board +09'! on the table +02. !
The processing spindle +08 is fixed.

107は加工ヘッド105に2方向に移動可能に支持さ
れたプレッシャフットである。
A pressure foot 107 is supported by the processing head 105 so as to be movable in two directions.

穴明工程では先ずテーブル1o2.スピンドルキャリジ
104が移動してスピンドル106のドリル108がプ
リント基板109に対して位1決めされると、加工ヘッ
ド105が加工してプレッシャフット107がプリント
基板109を押える。以(k第14図に示すステップ加
工工程図に従って最初の切込量11M、まで穴明される
。次に工程■でドリルが穴の外に9だ(丈引き出され切
粉がふり払われた後改めて2番目の切込位置M、まて穴
明され、以債切込位WBを経て■で一工程が終了する。
In the drilling process, first the table 1o2. When the spindle carriage 104 moves and the drill 108 of the spindle 106 is positioned with respect to the printed circuit board 109, the processing head 105 processes and the pressure foot 107 presses the printed circuit board 109. According to the step machining process diagram shown in Figure 14, the hole is drilled to the initial depth of cut of 11M.Next, in step 2, the drill is pulled out to the outside of the hole (the length is pulled out and the chips are shaken off). After that, the hole is drilled again at the second cutting position M, and after passing through the second cutting position WB, one process is completed at ■.

第15図はエアジェツト方式の7レシヤフツト16によ
る切粉の排出状況を示す。高圧のエアをトリル3の回転
方向CWと反対方向から吹きつけトリル溝に沿った高速
の空気の流れによって第16区に示すように穴明中の切
粉の排出効果を高め、かつ!16図に示すようにドリル
3が穴から引き出された場合ドリル溝に詰った切粉を確
実に除去する9カ果がある。
FIG. 15 shows the state of discharge of chips by the air jet type 7-reshaft 16. High-pressure air is blown from the direction opposite to the rotating direction CW of the trill 3, and the high-speed air flow along the trill groove enhances the effect of discharging chips during drilling, as shown in section 16, and! As shown in Fig. 16, there are nine ways to reliably remove chips stuck in the drill groove when the drill 3 is pulled out of the hole.

篤1図〜第40は、本発明の高アスペクト比穴加工用ド
リルの1例の詳細を示す。
Figures 1 to 40 show details of one example of the drill for drilling high aspect ratio holes of the present invention.

即ち、ドリル径が0.4mm、芯厚がドリルi径の15
%、溝巾比が2.0.先端角が1301切刃2番角が2
0°、3番角が30’°、ねじれ角が32°、ボディ長
6.5ms、外周逃げ0゜025m5.材質がに20又
はに10材、ボディエンドから溝許曙部までの間に畏さ
0.25m@の溝のない部分を設け、テーパエンドに相
当する部分の溝断面積がボディ断面積の約20%となる
芯厚テーパとした。
That is, the drill diameter is 0.4 mm, and the core thickness is 15 mm of the drill i diameter.
%, groove width ratio is 2.0. Tip angle is 1301, cutting edge 2nd angle is 2
0°, 3rd angle is 30'°, helix angle is 32°, body length is 6.5ms, circumference clearance is 0°025m5. The material is 20 or 10, and a 0.25m non-grooved part is provided between the body end and the groove end, and the groove cross-sectional area of the part corresponding to the tapered end is approximately 20% of the body cross-sectional area. The core thickness is tapered.

前記ドリルでステップ加工方法で板厚1.61の基板を
3枚重ねて加工する場合、最初の切込量をドリル径Q、
4a+mの約5倍の2mm、2壜目の切込量を約2.5
倍の+fm、3番目以降の切込量を約2倍の0.8av
にすればドリル折れかなく穴位置精度及び人品質の良好
な穴明結果が得られる。
When machining three boards with a thickness of 1.61 in a stack using the step machining method using the drill, the initial depth of cut is set to the drill diameter Q,
2mm, which is about 5 times the size of 4a+m, and the depth of cut for the second bottle is about 2.5
Double +fm, approximately double the depth of cut from the 3rd onward to 0.8av
If you do this, you can obtain hole drilling results with good hole position accuracy and human quality without the drill breaking.

