JPH03245093A - Internal pump - Google Patents

Internal pump

Info

Publication number
JPH03245093A
JPH03245093A JP2041032A JP4103290A JPH03245093A JP H03245093 A JPH03245093 A JP H03245093A JP 2041032 A JP2041032 A JP 2041032A JP 4103290 A JP4103290 A JP 4103290A JP H03245093 A JPH03245093 A JP H03245093A
Authority
JP
Japan
Prior art keywords
flow
vanes
guide vane
flow path
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2041032A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Okamura
共由 岡村
Shiro Nakahira
四郎 仲平
Masayuki Ueda
上田 政之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2041032A priority Critical patent/JPH03245093A/en
Publication of JPH03245093A publication Critical patent/JPH03245093A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To suppress a cavitation at guide vanes to reduce a loss, and to improve a pump efficiency by changing a bottom path area of meridian plane radially according to a flow path area at a downstream outlet of the guide vane to make a flowing volocity of meridian plane constant. CONSTITUTION:Since a flow amount flowing between guide vanes 2 is small at a pressure vessel 4 side and large at a shroud 5 side, flow path areas of guide vane flow paths 11c and 11d which are close to a wall of the vessel 4, are set so as to become smaller than those of guide vane paths 11g and 11h which are close to the shroud 5, for instance, the areas reduce proportionally to an area of a downstream part of the guide vanes 2. By this procedure, since a meridional surface flow velocity of the vanes 2 become almost the same at every flow path 11, the meridional surface flow velocities at inlets of the flow paths 11c and 11d do not reduce. Accordingly, a flowing-in angle to the vanes 2 can stay as it is. In this way, even both a flow amount of pump and a flowing-in angle to the vanes 2 are reduced, an attack angle of the vanes 2 of the flow paths 11c and 11d does not exceed an appropriate one, generation of cavitation and increment of loss resulted from increment of the attack angle, can be suppressed, and therefore an efficiency of pump can be much improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はインターナルポンプの案内羽根の流路の形状に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the shape of a flow path of a guide vane of an internal pump.

〔従来の技術〕[Conventional technology]

第5図に従来のインターナルポンプの構造を示す。ポン
プは羽根車l、案内羽根2.ポンプ軸3および駆動用の
ウェット形水中モータ6から構成され、原子炉圧力容器
4の底部に設置されている。
FIG. 5 shows the structure of a conventional internal pump. The pump has an impeller 1 and a guide vane 2. It consists of a pump shaft 3 and a driving wet submersible motor 6, and is installed at the bottom of the reactor pressure vessel 4.

第6図は、第5図に示すA−A面の断面図である。FIG. 6 is a sectional view taken along the line AA shown in FIG. 5.

案内羽根2は、この場合、入校の場合であり、周方向に
等間隔に、45°毎にとりつけられている。
The guide vanes 2, in this case, are installed at equal intervals in the circumferential direction, every 45°.

ポンプには矢印7の方向から炉水が流入し羽根車1、案
内羽根2を通り矢印8a、8bの方向に流出する。案内
羽根2の出口部は、圧力容器4の底部が第1図に示すよ
うに傾斜しているため周方向に−様な軸対称流路ではな
く、狭い流路9aと広い流路9bが存在する。第7図は
第5図の円筒面Bにより切断し展開した形状を示す。羽
根車1を出た流れは、案内羽根2の入口21側に示した
速度三角形の01の方向に流入し、案内羽根出口2jで
は案内羽根28〜2hに平行に02の方向に流出する。
Reactor water flows into the pump from the direction of arrow 7, passes through impeller 1 and guide vanes 2, and flows out in the directions of arrows 8a and 8b. Since the bottom of the pressure vessel 4 is inclined as shown in FIG. 1, the outlet of the guide vane 2 does not have an axially symmetrical flow path in the circumferential direction, but a narrow flow path 9a and a wide flow path 9b. do. FIG. 7 shows the shape cut and expanded along the cylindrical surface B of FIG. The flow leaving the impeller 1 flows in the direction 01 of the velocity triangle shown on the inlet 21 side of the guide vane 2, and flows out in the direction 02 at the guide vane outlet 2j parallel to the guide vanes 28 to 2h.

