JPH03244823A - Slide bearing - Google Patents

Slide bearing

Info

Publication number
JPH03244823A
JPH03244823A JP4390090A JP4390090A JPH03244823A JP H03244823 A JPH03244823 A JP H03244823A JP 4390090 A JP4390090 A JP 4390090A JP 4390090 A JP4390090 A JP 4390090A JP H03244823 A JPH03244823 A JP H03244823A
Authority
JP
Japan
Prior art keywords
bearing body
cylindrical bearing
spring
cylindrical
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4390090A
Other languages
Japanese (ja)
Inventor
Tomihisa Kawakami
川上 富久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4390090A priority Critical patent/JPH03244823A/en
Publication of JPH03244823A publication Critical patent/JPH03244823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

PURPOSE:To prevent the fatigue breakage by forming a gap in the radial direction between a cylindrical bearing body whose inner peripheral surface surface- contacts a rotary shaft and a fixed member surrounding a bearing body and installing the springs connected with the fixed member at plural positions in the peripheral direction of a bearing body. CONSTITUTION:A slide bearing 1 is equipped with a cylindrical bearing body 3 which surface-contacts the outer peripheral surface of a rotary shaft 2, and a fixed member 6 which performs surrounding through the first gap 4 in the radial direction and the second and the third gaps 5A and 5B in the axial direction. The tongue piece 8A of a spring 8 consisting of an annular plate-shaped member is fitted into a groove 7 formed at plural positions in the peripheral directions of the shell 3B of the cylindrical bearing body 3. The annular part of the spring 8 is fixed on a case part 6A. With this constitution, the torque which the cylindrical bearing body receives from the rotary shaft is dispersed by the tongue piece 8A, and received elastically. Accordingly, the fatigue breakage on the spring is prevented. Further, the generation of crack on the cylindrical bearing body is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、すへり軸受に係り、例えば立軸ポンプの軸受
のように、揚水運転時には自揚水によって潤滑および冷
却がなゴれ、またドライ運転時にれた状態で主軸(回転
軸)を支持するすべり軸受に 1する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a bearing, such as a bearing for a vertical shaft pump, in which lubrication and cooling are lost due to self-pumped water during pumping operation, and in dry operation. 1 to the sliding bearing that supports the main shaft (rotating shaft) in a tilted state.

[従来の技術] 立軸ポンプの軸受として、自揚水によって潤滑および冷
却がなされた状態で主軸を支持して安定運転するととも
に、ドライ運転時においては、自揚水による潤滑および
冷却が遮断された状態で主軸を支持して安定運転するす
べり軸受が採用されている。
[Prior art] As a bearing for a vertical shaft pump, it supports the main shaft in a state where it is lubricated and cooled by self-pumped water for stable operation, and during dry operation, it supports the main shaft in a state where lubrication and cooling by self-pumped water are cut off. A sliding bearing is used to support the main shaft and ensure stable operation.

即ち、従来のすべり軸受は、第9図に示すように、内周
面が回転軸30と面接触する円筒状軸受体31と、この
円筒状軸受体31の外周を囲繞するゴム製環状の第1弾
性部材32と、この第1弾性部材32を嵌合している固
定部材33を有し、円筒状軸受体31が例えばセラミッ
ク製の円筒状摺接部材31Aと、この円筒状摺接部材3
1Aを焼きばめすることによって外嵌されている金属製
のシェル31Bとからなり、円筒状摺接部材31Aの内
周面が回転軸30と面接触する。
That is, as shown in FIG. 9, the conventional sliding bearing includes a cylindrical bearing body 31 whose inner peripheral surface is in surface contact with the rotating shaft 30, and a rubber annular ring surrounding the outer periphery of the cylindrical bearing body 31. The cylindrical bearing body 31 has a cylindrical sliding contact member 31A made of ceramic, for example, and a fixed member 33 into which the first elastic member 32 is fitted.
The inner peripheral surface of the cylindrical sliding contact member 31A is in surface contact with the rotating shaft 30.