即ち、上記ドリルは第5図のモデル図に示すように芯厚
を先端側で小ざく、根本側に向って急激に増したことに
よって最小断面2次モーメント部Bと最大断面2次モー
メント部Aの強度9合成が増すので矢印方向の力が加わ
ってもたわみy(よ小ざい、また、各切込量を制約した
ことによって途中から溝の断面積が小さくなっても各ス
トロークでの穴明中及びドリルが穴から引き出された場
合の切粉の排出は蒐6図に示すように確実に行われる。
That is, as shown in the model diagram of FIG. 5, the drill has a core thickness that is small at the tip and increases rapidly toward the base, resulting in a minimum area of second moment of area B and a maximum area of second moment of area A. Since the strength 9 resultant increases, even if a force in the direction of the arrow is applied, the deflection y (y) will be small.Also, by restricting each depth of cut, even if the cross-sectional area of the groove becomes smaller from the middle, the hole drilling at each stroke will be smaller. When the drill and the drill are pulled out of the hole, the discharge of chips is ensured as shown in Figure 6.

篤7図Aは前述の本発明のドリルのドリル先端の曲げ負
荷とたわみの間係を示す。
Figure 7A shows the relationship between bending load and deflection of the tip of the drill of the present invention.

篤8図Aは同上ドリルで基板を3枚重ねて穴明した場合
の3枚目の穴位置精度と加工穴数の関係を示す。
Figure A of Atsushi 8 shows the relationship between the hole position accuracy and the number of holes drilled in the third board when holes are drilled in three boards stacked with the same drill as above.

前述の例では、溝形状をストレートの芯厚テーパとして
決めたが、第9図のように複数のテーパを複合したもの
、また、製作時にドリルの回転送り角度及び軸方向送り
に対して円板式のドリルの研削砥石値Mをドリルの細心
に対して y=ax’ +b、Y=ax’ +b のようにフントロールして笥10図のように先端からテ
ーパエンドに相当する位置まで連続的に変化させたもの
である。
In the above example, the groove shape was determined to be a straight taper with a core thickness, but as shown in Figure 9, it may be a combination of multiple tapers, or a disc type groove shape for the rotational feed angle and axial feed of the drill during manufacturing. The grinding wheel value M of the drill is continuously changed from the tip to the position corresponding to the taper end as shown in Figure 10 by rolling the grinding wheel value M of the drill as follows: y = ax' + b, Y = ax' + b This is what I did.

また、溝のねじれ角については、菓11図に示すように
先端の溝角を24″にした場合、同じ畏ざのドリルでも
最小断面2次モーメント部Bの数から5聞所から4箇所
に滅るためのドリルの合成が増加するのでたわみyが小
さくなつ穴位置精度は向上する。しかし円周方向の切削
負匂が増加するためドリルの摩耗がやや早いため両面板
に通している。
Regarding the torsion angle of the groove, if the groove angle at the tip is set to 24'' as shown in Figure 11, even with the same drill, the twist angle will change from 5 points to 4 points based on the number of the minimum cross-sectional moment of inertia part B. Since the amount of the drill to be destroyed increases, the deflection y becomes smaller and the hole position accuracy improves.However, the cutting noise in the circumferential direction increases and the drill wears out rather quickly, so it is passed through a double-sided plate.

藁7図Bは上記ドリルのドリル先端の曲げ負荷とたわみ
の関係を示す。
Figure B shows the relationship between the bending load and deflection of the tip of the drill.

篤8図Bは同上ドリルで基板3枚重ねで穴明した場合の
3枚目の穴位置精度と加工大数の関係を示す。
Figure 8B shows the relationship between the accuracy of the hole position on the third board and the number of holes to be processed when drilling holes in three boards stacked with the same drill as above.