しかるに、圧力容器4の底部は、傾斜しているため、円
筒面Bで展開すると、第7図に示すように、4b−4c
m4a−4cm4bの形状となり案内羽根出口2jと圧
力容器底部4a−4b−4cとの間に広い流路9bと狭
い流路9bが形成される。このように案内羽根2の下流
の流路面積が異なると流路の損失が異なるため流路の広
い9bの領域の方が狭い9aの領域より炉水は多く流れ
る。すなわち、案内羽根出口が98に面している案内羽
根2c、2d、2eに流入する子午面流速は、−様に流
入する場合の子午面流速C1より小さなC1となる。通
常の案内羽根2の設計では人口流路は周方向に一様とし
て設計され、羽根人口角βは全ての羽根に対し一定であ
る。
However, since the bottom of the pressure vessel 4 is inclined, when it is developed on the cylindrical surface B, as shown in FIG.
m4a-4cm4b, and a wide flow path 9b and a narrow flow path 9b are formed between the guide vane outlet 2j and the pressure vessel bottom 4a-4b-4c. As described above, if the flow path area downstream of the guide vane 2 differs, the loss in the flow path differs, so more reactor water flows in the wide flow path region 9b than in the narrow region 9a. That is, the meridional flow velocity C1 flowing into the guide vanes 2c, 2d, and 2e whose guide vane exits face 98 is smaller than the meridional flow velocity C1 when the guide vanes flow in the negative direction. In a typical design of the guide vane 2, the artificial flow path is designed to be uniform in the circumferential direction, and the vane population angle β is constant for all blades.

従って、−様な子午面入口流速C1を用いて設定された
羽根2c、2d、2eに対し子午面流速が小さなC1′
 が流入すると羽根角βに対し流入角はβ′となりΔβ
=β−β′なる迎え角がついて案内羽根2に流入するこ
とになる。そうすると、設計点流量より低流量側では迎
え角はさらに増大するため、出口が広い領域9bに面す
る案内羽根2a、2g、2h等に比へ大きな流量で案内
羽根2の入口直後で剥離が発生しやすくなる。インター
ナルポンプは比速度の高い一種の斜流ポンプであるが、
インターナルポンプは炉内に設置されるため案内羽根の
長さを十分に確保することができない。斜流ポンプの案
内羽根は三次元の曲すデイフユーザで羽根長さが十分に
確保できない場合には三次元曲りによる二次流れのため
ハブ側の羽根入口の凸面(第7図の(○c、10d、1
0e付近)で流れが剥離しやすいことが知られている。
Therefore, compared to the blades 2c, 2d, and 2e, which are set using a meridional inlet flow velocity C1 of -, the meridional flow velocity C1' is small.
When inflow, the inflow angle becomes β' with respect to the blade angle β, and Δβ
It flows into the guide vane 2 with an angle of attack of = β - β'. Then, since the angle of attack further increases on the flow rate side lower than the design point flow rate, separation occurs immediately after the inlet of the guide vane 2 at a relatively large flow rate on the guide vanes 2a, 2g, 2h, etc. whose outlet faces the wide area 9b. It becomes easier. Internal pump is a type of mixed flow pump with high specific speed.
Since the internal pump is installed inside the furnace, it is not possible to ensure a sufficient length of guide vanes. The guide vanes of mixed flow pumps are three-dimensional curved diff users, and if the vane length cannot be secured sufficiently, the convex surface of the vane inlet on the hub side ((○c, 10d, 1
It is known that the flow tends to separate at temperatures near 0e).

従って、低流量域ではインターナルポンプの案内羽根は
剥離が生しやすい性質をもっている。一方、剥離が生し
ると損失が生じポンプ全揚程が低下してポンプ効率が低
下する。
Therefore, the guide vanes of internal pumps tend to peel off in low flow areas. On the other hand, when peeling occurs, loss occurs and the total head of the pump decreases, resulting in a decrease in pump efficiency.