そして、金属製の固定部材33に着脱可能に一体結合さ
れているカバ一部材33Aの下面に環状溝33aを形成
し、この環状溝33aに嵌合されているゴム製環状の第
2弾性部材34Aをシェル31Bの上端面に当接させる
とともに、固定部材33の底部の上面に環状溝33bを
形成し、この環状溝33bに嵌合されているゴム製環状
の第2弾性部材34Bを円筒状軸受体31の底部の下面
に当接させることによって、円筒状軸受体31を第2弾
性部材34A、34Bで弾性支持しているまた、ケース
部材33の周方向の少なくとも2箇所(ただし図面には
1箇所のみが示されている)に形成した水平方面゛のね
じ孔33cに回り止めどス35をねじ込み、この回り止
めどス35の先端部が第1弾性部材32を貫通してシェ
ル31Bの外周に形成された盲貫孔31bに嵌合した構
成になっている。
An annular groove 33a is formed on the lower surface of the cover member 33A that is removably connected to the metal fixing member 33, and a second elastic member 34A that is a rubber annular ring is fitted into the annular groove 33a. is brought into contact with the upper end surface of the shell 31B, and an annular groove 33b is formed on the upper surface of the bottom of the fixing member 33, and the rubber annular second elastic member 34B fitted in the annular groove 33b is connected to the cylindrical bearing. The cylindrical bearing body 31 is elastically supported by the second elastic members 34A and 34B by contacting the lower surface of the bottom of the case member 31. A rotation stopper 35 is screwed into the horizontal screw hole 33c formed in the horizontal direction (only the portion shown), and the tip of the rotation stopper 35 passes through the first elastic member 32 and is formed on the outer periphery of the shell 31B. It has a configuration in which it fits into the blind through hole 31b.

したがって、回転軸30と円筒状の摺接部材3IAとの
摩擦により円筒状軸受体31に生じるトルクを回り止め
どス35により受は止めて、円筒状軸受体31の回転、
つまり円筒状軸受体31の共まわりを阻止し、かつ回転
軸30の軸線が軸振れで半径方向または傾斜方向に変位
した場合にはこの変位を第1弾性部材32によって吸収
することで前記の変位に円筒状軸受体31を追従させて
、回転軸30と円筒状の摺接部材31Aとの片当りを防
止し、片当りによって生じる回転軸30および円筒状の
摺接部材31Aの偏摩耗もしくは円筒状の摺接部材31
Aのクランクの発生、延いては破壊などを避け、さらに
円筒状軸受体31が傾斜変位した場合には、この変位を
第2弾性部材34A、34Bにより吸収して、円筒状軸
受体31と固定部材33の衝突によって生じる衝撃を緩
衝するようになっている。
Therefore, the torque generated in the cylindrical bearing body 31 due to the friction between the rotating shaft 30 and the cylindrical sliding member 3IA is stopped by the stopper 35, and the rotation of the cylindrical bearing body 31 is stopped.
In other words, the cylindrical bearing body 31 is prevented from rotating together, and when the axis of the rotating shaft 30 is displaced in the radial direction or the inclination direction due to shaft runout, this displacement is absorbed by the first elastic member 32, so that the aforementioned displacement is prevented. The cylindrical bearing body 31 is made to follow the rotational shaft 30 and the cylindrical sliding member 31A to prevent uneven contact between the rotating shaft 30 and the cylindrical sliding member 31A, and uneven wear of the rotating shaft 30 and the cylindrical sliding member 31A caused by uneven contact or the cylindrical shape is prevented. shaped sliding member 31
In order to avoid the occurrence of crank A, and even breakage, etc., when the cylindrical bearing body 31 is tilted, this displacement is absorbed by the second elastic members 34A and 34B and fixed to the cylindrical bearing body 31. It is designed to buffer the impact caused by the collision of the members 33.

[発明が解決しようとする課題] しかし、前記従来のすべり軸受では、回転軸30と円筒
状の摺接部材31Aとの摩擦により円筒状軸受体31に
生じるトルクおよび径方向変位が回り止めどス35に直
接負荷されることがあるので、回り止めビス35に疲労
破壊の生じるおそれがある。
[Problems to be Solved by the Invention] However, in the conventional sliding bearing, the torque and radial displacement generated in the cylindrical bearing body 31 due to friction between the rotating shaft 30 and the cylindrical sliding member 31A are prevented by the rotation stopper 35. Since the rotation stopper screw 35 may be subjected to a direct load, there is a risk that the detent screw 35 will suffer fatigue failure.

また、81および第2弾性部材32.34A。Also, 81 and the second elastic member 32.34A.

34Bがゴム製のものであるから、円筒状軸受体31や
固定部材33などと比較して耐熱性に劣るためドライ運
転時間の制約をうける。万一、ドライ運転時間が過剰に
なると第1および第2弾性部材32.34A、34Bに
熱的な弾性劣化が生じる。このように、第1および第2
弾性部材32.34A、34Bに熱的な弾性劣化が生じ
ると、回転軸30の軸線が半径方向または傾斜方向に変
位する場合、この変位を第1弾性部材32の弾性によっ
て支持できなくなり、円筒状軸受体31の変位が大きく
なる。したがって回転軸3oH滑な運転ができなくなり
、回転軸30および円筒状の摺接部材31Aの偏摩耗も
しくは円筒状の摺接部材31Aのクラックの発生、延い
ては破壊などが起こる。
Since 34B is made of rubber, it has inferior heat resistance compared to the cylindrical bearing body 31, the fixing member 33, etc., and is therefore subject to restrictions on dry operation time. If the dry operation time becomes excessive, thermal elasticity deterioration occurs in the first and second elastic members 32, 34A, 34B. In this way, the first and second
When thermal elasticity deterioration occurs in the elastic members 32, 34A and 34B, when the axis of the rotating shaft 30 is displaced in the radial direction or the oblique direction, this displacement cannot be supported by the elasticity of the first elastic member 32, and the cylindrical shape The displacement of the bearing body 31 increases. Therefore, the rotating shaft 3oH cannot be operated smoothly, causing uneven wear of the rotating shaft 30 and the cylindrical sliding member 31A, or cracking and even destruction of the cylindrical sliding member 31A.