ざらに、M12図は前述の欠点を補うために溝のねじれ
角をドリルの先端側で32°、根本側で20”にしたも
ので製作時に研削砥石の角度とドリルの回転送つ角度に
対してドリルの軸方向送りをy=ax” +bのように
フントロールして連続的に変化させたものである。
Roughly speaking, the M12 diagram has the helix angle of the groove set to 32 degrees on the tip side of the drill and 20" on the base side in order to compensate for the above-mentioned drawbacks. The axial feed of the drill is continuously changed by performing a feed roll as shown in y=ax"+b.

蔦7図Cは上記ドリルのドリル先端の曲げ負荷とたわみ
の間係を示す。
Figure 7C shows the relationship between bending load and deflection of the tip of the drill.

第8図Cは同上ドリルで基板3枚重ねで穴明した場合の
3枚目の穴位置精度と加工大数の関係を示す。
FIG. 8C shows the relationship between the hole position accuracy of the third board and the number of holes to be processed when holes are drilled in three boards stacked with the same drill as above.

穴明中のドリルのスラスト負荷は、先端角とねじれ角(
切刃1番角)による切削分力とチゼル長を直径とする円
面積分のチゼル部押圧力からなる。
The thrust load of the drill during drilling is determined by the tip angle and helix angle (
It consists of the cutting force due to the cutting edge (the first corner) and the pressing force on the chisel part due to the circular area with the chisel length as the diameter.

先端角、切刃2番角、31角を太きくとりすぎチゼル長
がドリル直径の40%近くに達すると、穴明時に、ドリ
ルに加わるスラスト負荷が大きくなる。このため切込速
度を上げると多層板加工の際にドリルが座屈して折れた
り、R11!!熱により内層Cuiと樹脂が剥11Tる
。また、切刃長が短くなるため、加工された穴の内壁が
粗くなったり、スミアの発王が多くなる。
If the tip angle, cutting edge No. 2 angle, and No. 31 angle are made too thick and the chisel length reaches nearly 40% of the drill diameter, the thrust load applied to the drill during drilling will increase. For this reason, if the cutting speed is increased, the drill may buckle and break when machining multilayer plates, or R11! ! The inner layer Cui and the resin peel off 11T due to the heat. In addition, since the cutting edge length becomes short, the inner wall of the machined hole becomes rough and smear occurs more often.

しかし、ラジアル方向の分力が小さくなるため穴付1精
度は改善される傾向にある。
However, since the component force in the radial direction becomes smaller, the accuracy of hole making tends to improve.

一方、これと逆に先端角、切刃、2番角、3番角を小さ
くし過ぎると前述の間!!1よなくなるが、穴位置精度
は悪くなる傾向にある。
On the other hand, if you make the tip angle, cutting edge, 2nd angle, and 3rd angle too small, the result will be between the points mentioned above! ! 1, but the hole position accuracy tends to deteriorate.

従って、ドリル径0.3sm〜0.5msのドリルでの
最適な芯厚はドリル直径の10〜28%、溝巾比は1.
2〜2.5.先端角は118゜140°、切刃2番角が
15@〜20°、3番角が25″″〜30@、ねじれ角
が20@〜35′″が最適である。
Therefore, the optimum core thickness for a drill with a drill diameter of 0.3 sm to 0.5 ms is 10 to 28% of the drill diameter, and the groove width ratio is 1.
2-2.5. The optimal tip angle is 118° to 140°, the second cutting edge angle is 15° to 20°, the third angle is 25″″ to 30°, and the helix angle is 20° to 35″.

[発明の効果] 本発明によれば、ステップ加工とエアジェツト式の切粉
除去機能を備えた穴明機に最適な罵アスペクト比穴加工
用ドリルが実用化できるので、小径の高アスペクト穴加
工の11!頼牲が向上し、穴位置精度の良い、高品質穴
を高能率に得ることができる。
[Effects of the Invention] According to the present invention, it is possible to put into practical use a drill for drilling holes with a poor aspect ratio, which is ideal for a drilling machine equipped with step processing and an air jet type chip removal function, so that it is possible to put into practical use a drill for drilling small-diameter, high-aspect ratio holes. 11! Reliability is improved, and high-quality holes with good hole position accuracy can be obtained with high efficiency.