この種の装置として関連するものには、例えば、日立評
論Vo1.66、Na4 (1984)第65頁から第
68頁で述尺られ、また、関連発明には特開昭60−1
11095号公報がある。
Related devices of this type are described, for example, in Hitachi Review Vol. 1.66, Na4 (1984), pages 65 to 68, and related inventions include JP-A No. 60-1
There is a publication No. 11095.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、案内羽根において剥離が生じやすくそ
の結果ポンプ効率が低下するという問題がある。
The above-mentioned conventional technology has a problem in that the guide vanes tend to peel off, resulting in a decrease in pump efficiency.

本発明の目的は、インターナルポンプの案内羽根入口直
後における剥離を抑制し、ポンプ効率を高めることにあ
る。
An object of the present invention is to suppress separation immediately after the guide vane entrance of an internal pump and to improve pump efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を遠戚するために本発明は案内羽根出口下流の
流路面積に応して案内羽根子午面底路面積を周方向に変
え案内羽根内における剥離を抑制するようにした。
In order to achieve the above object, the present invention suppresses separation within the guide vane by changing the guide vane meridian bottom passage area in the circumferential direction in accordance with the flow path area downstream of the guide vane outlet.

〔作用〕[Effect]

案内羽根の圧力容器壁側の子午面流路面積は、反対側の
シュラウド壁側の流路面積に比人で小さく設定しである
。従って、子午面流速は周方向に一様となり、従来子午
面流速が低下し案内羽根への迎え角が小さくなって剥離
が生しやすくなっている圧力容器壁側の流路での剥離を
抑制する。
The meridian flow path area of the guide vane on the pressure vessel wall side is set to be smaller than the flow path area on the opposite shroud wall side. Therefore, the meridional flow velocity becomes uniform in the circumferential direction, suppressing separation in the flow path on the pressure vessel wall side, where conventionally the meridional flow velocity decreases and the angle of attack on the guide vane becomes small, causing separation easily. do.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図はインターナルポンプの案内羽根部の断面図である。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure is a sectional view of the guide vane portion of the internal pump.

第2図は、第1図に示すA−A面の断面図である。案内
羽根2の子午面流路1工の圧力容器4に近い側11c及
びlidは、シュラウド5に近い側11g及びllhよ
り子午面流路面積が小さくなるように設定されている。
FIG. 2 is a sectional view taken along the line AA shown in FIG. 1. The sides 11c and lid of the meridional passage 1 of the guide vane 2 that are closer to the pressure vessel 4 are set to have smaller meridian passage areas than the sides 11g and llh that are closer to the shroud 5.

その縮小割合は1例えば、第7図に示す案内羽根下流部
の面積9に比例するように設定しである。子午面流路上
lの縮小は第1図及び第2図に示すようにハブ側を盛り
上げ12 b −12eのように形成する。すなわち、
案内羽根のハブは周方向位置により異なり、容器壁4側
では大きくシュラウド側では小さくなるように形成され
ている。
The reduction ratio is set to 1, for example, in proportion to the area 9 of the downstream portion of the guide vane shown in FIG. As shown in FIGS. 1 and 2, the meridional flow surface 1 is reduced by raising the hub side to form 12b-12e. That is,
The hub of the guide vane differs depending on its position in the circumferential direction, and is formed to be larger on the container wall 4 side and smaller on the shroud side.

このように構成された案内羽根は、案内羽根間を流れる
流量は容器壁4側では少なく、シュラウド5側で多くな
る。しかし、容器壁4側の流路11c、lidはシュラ
ウド壁5側の流路11g。
In the guide vanes configured in this way, the flow rate flowing between the guide vanes is small on the container wall 4 side and large on the shroud 5 side. However, the channel 11c and lid on the container wall 4 side are the channel 11g on the shroud wall 5 side.