さらに円筒状軸受体31が傾斜変位するとき、この変位
を第2弾性部材34A、34Bの弾性によって支持でき
なくなり、円筒状軸受体31の追従変位が大きくなり、
円筒状軸受体31と固定部材33とが衝突するので、円
筒状軸受体31にクラックが発生したり、延いては破壊
されることになる。
Further, when the cylindrical bearing body 31 is tilted, this displacement cannot be supported by the elasticity of the second elastic members 34A and 34B, and the following displacement of the cylindrical bearing body 31 increases.
Since the cylindrical bearing body 31 and the fixing member 33 collide, the cylindrical bearing body 31 will be cracked and eventually destroyed.

本発明は、このような事情に鑑みなされたもので、回転
軸と面接触する円筒状軸受体をセラミックなどの耐熱性
および耐摩耗性にすぐれた材料によって形成するととも
に1回転軸と円筒状軸受体との摩擦により円筒状軸受体
に生じるトルクを常時弾性的に受は止めて、円筒状軸受
体の回転、つまり円筒状軸受体の共まわりを阻止し、か
つ回転軸の軸線が半径方向または傾斜方向に変位した場
合には、この変位を確実に弾性吸収することで該変位に
円筒状軸受体を追従させて、回転軸と円筒状軸受体との
片当りを防止し、片当りによって生じる回転軸および円
筒状軸受体の偏摩耗もしくは円筒状軸受体のクラックの
発生、延いては破壊などを避け、さらに回転軸が軸線の
傾斜方向に変位した場合には、この変位を確実に弾性吸
収して、円筒状軸受体と固定部材の衝突によって生じる
衝撃を緩衝することのできるすベリ軸受の提供を目的と
する。
The present invention was made in view of these circumstances, and includes forming a cylindrical bearing body that makes surface contact with the rotating shaft from a material with excellent heat resistance and wear resistance, such as ceramic, and also forming a cylindrical bearing body that makes surface contact with the rotating shaft. The cylindrical bearing body constantly elastically absorbs the torque generated in the cylindrical bearing body due to friction with the body, prevents rotation of the cylindrical bearing body, that is, rotation of the cylindrical bearing body, and prevents the axis of the rotating shaft from radially or In the case of displacement in the direction of inclination, the cylindrical bearing body follows the displacement by reliably elastically absorbing this displacement, thereby preventing uneven contact between the rotating shaft and the cylindrical bearing body, which is caused by uneven contact. It avoids uneven wear of the rotating shaft and cylindrical bearing body, cracks in the cylindrical bearing body, and even destruction. Furthermore, when the rotating shaft is displaced in the direction of inclination of the axis, this displacement is reliably absorbed elastically. The object of the present invention is to provide a flat bearing that can buffer the impact caused by a collision between a cylindrical bearing body and a fixed member.

[課題を解決するための手段] 前記目的を達成するために、本発明は、内周面が回転軸
と面接触する円筒状軸受体と、少なくとも径方向に形成
された第1の隙間を介して前記円筒状軸受体を囲繞する
固定部材とからなり、前記円筒状軸受体の外周部の周方
向複数箇所のそれぞれと前記固定部材とをスプリングで
連結して1円筒状軸受体を固定部材に弾性支持したもの
であるまた。スプリングを金属板材によって形成しても
よい。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a cylindrical bearing body whose inner peripheral surface is in surface contact with a rotating shaft, and a first gap formed at least in the radial direction. and a fixing member that surrounds the cylindrical bearing body, and the fixing member is connected to each of a plurality of locations in the circumferential direction of the outer periphery of the cylindrical bearing body with a spring, so that one cylindrical bearing body becomes a fixing member. It is also elastically supported. The spring may be formed from a metal plate.

さらに、スプリングを金属線材によって形成することも
できる。
Furthermore, the spring can also be formed from a metal wire.