また、小径化によってプリント基板の配線!!!度(c
hanel/9rid)を従来の°〜2本から3〜5本
に向上でき、かつ、内層数、板厚を大幅(60層、80
+nm)に向上できるので高密度基板の製造が可能にな
る。
Also, the wiring of printed circuit boards can be improved by reducing the diameter! ! ! degree (c
hanel/9rid) from the conventional °~2 to 3~5, and the number of inner layers and board thickness can be significantly increased (60 layers, 80 layers).
+nm), making it possible to manufacture high-density substrates.

このため、大型コンピュータを始めとする電子機器の処
理速度、耐ノイズマージンが大幅に向上し高性能化が可
能となり、かつ、装置の小型化が可能となるなど工業上
極めで有利となるなどの効果がある。
For this reason, the processing speed and noise resistance margin of electronic equipment such as large computers have been greatly improved, making it possible to achieve higher performance, and it has also become possible to miniaturize the equipment, which is extremely advantageous in industrial terms. effective.

【図面の簡単な説明】[Brief explanation of drawings]

罵1図(よ本発明のドリルの正面図、罵2のは罵1図の
底面図、篤3図は本発明のドリルの先端の拡大図、第4
図は第3図の角度を変えた拡大図、第5[F]は本発明
のドリルに負荷がかかったときのたわみを示V特性図、
′M6図はドリルによるステップ加工の工程図、!7図
はドリル先端の曲げ負荷とたわみの間係を示す特性図、
篤8図は穴開二数と穴位置精度の関係を示す特性図、罵
9図。 菓10図はドリルの芯厚の形状を示す説明図、篤11図
は罵5区のねじれ角を小さくした場合のドリルに!荷が
かかったときのたわみを示T#!性図、第12図は第5
図のねじれ角を先端と根本部とを変えた場合のドリルに
負荷がかかったどきのたわみを示T特性図、第13図は
プリント基板穴明機の斜視図、第14図Atよ従来のス
テップ加工方法を示す特性図、第14図Bは従来のステ
ップ加工方法を示す工程図、第15図Aはエアジェツト
方式のプレッシャフトの正面断面図、第15図Bは第1
5図Aの使用状態を示す正面断面口、第1512Cは第
15図Aのパッド部分を示す正面断面図、第15図りは
第15図Aの底面図、禦16図Aは篤15図Bにおける
エアの潰れを示す拡大図、第16図81ct薗15■C
のエアの流れを示す拡大図、第14図A1蔦11図Bは
通常のプレッシャフトの使用状aを示す正面断面図、蔦
11図Cは第11図への状態のときのエアの流れを示す
拡大図、蔦11図りは篤11図Bの状態のときのエアの
流れを示す拡大図、罵18図Aはドリルにかかるスラス
ト方向の荷重と穴の深さとの間係を示す特性図、篤18
図B、篤18図Cは藁18図Aで加工された基板の大表
面を示す断面写真、j*19図は従来のドリルに負荷が
かかったときのたわみを示す特性図、藁2o図は従来の
ドリルの先端の形状を示す拡大図、第21図は従来の他
のドリルの先端の形状を示す拡大図である。 01・・・ベツド  102・・・テーブル03・・・
コラム  104・・・スピンドルキャリジo5・・・
加工ヘッド  106・・・スピンドル07・・・プレ
ッシャフト  108・・・ドリル09・・・プリント
基板 特許8順人  日立精工株式会社
Figure 1 is a front view of the drill of the present invention, Figure 2 is a bottom view of Figure 1, Figure 3 is an enlarged view of the tip of the drill of the present invention, and Figure 4 is a bottom view of the drill of the present invention.
The figure is an enlarged view of Fig. 3 at a different angle, and Fig. 5 [F] is a V characteristic diagram showing the deflection when a load is applied to the drill of the present invention.
'Diagram M6 is a process diagram of step machining using a drill! Figure 7 is a characteristic diagram showing the relationship between bending load and deflection of the drill tip.
Figure 8 is a characteristic diagram showing the relationship between the number of holes drilled and hole position accuracy, Figure 9 is Figure 9. Figure 10 is an explanatory diagram showing the shape of the core thickness of the drill, and Figure 11 is the drill when the helix angle of the 5th section is made smaller! Indicates the deflection when a load is applied T#! Sex chart, figure 12 is the 5th