11hより小さくなるように設定されているため、子午
面流速C,はいずれの流路11でもほぼ一定となる。従
って、第6図に示したように容器壁4に近い側の流路1
1c、lidの入口で子午面流速はC1より小さなC1
とはならないため案内羽根への流入角はβのままである
。よって、ポンプの流量が少なくなって案内羽根への流
入角が小さくなっても従来技術のように容器壁4に近い
側の流路の羽根の迎え角が過大となることはない。それ
故、迎え角の増大による剥離の発生、損失の増大は抑制
され、効率の優れたポンプが得られる。
Since it is set to be smaller than 11h, the meridional flow velocity C, is approximately constant in any channel 11. Therefore, as shown in FIG.
1c, the meridional flow velocity at the entrance of the lid is C1, which is smaller than C1.
Since this is not the case, the inflow angle to the guide vane remains β. Therefore, even if the flow rate of the pump decreases and the inflow angle to the guide vanes becomes small, unlike the prior art, the angle of attack of the vanes in the flow path closer to the container wall 4 will not become excessive. Therefore, the occurrence of separation and increase in loss due to an increase in the angle of attack are suppressed, and a pump with excellent efficiency can be obtained.

第3図に、本発明の第二の実施例を示す。案内羽根の流
路↓1でシュラウド5に最も近い流路11gはポンプ中
心Pと炉心○とを結ぶ直gP○に対して芯またぎとなる
ように設定されている。
FIG. 3 shows a second embodiment of the invention. The flow path 11g closest to the shroud 5 in the flow path ↓1 of the guide vane is set so as to cross the core of the straight line gP○ connecting the pump center P and the reactor core ○.

容器壁4に近い側の流路11c及びlidは第一の実施
例と同しである。
The flow path 11c and lid on the side closer to the container wall 4 are the same as in the first embodiment.

このように構成された案内羽根は、シュラウド側の流路
↓↓gの下流は第1図に示すように容器底面ははるか下
方にあるため流路抵抗は他の流路11a〜〕、 l f
に比べて最も小さい。よって、流路11gを通る流量は
最大となる。一方、第一の実施例ではシュラウド5に最
も近い案内羽根は直線PO上にある。すなわち、案内羽
根の配列は芯−芯である。従って、案内羽根2の出口流
れを第1図ないし第3図に示す矢印りの方向から見た速
度分布を第4図に示す。(a)は第2図に、(b)は第
3図にそれぞれ対応する。第4図(a)から、案内羽根
の流路11.h、lugから流出する流れの間に羽根1
1hの後流による速度欠損部13が存在する。すなわち
、本来下流部の抵抗が最小のため流速が最大となりうる
位置に強制的に後流の低速度の領域がくるように羽根の
配列がなっている。しかし、第二の実施例の(b)では
、中央部に流速最大位置が来て流速の遅い後流部13は
中央からずれた位置に来るように羽根が配列されている
。従って、(b)の方が流量は大となりポンプ性能はよ
り高まることになる。
In the guide vane configured in this way, as shown in FIG. 1, the bottom of the container is far below the flow path ↓↓g on the shroud side, so the flow path resistance is that of the other flow paths 11a~], l f
smallest compared to. Therefore, the flow rate passing through the flow path 11g becomes maximum. On the other hand, in the first embodiment, the guide vane closest to the shroud 5 is on the straight line PO. That is, the arrangement of the guide vanes is core-to-core. Therefore, the velocity distribution of the outlet flow of the guide vane 2 viewed from the direction of the arrows shown in FIGS. 1 to 3 is shown in FIG. 4. (a) corresponds to FIG. 2, and (b) corresponds to FIG. 3, respectively. From FIG. 4(a), the flow path 11 of the guide vane. h, vane 1 between the flow outflowing from lug
There is a velocity deficit portion 13 due to a wake of 1 h. In other words, the blades are arranged so that the downstream low-velocity region is forced to be at the position where the flow velocity can be maximized since the downstream resistance is essentially the minimum. However, in the second embodiment (b), the blades are arranged so that the maximum flow velocity is at the center and the downstream section 13 where the flow velocity is low is at a position offset from the center. Therefore, in (b), the flow rate is larger and the pump performance is further improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、案内羽根の子午面流速を一定に出来る
ので、迎え角過大による案内羽根での剥離は抑制され損
失が低減するのでポンプ効率が向上する。
According to the present invention, since the meridional flow velocity of the guide vane can be made constant, separation of the guide vane due to an excessive angle of attack is suppressed and loss is reduced, so that pump efficiency is improved.