[作用] 本発明によれば、回転軸と円筒状軸受体との摩擦により
円筒状軸受体に生じるトルクまたは径方向変位を、円筒
状軸受体の外周の周方向複数箇所のそれぞれと固定部材
とを連結する複数のスプリングにより弾性的に受は止め
ることになるので、疲労破壊が生じない。
[Function] According to the present invention, the torque or radial displacement generated in the cylindrical bearing body due to friction between the rotating shaft and the cylindrical bearing body is suppressed at each of a plurality of circumferential locations on the outer periphery of the cylindrical bearing body and at the fixed member. Since the bearing is elastically stopped by the plurality of springs connecting the parts, fatigue failure does not occur.

また、スプリングは、円筒状軸受体や固定部材などと同
様に熱的強度が高いので、ドライ運転によって軸受の温
度がト昇しても熱的な弾性劣化を生じない、しかも径方
向に形成された第1の隙間を介して固定部材により円筒
状軸受体を囲繞しているから、回転軸の軸線が半径方向
または傾斜方向に変位しても、この変位をスプリングの
弾性と第1の隙間の協働によって吸収して、円筒状軸受
体を追従して変位させることができる。
In addition, the spring, like the cylindrical bearing body and fixing member, has high thermal strength, so even if the temperature of the bearing increases due to dry operation, thermal elasticity does not deteriorate. Since the cylindrical bearing body is surrounded by the fixed member through the first gap, even if the axis of the rotating shaft is displaced in the radial or inclination direction, this displacement can be absorbed by the elasticity of the spring and the first gap. The cylindrical bearing body can be displaced in accordance with the absorption by the cooperation.

そして、回転軸が軸方向に変位しても、この変位をスプ
リングによって吸収して、円筒状軸受体を追従して変位
させることができる。
Even if the rotating shaft is displaced in the axial direction, this displacement can be absorbed by the spring and the cylindrical bearing body can be displaced accordingly.

さらに、アクシデントの発生によって、回転軸の軸線が
半径方向または傾斜方向に大きく変位しようとしても、
この変位を第1の隙間の量によって制限できる。
Furthermore, even if the axis of the rotating shaft attempts to displace significantly in the radial or inclination direction due to an accident,
This displacement can be limited by the amount of the first gap.

[実施例] 以下1本発明の実施例を図面に基づいて説明する。[Example] An embodiment of the present invention will be described below based on the drawings.

第1図は本発明の一実施例を示す半裁縦断正面図、第2
図は円筒状軸受体の部分平面図であり、これらの図にお
いて、すベリ軸受1は、内周面が回転軸2の外周面もし
くは回転軸2に外嵌されているスリーブ(図示省略)に
面接触する円筒状軸受体3と、この円筒状軸受体3を径
方向の第1の隙間4および軸方向の第2.第3の隙間5
A、5Bを介して囲繞する環状の固定部材6とを有し、
円筒状軸受体3がセラミック製の円筒状摺接部材3Aと
、この円筒状摺接部材3Aを焼きばめまたはコーティン
グすることによって外嵌されている金属製のシェル3B
とからなり、円筒状摺接部材3Aの内周面が回転軸2と
面接触する。
FIG. 1 is a half-cut vertical front view showing one embodiment of the present invention, and FIG.
The figures are partial plan views of a cylindrical bearing body, and in these figures, the sliding bearing 1 has an inner circumferential surface on the outer circumferential surface of the rotating shaft 2 or a sleeve (not shown) fitted onto the rotating shaft 2. The cylindrical bearing body 3 is in surface contact with the cylindrical bearing body 3, and the cylindrical bearing body 3 is connected to a first gap 4 in the radial direction and a second gap 4 in the axial direction. third gap 5
A, an annular fixing member 6 surrounding via 5B,
The cylindrical bearing body 3 is made of a ceramic cylindrical sliding contact member 3A, and a metal shell 3B is fitted onto the outside of the cylindrical sliding contact member 3A by shrink fitting or coating.
The inner peripheral surface of the cylindrical sliding contact member 3A is in surface contact with the rotating shaft 2.

そして固定部材6は環状厚肉のケース部6Aからなって
おり、前記径方向の第1の隙間4は、回転@2の軸線C
に平行して互いに対向する円筒状軸受体3の外周部3a
と、固定部材6におけるケス部6Aの内周面6aの間に
形成されている。
The fixing member 6 is composed of an annular thick-walled case portion 6A, and the first gap 4 in the radial direction is defined by the axis C of rotation @2.
The outer periphery 3a of the cylindrical bearing body 3 facing each other in parallel with
and the inner circumferential surface 6a of the case portion 6A of the fixing member 6.