Figure 13 is a perspective view of a printed circuit board drilling machine, Figure 14 is a conventional Characteristic diagram showing the step machining method, Fig. 14B is a process diagram showing the conventional step machining method, Fig. 15A is a front sectional view of the air jet type preshaft, Fig. 15B is the first
1512C is a front sectional view showing the pad part in FIG. 15A, FIG. 15 is a bottom view of FIG. 15A, and FIG. Enlarged view showing air collapse, Fig. 16 81ct Sono 15■C
Figure 14 A1 is an enlarged view showing the air flow in Figure 14. Figure 11 B is a front cross-sectional view showing the normal pre-shaft usage condition a. Figure 11 C is the air flow in the state shown in Figure 11. The enlarged view shown in Figure 11 is an enlarged view showing the air flow in the state shown in Figure 11B, and Figure 18A is a characteristic diagram showing the relationship between the thrust direction load applied to the drill and the depth of the hole. Atsushi 18
Figure B and Atsushi 18 Figure C are cross-sectional photographs showing the large surface of the substrate processed by Straw 18 Figure A, j * 19 Figure is a characteristic diagram showing the deflection when a load is applied to a conventional drill, and Straw 2o Figure is FIG. 21 is an enlarged view showing the shape of the tip of a conventional drill. FIG. 21 is an enlarged view showing the shape of the tip of another conventional drill. 01...Bed 102...Table 03...
Column 104...Spindle carriage o5...
Processing head 106...Spindle 07...Press shaft 108...Drill 09...Printed circuit board patent 8 Junto Hitachi Seiko Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] (1)高速スピンドルでドリルを把持して高速で回転さ
せながら前記ドリルに高速のエアを吹きつけて加工中の
切粉をとり除きながら穴明するプリント基板穴明加工に
使用するドリルであって、芯厚が先端側で小回く、根本
側で大きいことを特徴とする高アスペクト比穴加工用の
ドリル。
(1) A drill used for drilling holes in printed circuit boards, in which the drill is gripped by a high-speed spindle and rotated at high speed, while blowing high-speed air onto the drill to remove chips during processing. , a drill for drilling high aspect ratio holes, characterized by a core thickness that is small at the tip and thick at the base.
(2)請求項(1)記載のドリルの先端の芯厚がドリル
直径の10〜25%、溝巾比が1.2〜2.2、先端角
が118°〜135°、切刃2番角が15°〜20°、
3番角が25°〜30°、ねじれ角が20°〜35°で
ありテーパエンドに相当する部分の溝断面積がボディ断
面積の20%以下、かつ、溝終端とボディ終端との間に
溝のない部分を設け、ボディ長が基板厚+(1.5mm
〜2.3mm)であることを特徴とするドリル。
(2) The core thickness of the tip of the drill according to claim (1) is 10 to 25% of the drill diameter, the groove width ratio is 1.2 to 2.2, the tip angle is 118° to 135°, and the cutting edge is No. 2. The angle is 15° to 20°,
The third angle is 25° to 30°, the helix angle is 20° to 35°, the groove cross-sectional area of the part corresponding to the tapered end is 20% or less of the body cross-sectional area, and there is a groove between the groove end and the body end. The body length is the board thickness + (1.5mm).
~2.3mm).
(3)請求項(2)記載のドリル直径が0.3mm〜0
.5mmであり、ボディ長が6.4mm〜7.1mmの
ドリル。