また、流路抵抗の小さな領域で流量を多く流すことがで
きるのでポンプ性能が向上する。
Furthermore, since a large flow rate can be flowed in a region with low flow path resistance, pump performance is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のインターナルポンプの縦断
面図、第2図は第1図のA−A線断面図、第3図は本発
明の第二の実施例のA−A線断面図、第4図は第1図な
いし第3図の矢印りの方向から見た案内羽根出口流速の
分布図、第5図は従来のインターナルポンプの縦断面図
、第6図は第5図のA−A線断面図、第7図は第5図の
円筒Bの展開図である。 1・・羽根車、2・・・案内羽根、3・・軸、4・・・
圧力容器、5・・シュラウド、6・・・水平モータ、7
 人口流れ、8・・吐き出し流れ、9・・・案内羽根出
口流路、10・案内羽根入口部、工1・・案内羽根流路
。 q 拓 図 猶 乙 閉
FIG. 1 is a longitudinal cross-sectional view of an internal pump according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1, and FIG. 4 is a distribution diagram of the flow velocity at the outlet of the guide vane as seen from the direction of the arrow in FIGS. 1 to 3, FIG. 5 is a longitudinal sectional view of a conventional internal pump, and FIG. 5 is a sectional view taken along the line A-A in FIG. 5, and FIG. 7 is a developed view of the cylinder B in FIG. 1... Impeller, 2... Guide vane, 3... Shaft, 4...
Pressure vessel, 5...Shroud, 6...Horizontal motor, 7
Population flow, 8...Discharge flow, 9...Guide vane outlet flow path, 10.Guide vane inlet section, Work 1...Guide vane flow path. q.

Claims (1)

【特許請求の範囲】[Claims] 1、原子炉圧力容器の炉底部に設置されるインターナル
ポンプにおいて、案内羽根子午面流路で前記原子炉圧力
容器の壁に近接する流路とその反対側に位置する流路と
でその流路面積を異にするようにしたことを特徴とする
インターナルポンプ。
1. In an internal pump installed at the bottom of a reactor pressure vessel, the flow is controlled between a flow path close to the wall of the reactor pressure vessel and a flow path located on the opposite side of the guide vane meridian flow path. An internal pump characterized by having different duct areas.
JP2041032A 1990-02-23 1990-02-23 Internal pump Pending JPH03245093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2041032A JPH03245093A (en) 1990-02-23 1990-02-23 Internal pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2041032A JPH03245093A (en) 1990-02-23 1990-02-23 Internal pump

Publications (1)

Publication Number Publication Date
JPH03245093A true JPH03245093A (en) 1991-10-31

Family

ID=12597061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2041032A Pending JPH03245093A (en) 1990-02-23 1990-02-23 Internal pump

Country Status (1)

Country Link
JP (1) JPH03245093A (en)

Similar Documents

Publication Publication Date Title
EP1624195B1 (en) Axial Flow pump and diagonal flow pump
US7896618B2 (en) Centrifugal compressing apparatus
US4615659A (en) Offset centrifugal compressor
EP1532367B1 (en) Centrifugal impeller and pump apparatus
EP0270723A1 (en) Impeller for a radial turbomachine
KR100286633B1 (en) Stator of automotive torque converter
EP0016819B1 (en) Turbomachine
JP3350934B2 (en) Centrifugal fluid machine
EP1558861A1 (en) Stator blade mounted in a torque converter
JP4416787B2 (en) Fuel pump
JPS58101299A (en) Centrifugal compressor
JP3600449B2 (en) Impeller
JPH03245093A (en) Internal pump
JP2005061293A (en) Francis runner
JPH01318790A (en) Flashing vane of multistage pump
JP2000205101A (en) Reversible pump-turbine
JPH01247798A (en) High speed centrifugal compressor
JP2003065198A (en) Hydraulic machinery
JPH11257011A (en) Nozzle structure of turbine
JPH0511238B2 (en)
JPS60111095A (en) Internal pump
JP2003314425A (en) Pump turbine with splitter runner
JPH07133798A (en) Impeller of mixed flow pump
JP2000018004A (en) Radial turbine with nozzle
JP2001003897A (en) Diffuser for centrifugal fluid machine