円筒状軸受体3のシェル3Bの上下両面における周方向
複数箇所のそれぞれに、溝7が形成されこれらの溝7に
ステンレスなどの耐熱金属製環状板材によって形成した
スプリング8の内周部に折曲形成されている舌片8Aを
嵌合している。即ち、環状板材スプリング8は、その環
状部がケース部6Aの上下両端面に対してボルト9によ
って固定されており、円筒状軸受体3の外周部の周方向
複数箇所のそれぞれと固定部材6とを、第2゜第3の隙
間5A 、5Bに介在する舌片8Aで連結して、円筒状
軸受体3を固定部材6に弾性支持している。
Grooves 7 are formed at a plurality of locations in the circumferential direction on both upper and lower surfaces of the shell 3B of the cylindrical bearing body 3, and in these grooves 7, a spring 8 formed of an annular plate material made of heat-resistant metal such as stainless steel is bent at the inner circumference. The formed tongue piece 8A is fitted. That is, the annular plate spring 8 has an annular portion fixed to both upper and lower end surfaces of the case portion 6A by bolts 9, and is connected to each of a plurality of circumferential locations on the outer circumferential portion of the cylindrical bearing body 3 and to the fixing member 6. are connected by a tongue piece 8A interposed between the second and third gaps 5A and 5B, thereby elastically supporting the cylindrical bearing body 3 on the fixing member 6.

なお、図中11は固定部材6の一部として機能する主機
側部材である。
In addition, 11 in the figure is a main engine side member that functions as a part of the fixing member 6.

このような構成であれば、回転軸2と円筒状軸受体3の
円筒状の摺接部材3Aとの摩擦により円筒状軸受体3に
生じるトルクをスプリング8における複数の舌片8Aで
分散して弾性的に受は止めて、円筒状軸受体3の回り止
めを行うので、各舌片8Aが疲労破壊されない。
With this configuration, the torque generated in the cylindrical bearing body 3 due to friction between the rotating shaft 2 and the cylindrical sliding member 3A of the cylindrical bearing body 3 is dispersed by the plurality of tongues 8A of the spring 8. Since the bearing is elastically stopped and the rotation of the cylindrical bearing body 3 is prevented, each tongue piece 8A is not damaged by fatigue.

また、スプリング8は円筒状軸受体3や固定部材6など
と同様に耐熱強度が高いので、ドライ運転によって軸受
の温度が−L昇しても熱的な弾性劣化を生じない。
Further, since the spring 8 has high heat resistance strength like the cylindrical bearing body 3 and the fixing member 6, even if the temperature of the bearing increases by -L due to dry operation, thermal elasticity does not deteriorate.

さらに、径方、向に形成された第1の隙間4および軸方
向に形成された第2.第3の隙間5A、5Bを介して、
固定部材6により円筒状軸受体3を囲繞しているから、
回転軸2の軸線Cが半径方向または傾斜方向に変位して
も、この変位を複数の舌片8Aの弾性と第1の隙間4お
よび第2.第3の隙間5A、5Bの三者の協働によって
吸収して円筒状軸受体3を追従して変位させることがで
きる。したがって回転軸2と円筒状の摺接部材3Aとの
片当りが防止され、回転軸2および円筒状の摺接部材3
Aの偏摩耗もしくは円筒状の摺接部材3Aのクラックの
発生、延いては破壊などを避けることができるとともに
、円筒状軸受体3と固定部材6との衝突が防止され、円
筒状軸受体3のクランク発生、延いては破壊などを避け
ることもできる。
Further, a first gap 4 formed in the radial direction and a second gap 4 formed in the axial direction are provided. Via the third gaps 5A and 5B,
Since the fixed member 6 surrounds the cylindrical bearing body 3,
Even if the axis C of the rotating shaft 2 is displaced in the radial direction or the inclination direction, this displacement is absorbed by the elasticity of the plurality of tongues 8A and the first gaps 4 and the second . Through the cooperation of the third gaps 5A and 5B, it is possible to absorb and displace the cylindrical bearing body 3 accordingly. Therefore, uneven contact between the rotating shaft 2 and the cylindrical sliding member 3A is prevented, and the rotating shaft 2 and the cylindrical sliding member 3A are prevented from coming into partial contact.
It is possible to avoid uneven wear of A, cracks in the cylindrical sliding contact member 3A, and even breakage, etc., and collision between the cylindrical bearing body 3 and the fixed member 6 is prevented, and the cylindrical bearing body 3 It is also possible to avoid the occurrence of cranking and even damage.

そして、円筒状軸受体3が軸方向に変位してもこの変位
を舌片8Aと第2の隙間5A、5Bとの協(動によって
吸収することができる。そのために、円筒状軸受体3と
固定部材6におけるカバー部材6B2との衝突が防止さ
れ、円筒状軸受体3のクラック発生、延いては破壊など
を避けることができる。
Even if the cylindrical bearing body 3 is displaced in the axial direction, this displacement can be absorbed by the cooperation between the tongue piece 8A and the second gaps 5A and 5B. Collision between the fixing member 6 and the cover member 6B2 is prevented, and cracking and further destruction of the cylindrical bearing body 3 can be avoided.