(3) The drill diameter according to claim (2) is 0.3 mm to 0.
.. A drill with a body length of 6.4 mm to 7.1 mm.
(4)請求項(1)、(2)、(3)記載のドリルねじ
れ角がドリルの先端側で大きく根本側で小さく連続的に
変化することを特徴とする高アスペクト比穴加工用のド
リル。
(4) A drill for drilling high aspect ratio holes according to claims (1), (2), and (3), characterized in that the drill helix angle continuously changes from large at the tip side to small at the base side of the drill. .
(5)請求項(4)記載のドリルの先端側ねじれ角が2
4°〜35°、根本の溝終端部で20°〜24°である
ドリル、
(5) The tip side helix angle of the drill according to claim (4) is 2.
a drill that is 4° to 35° and 20° to 24° at the root groove end;
(6)請求項(1)、(2)、(3)記載のドリルの芯
厚の変化が直線テーパの他に複数のテーパを複合したも
の、連続的に変化したもの、またこれらを組合わせたも
のであることを特徴とする高アスペクト比穴加工用のド
リル。
(6) The core thickness of the drill described in claims (1), (2), and (3) may vary by a combination of a plurality of tapers in addition to a linear taper, or by a combination of these. A drill for drilling high aspect ratio holes.
(7)請求項(1)、(2)、(3)記載のドリルの溝
の断面形状が、ほぼ円弧形状か先端加工後の正面形状に
近似した形状であることを特徴とする高アスペクト穴加
工用のドリル。
(7) A high aspect hole characterized in that the cross-sectional shape of the groove of the drill according to claims (1), (2), and (3) is approximately an arc shape or a shape that approximates the front shape after tip processing. Drill for processing.
(8)請求項(4)、(5)記載のドリルにおいて、連
続的にねじれ角を変化させる手段として、円板式のドリ
ル溝研削砥石の角度と研削時のドリルの回転送り角に対
して、研削時のドリルの軸方向の送りを連続的に変える
ドリルの製造方法。
(8) In the drill according to claims (4) and (5), the means for continuously changing the helix angle is based on the angle of the disc-type drill groove grinding wheel and the rotational feed angle of the drill during grinding. A drill manufacturing method that continuously changes the axial feed of the drill during grinding.
(9)請求項(8)記載のドリルの製造方法において、
ドリルの軸方向の送りの連続的変化が y=ax、y=ax^nであるドリルの製造方法。
(9) In the method for manufacturing a drill according to claim (8),
A method for manufacturing a drill in which continuous changes in feed in the axial direction of the drill are y=ax, y=ax^n.
(10)請求項(6)記載のドリルにおいて連続的に芯
厚を変化させる手段として、研削時のドリルの回転角度
及びドリルの軸方向送りに対して円板式のドリルの研削
砥石位置をドリルの軸芯に対して変えるドリルの製造方
法。
(10) As a means for continuously changing the core thickness in the drill according to claim (6), the grinding wheel position of the disc-type drill is adjusted relative to the rotation angle of the drill during grinding and the axial feed of the drill. A method of manufacturing a drill that changes the shaft center.
(11)請求項(10)記載のドリルの製造方法におい
てドリルの研削砥石位置の連続的変化が y=bx^n、y=bx^1^/^nであるドリルの製
造方法。
(11) The method for manufacturing a drill according to claim (10), wherein the continuous change in the position of the grinding wheel of the drill is y=bx^n, y=bx^1^/^n.
JP2039317A 1990-02-20 1990-02-20 Drill Expired - Fee Related JP2879238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2039317A JP2879238B2 (en) 1990-02-20 1990-02-20 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2039317A JP2879238B2 (en) 1990-02-20 1990-02-20 Drill