さらに、アクシデントによって、回転軸2の軸線Cが半
径方向または傾斜方向に大きく変位しようとしても、こ
の変位を第1の隙間4の量によって制限できる。
Furthermore, even if the axis C of the rotary shaft 2 tends to be largely displaced in the radial direction or the inclination direction due to an accident, this displacement can be limited by the amount of the first gap 4.

第3図ないし第6図は、本発明の他の実施例を示し、前
記第1実施例と同一もしくは相当部分には同一符号を付
し、その詳しい説明は省略する。
3 to 6 show other embodiments of the present invention, parts that are the same as or corresponding to those in the first embodiment are given the same reference numerals, and detailed explanation thereof will be omitted.

第3図において、スプリング8は略り字状の金属線材に
よって形成され、その長辺部8Bをケース部6Aの上下
両端面と環状薄肉のカバ一部材6B1 6B2との間に
介在してポルト9によって固定されており、長辺部8B
の内端に折曲形成されている短辺部8Aをシェル3Bの
上下両面における周方向複数箇所のそれぞれに形成した
盲貫孔7Aに嵌合している。
In FIG. 3, the spring 8 is formed of an abbreviated metal wire material, and its long side 8B is interposed between the upper and lower end surfaces of the case portion 6A and the annular thin-walled cover members 6B1 and 6B2. is fixed by the long side 8B.
A short side portion 8A bent at the inner end of the shell 3B is fitted into a blind through hole 7A formed at a plurality of positions in the circumferential direction on both upper and lower surfaces of the shell 3B.

また、第4図のものは、スプリング8が金属線材を巻回
したコイルスプリングによって形成されその両端から軸
方向に延出された延出部8a。
4 is an extension portion 8a in which the spring 8 is formed by a coil spring made of a metal wire wound, and extends in the axial direction from both ends of the spring 8.

8bの一方8aをカバ一部材6B1,682の対向面側
に形成された盲貫孔6bl、6b2に嵌合し、他方8b
をシェル3Bの上下両面における周方向複数箇所のそれ
ぞれに形成した盲貫孔7Aに嵌合している。
One side 8a of 8b is fitted into the blind through holes 6bl and 6b2 formed on the opposing surface sides of the cover members 6B1 and 682, and the other 8b
are fitted into blind through holes 7A formed at a plurality of locations in the circumferential direction on both upper and lower surfaces of the shell 3B.

さらに、第5図のものも、スプリング8が金属線材を巻
回したコイルスプリングによって形成され、その両端部
の一方をカバ一部材6Bl、6B2の対向面側に形成さ
れた盲貫孔6b1.6b2に嵌合し、他方をシェル3B
の上下両面における周方向N数箇所のそれぞれに形成し
た盲貫孔7Aに嵌合している。
Furthermore, in the one shown in FIG. 5, the spring 8 is formed by a coil spring made of a metal wire wound, and one of its ends is covered with a blind through hole 6b1, 6b2 formed on the opposing surface side of the cover members 6Bl, 6B2. and the other to shell 3B.
It fits into blind through holes 7A formed at N number of locations in the circumferential direction on both the upper and lower surfaces of.

そして、第6図のものは、スプリング8が耐熱・勤属製
環状板材によって形成され、このスプリング8がポルト
15によって環状のカバ一部材13とともにフランジ1
4に固着されており、該フランジ14がポルト9により
主機側部材llに取付けられるとともに、回り止めピン
12によってスプリング8と円筒状軸受体3とを連結す
ることで、円筒状軸受体3が回転軸2と同時に回転させ
られるのを防止している。
In the case shown in FIG. 6, the spring 8 is formed of a heat-resistant annular plate material, and the spring 8 is attached to the flange 1 by a port 15 together with an annular cover member 13.
The flange 14 is attached to the main engine side member ll by the port 9, and the spring 8 and the cylindrical bearing body 3 are connected by the rotation stopper pin 12, so that the cylindrical bearing body 3 rotates. This prevents it from being rotated at the same time as shaft 2.

前記第3図ないし第6図のように構成しても第1実施例
と同様の作用効果を奏する。
Even if the configuration is as shown in FIGS. 3 to 6, the same effects as in the first embodiment can be obtained.

第7図および第8図は、それぞれ第1の隙間4の他の実
施例を示すもので、第7図の第1の隙間4は固定部材6
側に膨出する円筒状軸受体3の外周円弧面3xと、回転
軸2の軸線Cに平行な固定部材6の内周面とで形成して
いる。このような構成では、特に、回転軸2の軸線Cが
傾斜方向に変位した場合に、この変位を吸収して、円筒
状軸受体3を追従して変位させる機能が向上する。
7 and 8 respectively show other embodiments of the first gap 4, and the first gap 4 in FIG.
It is formed by an outer circumferential arcuate surface 3x of the cylindrical bearing body 3 that bulges out to the side, and an inner circumferential surface of the fixing member 6 that is parallel to the axis C of the rotating shaft 2. With such a configuration, especially when the axis C of the rotating shaft 2 is displaced in the inclination direction, the function of absorbing this displacement and following and displacing the cylindrical bearing body 3 is improved.

また、第8図は、膨出する円筒状軸受体3の外周円弧面
3Xの最大膨出点Pを回転軸2の軸線Cに平行な固定部
材6の内周面に当接させて、最大膨出点Pの上下に第1
の隙間4.4を形成している。このように構成すること
で、回転軸2の軸線Cの半径方向の変位を制限でき、ま
た回転軸2の軸&ICが傾斜方向に変位した場合に、こ
の変位を第1の隙間4.4によって吸収して、円筒状軸
受体3を追従して変位させることができる。
In addition, FIG. 8 shows the maximum bulging point P of the outer circumferential arc surface 3 The first one above and below the bulge point P
A gap 4.4 is formed. With this configuration, the displacement of the axis C of the rotary shaft 2 in the radial direction can be restricted, and when the axis & IC of the rotary shaft 2 is displaced in the inclination direction, this displacement can be controlled by the first gap 4.4. It can be absorbed and the cylindrical bearing body 3 can be displaced accordingly.

なお、前記外周円弧面3Xは回転軸2の軸&ICと円筒
状軸受体3の横軸線CIとの交点PLを中心とした曲率
半径Rをもって画かれる凸形球面が望ましいとされる。
The outer circumferential arcuate surface 3X is preferably a convex spherical surface defined by a radius of curvature R centered on the intersection PL of the axis &IC of the rotating shaft 2 and the horizontal axis CI of the cylindrical bearing body 3.

[発明の効果] 本発明は、前述のように構成されているのでつぎに記載
されるような効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it produces the following effects.

請求項(1)のすべり軸受によれば、円筒状軸受体に生
じるトルクを、円筒状軸受体の外周の周方向複数箇所の
それぞれと固定部材とを連結する複数のスプリングによ
り分散して弾性的に受は止めることになるので、スプリ
ングに疲労破壊が起こらない。
According to the sliding bearing of claim (1), the torque generated in the cylindrical bearing body is dispersed by the plurality of springs that connect each of the plurality of circumferential locations on the outer periphery of the cylindrical bearing body and the fixed member, so that the torque is elastically Since the bridge is stopped immediately, fatigue failure will not occur in the spring.

また、軸受の温度が上昇してもスプリングに熱的な弾性
劣化を生じないため必要なバネ定数が確保されるため、
ドライ運転時間の延長が可能となる。
In addition, even if the temperature of the bearing increases, the spring does not undergo thermal elastic deterioration, ensuring the necessary spring constant.
Dry operation time can be extended.

しかも、少なくとも第1の隙間を介して固定部材により
円筒状軸受体を囲繞しているから、振動などによって回
転軸の軸線が半径方向または傾斜方向に変位しても、こ
の変位をスプリングの弾性と第1の隙間の協働によって
吸収して、円筒状軸受体を追従して変位させることがで
きるので、回転軸と円筒状軸受体との片当りが防止され
、両者の偏摩耗もしくは円筒状軸受体のクラックの発生
、延いては破壊などを避けることができる。
Moreover, since the cylindrical bearing body is surrounded by the fixed member through at least the first gap, even if the axis of the rotating shaft is displaced in the radial or inclination direction due to vibration etc., this displacement can be absorbed by the elasticity of the spring. Since the first gap cooperates to absorb and displace the cylindrical bearing body to follow, uneven contact between the rotating shaft and the cylindrical bearing body can be prevented, and uneven wear of both or the cylindrical bearing body can be displaced. It is possible to avoid the occurrence of cracks in the body, and even damage.

そして、回転軸が軸方向に変位しても、この変位をスプ
リングによって吸収して、円筒状軸受体を追従して変位
させることができるので、円筒状軸受体と固定部材との
衝突を防止して、円筒状軸受体のクラック発生、延いて
は破壊などを避けることができる。
Even if the rotating shaft is displaced in the axial direction, this displacement can be absorbed by the spring and the cylindrical bearing body can follow and be displaced, thereby preventing collision between the cylindrical bearing body and the fixed member. Therefore, it is possible to avoid cracking and even destruction of the cylindrical bearing body.

さらに、アクシデントの発生によって回転軸の軸線が半
径方向または傾斜方向に大きく変位しようとしても、こ
の変位を第1の隙間の量によって制限できるから、回転
軸の過大な軸振れを防止できる。
Furthermore, even if the axis of the rotating shaft attempts to be largely displaced in the radial or inclination direction due to an accident, this displacement can be limited by the amount of the first gap, thereby preventing excessive axial wobbling of the rotating shaft.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す半裁縦断正面図、第2
図は円筒状軸受体の部分平面図、第3図ないし第6図は
本発明の他の実施例を示す半裁縦断正面図、第7図およ
び第8図は第1の隙間の他の実施例を示す部分断面図、
第9図は従来例の半裁縦断工区である。 1・・・すべり軸受 2・・・回転軸 3・・・円筒状軸受体 4・・・第1の隙間 6・・・固定部材 8・・・スプリング
FIG. 1 is a half-cut vertical front view showing one embodiment of the present invention, and FIG.
The figure is a partial plan view of a cylindrical bearing body, Figures 3 to 6 are half-cut vertical front views showing other embodiments of the present invention, and Figures 7 and 8 are other embodiments of the first gap. A partial cross-sectional view showing
Figure 9 shows a conventional half-cut longitudinal section. 1...Sliding bearing 2...Rotating shaft 3...Cylindrical bearing body 4...First gap 6...Fixing member 8...Spring

Claims (3)

【特許請求の範囲】[Claims] (1)内周面が回転軸と面接触する円筒状軸受体と、少
なくとも径方向に形成された第1の隙間を介して前記円
筒状軸受体を囲繞する固定部材とからなり、前記円筒状
軸受体の外周部の周方向複数箇所のそれぞれと前記固定
部材とをスプリングで連結して、円筒状軸受体を固定部
材に弾性支持したことを特徴とするすべり軸受。
(1) Consisting of a cylindrical bearing body whose inner peripheral surface is in surface contact with the rotating shaft, and a fixing member surrounding the cylindrical bearing body through a first gap formed at least in the radial direction, the cylindrical bearing body 1. A sliding bearing characterized in that a cylindrical bearing body is elastically supported by the fixing member by connecting each of a plurality of locations in the circumferential direction of the outer periphery of the bearing body and the fixing member with a spring.
(2)前記スプリングが金属板材によって形成されてい
る請求項1記載のすべり軸受。
(2) The sliding bearing according to claim 1, wherein the spring is formed of a metal plate material.
(3)前記スプリングが金属線材によって形成されてい
る請求項1記載のすべり軸受。
(3) The sliding bearing according to claim 1, wherein the spring is formed of a metal wire.
JP4390090A 1990-02-23 1990-02-23 Slide bearing Pending JPH03244823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4390090A JPH03244823A (en) 1990-02-23 1990-02-23 Slide bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4390090A JPH03244823A (en) 1990-02-23 1990-02-23 Slide bearing

Publications (1)

Publication Number Publication Date
JPH03244823A true JPH03244823A (en) 1991-10-31

Family

ID=12676583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4390090A Pending JPH03244823A (en) 1990-02-23 1990-02-23 Slide bearing

Country Status (1)

Country Link
JP (1) JPH03244823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207632A (en) * 2005-01-26 2006-08-10 Kubota Corp Sliding bearing device and pump device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207632A (en) * 2005-01-26 2006-08-10 Kubota Corp Sliding bearing device and pump device

Similar Documents

Publication Publication Date Title
US7018104B2 (en) Bearing assembly and method
US4589856A (en) Tripot universal joint of the end motion type
US7150679B2 (en) Vibration-decoupled pulley having an integrated visco damper
JPH1054208A (en) Bearing support member for high speed rotation
US5795077A (en) Tilting pad journal bearing
EP0040981B1 (en) A sleeve bearing, a sleeve bearing half-shell and a split-angle end rod assembly
US6637942B2 (en) Bearing assembly and method
US6948857B2 (en) Bearing system
US6431986B2 (en) Constant-velocity universal joint of a tripod type
JPH03244823A (en) Slide bearing
KR102340555B1 (en) tilting pad bearing
JPH02503711A (en) Thrust bearing support device with tilt position correction mechanism
GB2150986A (en) Split plain bearing
SU743593A3 (en) Universal joint
JPH03244822A (en) Sliding bearing
JP4147500B2 (en) Roller bearing cage
JPS5828019A (en) Knuckle joint
JP2000291665A (en) Rolling bearing
MXPA06002027A (en) Limited swivel self-aligning bearing assembly.
JP7167339B2 (en) balance shaft
US20190113070A1 (en) Rolling bearing
JP3065361B2 (en) Pistons for internal combustion engines
JP2001182744A (en) Center-bearing support
JPH08114220A (en) Bearing device for steering
JP3731705B2 (en) Cage for one-way clutch, one-way clutch using it