Publications (2)

Publication Number Publication Date
JPH03245908A true JPH03245908A (en) 1991-11-01
JP2879238B2 JP2879238B2 (en) 1999-04-05

Family

ID=12549735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2039317A Expired - Fee Related JP2879238B2 (en) 1990-02-20 1990-02-20 Drill

Country Status (1)

Country Link
JP (1) JP2879238B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6857828B2 (en) * 2001-01-09 2005-02-22 Excellon Automation Company Incremental step drilling system and method
JP2009113177A (en) * 2007-11-08 2009-05-28 Union Tool Co Drilling tool
JP2010214760A (en) * 2009-03-17 2010-09-30 Dainihon Wood-Preserving Co Ltd Method of drilling lumber
WO2010125881A1 (en) * 2009-04-27 2010-11-04 京セラ株式会社 Drill and method of cutting material to be cut using same
CN102189286A (en) * 2011-06-03 2011-09-21 开平依利安达电子第五有限公司 Cutter for improving quality of plug-in hole of circuit board
JP2012024852A (en) * 2010-07-20 2012-02-09 Nachi Fujikoshi Corp Drill
JP2014144517A (en) * 2013-01-30 2014-08-14 Kyocera Corp Drill, tool and method of cutting to-be-cut material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061110U (en) * 1983-09-29 1985-04-27 シチズン時計株式会社 Drill structure
JPS62188614A (en) * 1986-02-12 1987-08-18 Mitsubishi Metal Corp Drill
JPS63110364U (en) * 1987-01-06 1988-07-15
JPH0236010A (en) * 1988-07-27 1990-02-06 Toshiba Tungaloy Co Ltd Cermet twist drill

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061110U (en) * 1983-09-29 1985-04-27 シチズン時計株式会社 Drill structure
JPS62188614A (en) * 1986-02-12 1987-08-18 Mitsubishi Metal Corp Drill
JPS63110364U (en) * 1987-01-06 1988-07-15
JPH0236010A (en) * 1988-07-27 1990-02-06 Toshiba Tungaloy Co Ltd Cermet twist drill

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6857828B2 (en) * 2001-01-09 2005-02-22 Excellon Automation Company Incremental step drilling system and method
JP2009113177A (en) * 2007-11-08 2009-05-28 Union Tool Co Drilling tool
JP4505007B2 (en) * 2007-11-08 2010-07-14 ユニオンツール株式会社 Drilling tool
JP2010214760A (en) * 2009-03-17 2010-09-30 Dainihon Wood-Preserving Co Ltd Method of drilling lumber
WO2010125881A1 (en) * 2009-04-27 2010-11-04 京セラ株式会社 Drill and method of cutting material to be cut using same
JP5385976B2 (en) * 2009-04-27 2014-01-08 京セラ株式会社 Drill and cutting method of work material using the drill
US8882411B2 (en) 2009-04-27 2014-11-11 Kyocera Corporation Drill and method of cutting workpiece using the same
JP2012024852A (en) * 2010-07-20 2012-02-09 Nachi Fujikoshi Corp Drill
CN102189286A (en) * 2011-06-03 2011-09-21 开平依利安达电子第五有限公司 Cutter for improving quality of plug-in hole of circuit board
JP2014144517A (en) * 2013-01-30 2014-08-14 Kyocera Corp Drill, tool and method of cutting to-be-cut material

Also Published As

Publication number Publication date
JP2879238B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
US5888036A (en) Drill bit and step feeding method
US20130170920A1 (en) Drill and method of manufacturing machined product using the same
TWI344878B (en)
US20140201995A1 (en) Cutting drill and method for manufacturing printed wiring board
JPH03245908A (en) Twist drill and manufacture thereof
KR100653145B1 (en) Small drill
CN107787120A (en) A kind of processing method of the short slotted eye of pcb board
TWI401126B (en) Shape processing method
JPH09117914A (en) Blade of drill having groove for discharging chip
JP3740503B2 (en) Thread cutting tool
JPH04244311A (en) Three-stage-web, tapered drill
JPH07164228A (en) Small diameter drill for printed board and machining method therefor
JP7075952B2 (en) Rotary cutting tool
JP2005088088A (en) Drill
JP3065547B2 (en) Router cutter
JP3967213B2 (en) Drill
JPH03184707A (en) Twist drill
CN216938603U (en) Improved structure of milling cutter
JP2004202591A (en) Router bit and external shape working method of printed circuit board using this router bit
US20040115903A1 (en) Method of processing a semiconductor wafer
JP3976289B2 (en) Small diameter drill for processing printed wiring boards
JP5734137B2 (en) Drill and method of manufacturing workpiece using the drill
JPH01306112A (en) Small diameter drill for machining printedboard
JP2002337016A (en) Router bit
JP3167961B2 (en) Printed wiring board cutting tool

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees