JPH0324403A - Apparatus for measuring depth of crack - Google Patents

Apparatus for measuring depth of crack

Info

Publication number
JPH0324403A
JPH0324403A JP16013689A JP16013689A JPH0324403A JP H0324403 A JPH0324403 A JP H0324403A JP 16013689 A JP16013689 A JP 16013689A JP 16013689 A JP16013689 A JP 16013689A JP H0324403 A JPH0324403 A JP H0324403A
Authority
JP
Japan
Prior art keywords
crack
electrodes
potential difference
current
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16013689A
Other languages
Japanese (ja)
Inventor
Hiroto Okitsu
沖津 博人
Masayuki Suzuki
政幸 鈴木
Kenichi Danjo
賢一 檀上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HIHAKAI KEISOKU KENKYUSHO KK
JFE Engineering Corp
Original Assignee
NIPPON HIHAKAI KEISOKU KENKYUSHO KK
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HIHAKAI KEISOKU KENKYUSHO KK, NKK Corp, Nippon Kokan Ltd filed Critical NIPPON HIHAKAI KEISOKU KENKYUSHO KK
Priority to JP16013689A priority Critical patent/JPH0324403A/en
Publication of JPH0324403A publication Critical patent/JPH0324403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To make it possible to measure the accurate depth of a crack highly precisely from a deep crack to a shallow crack without the effect of contact electromotive force by arranging two pairs of potential-difference detecting electrodes on the surface of a body to be measured through the crack at the inner side of current electrodes. CONSTITUTION:A pair of current electrodes 11 and 12 are arranged on the surface of a metal 1 which is a body to be measured with an interval l being provided. Two pairs of potential-difference detecting electrodes 13 and 14 and 15 and 16 are arranged through the crack in the inner side of the electrodes 11 and 12. A pulse-shaped DC current is supplied to the electrodes 11 and 12 through a pulse-wave oscillator 21 and a constant-current circuit 22. The differ ence in potentials generated in the electrodes 13 and 14 and 15 and 16 based on said current is amplified in an AC amplifier 23. The signal is further detected in a synchronous detector 24. The result becomes the voltage which is smoothed in a smoothing circuit 25. A microcomputer 26 receives the output voltage and performs the operation including correction based on intervals P1 and P2 between the electrodes 13 and 14 and 15 and 16, respectiovely. Thus, the depth of the crack 2 is computed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属など披4IIj定体表而の亀裂の深さを
al定する(JA裂深さ測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a crack depth measuring device for determining the depth of a crack in a solid object such as metal (JA crack depth measuring device).

(従来の技術) 金属の表面に開口している亀裂の深さを非破地でflF
j定する方法としては、直流電流又は交流市流による電
位差法が広く使用されている。この電位差法は、金属に
一定の電流が流れているときに、金属表面の任意の2点
間の電位差がこの2点間の距離に比例することを応用し
たものである。
(Prior art) Determine the depth of a crack that opens on the surface of a metal without breaking it.
As a method for determining j, the potential difference method using direct current or alternating current current is widely used. This potential difference method applies the fact that when a constant current flows through a metal, the potential difference between any two points on the metal surface is proportional to the distance between these two points.

第4図はかかる電α差法を応用した亀裂深さ測定装置の
構或図である。同図において1は金属であって、この金
属1には亀裂2が生じている。この金属1の表面上には
電流電極3,4が接触しており、これら電流電極3,4
は亀裂2を介して間隔gをおいて配置されている。そし
て、これら電流電極3,4の間には直流電源5又は交流
電源6が接続されている。又、これら電流電極3.4の
内側には電位差検出電極7,8が亀裂2を介して金属1
の表面上に間隔Pをおいて配置されている。
FIG. 4 is a diagram showing the structure of a crack depth measuring device to which such an electro-α difference method is applied. In the figure, 1 is a metal, and a crack 2 has occurred in this metal 1. Current electrodes 3 and 4 are in contact with the surface of this metal 1, and these current electrodes 3 and 4
are arranged at a distance g across the crack 2. A DC power source 5 or an AC power source 6 is connected between these current electrodes 3 and 4. Further, inside these current electrodes 3.4, potential difference detection electrodes 7, 8 are connected to the metal 1 through the crack 2.
are arranged at a distance P on the surface of.

そして、これら電位差検出電極7.8には電位差計9が
接続されている。しかるに、各電流電極3.4に直流?
ti源5又は交流電源6から直流電流又は交流電流が供
給されると、このとき各電位差検出電極7,8間に現れ
る電位差が電位差計9によって検出され、この電位差か
ら亀裂2の深さdが求められる。
A potentiometer 9 is connected to these potential difference detection electrodes 7.8. However, is there direct current in each current electrode 3.4?
When a direct current or an alternating current is supplied from the ti source 5 or the AC power supply 6, the potential difference appearing between the potential difference detection electrodes 7 and 8 is detected by the potentiometer 9, and the depth d of the crack 2 is determined from this potential difference. Desired.

なお、以上のような装置では亀裂2の深さ測定に先立っ
て較正が行なわれる。この較正は2方法あり、先ず第1
方法は所定深さの人工亀裂が形成された較正用試験片を
用意し、この較正用試験片の亀裂の無い部分(d−0)
及び既知の人工亀裂深さdでの各電位差検出電極7.8
間のそれぞれの電位差を検出して、これらの電位差の表
示値が亀裂深さ(d−0及びd)に対応するようにゲイ
ンを調整の後、亀裂2の深さを測定するものである。次
に第2方法は例えば金属1の亀裂2の無い部分を使用し
て各電位差検出電極7,8間の電位差V。を求め、この
亀裂深さd − 0 +u+の場合の電位差■。を基準
電位差として例えばマイクロコンピュータに記憶させて
おく。そして、この電位差voは被検査体の電気抵抗率
ρと各電位差検出電極7,8の間隔Pに比例するので、
亀裂2の深さ測定時の亀裂深さdは、各電位差電極7.
81uJの電位差変化と電位差検出電極7.8の間隔変
化との比例関係からマイクロコンピュータで計算して求
めるものである。
Note that in the above-described apparatus, calibration is performed prior to measuring the depth of the crack 2. There are two methods for this calibration.
The method is to prepare a calibration test piece in which an artificial crack of a predetermined depth has been formed, and to detect the crack-free part (d-0) of this calibration test piece.
and each potential difference sensing electrode 7.8 at a known artificial crack depth d.
The depth of the crack 2 is measured after detecting the respective potential differences between them and adjusting the gain so that the displayed values of these potential differences correspond to the crack depths (d-0 and d). Next, the second method uses, for example, a portion of the metal 1 without cracks 2 to measure the potential difference V between each potential difference detection electrode 7, 8. Find the potential difference ■ for this crack depth d − 0 + u+. is stored in, for example, a microcomputer as a reference potential difference. Since this potential difference vo is proportional to the electrical resistivity ρ of the object to be inspected and the distance P between the potential difference detection electrodes 7 and 8,
The crack depth d when measuring the depth of the crack 2 is determined by each potential difference electrode 7.
It is calculated by a microcomputer from the proportional relationship between the change in potential difference of 81 uJ and the change in the distance between the potential difference detection electrodes 7.8.

(発明が解決しようとする課題) ところで、亀裂深さの測定では浅い亀裂から深い亀裂ま
で精度高く測定する要求があるが、上記直流又は交流に
よる測定では精度高い測定が困難となっている。直流電
流による電位差法では、非常に大きな電流を必要とする
ばかりか、各電位差検出電極7.8間に現れる電位差が
数十μV程度と小さいために大きな増幅処理が必要とな
る。ところが、直流電流に対して大きな増幅処理を行う
のは交流電流の増幅に比べて難しく、かつ不安定となり
易い。一方、交流電流による電位差法では被測定体の内
部の深いところに電流が流れにくく、このため深い亀裂
の深さ測定は困難となっている。
(Problems to be Solved by the Invention) Incidentally, in measuring crack depth, there is a demand for highly accurate measurement from shallow cracks to deep cracks, but it is difficult to measure with high precision when measuring with the above-mentioned direct current or alternating current. The potential difference method using direct current not only requires a very large current, but also requires a large amplification process because the potential difference appearing between each potential difference detection electrode 7, 8 is small, about several tens of μV. However, performing large amplification processing on direct current is more difficult than amplifying alternating current, and tends to become unstable. On the other hand, in the potentiometric method using alternating current, it is difficult for the current to flow deep inside the object to be measured, making it difficult to measure the depth of deep cracks.

さらに、較正を行う場合、上記各方法とも各電位差検出
電極7,8間の電位差を検出するので、この電位差は各
電位差検出電極7,8と金属1との材質によって発生す
る接触起電力を含んだ値となっている。この接触起電力
は温度変化によって変化し数mVに達することがあるた
め誤差発生の原因となっている。従って、亀裂深さdを
求める際の較正はその誤差を含んだ状態で行なっており
、亀裂深さ測定の精度が悪くなっている。
Furthermore, when performing calibration, each of the above methods detects the potential difference between the potential difference detection electrodes 7 and 8, so this potential difference does not include the contact electromotive force generated by the materials of the potential difference detection electrodes 7 and 8 and the metal 1. It has a value of This contact electromotive force changes with temperature changes and can reach several mV, causing errors. Therefore, the calibration for determining the crack depth d is performed with this error included, resulting in poor crack depth measurement accuracy.

そこで本発明は、深い亀裂から浅い亀裂までの深さを精
度高くかつ接触起電力の影響を受けない正確な測定がで
きる亀裂深さ測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a crack depth measuring device that can accurately measure the depth from a deep crack to a shallow crack with high precision and is not affected by contact electromotive force.

(課題を解決するための手段) 本発明は、被測定体の亀裂を介して被測定体表面上に配
置された一対の第1電極と、これら第1電極にパルス状
の直流電流を供給するパルス供給手段と、第1電極の内
側で亀裂を介して被測定体表面上に配置された一対の第
2電極と、これら第2電極間に現れる電位差から亀裂の
深さを算出する深さ算出手段とを備えて上記目的を達成
しようとする亀裂深さ測定装置である。
(Means for Solving the Problems) The present invention provides a pair of first electrodes arranged on the surface of the object to be measured through a crack in the object to be measured, and a pulsed direct current is supplied to these first electrodes. A pulse supply means, a pair of second electrodes arranged on the surface of the object to be measured via a crack inside the first electrode, and a depth calculation for calculating the depth of the crack from the potential difference appearing between these second electrodes. This is a crack depth measuring device which attempts to achieve the above object by comprising means.

又、本発明は、被測定体の亀裂を介して被は−1定体表
面上に配置された一対の第1電極と、これら第1電極に
パルス状の直流電流を供給するパルス供給手段と、第1
電極の内側で亀裂を介して被測定体表面上に配置された
一対の第2電極と、第1電極と第2m極との間で亀裂を
介して被測定体表面上に配置された少なくとも一対の第
3電極と、第2電極及び第3電極に現れる各電位差をそ
れぞれ受けて電位差変化に応じた較正値を求める較正手
段と、第2電極間に現れる電位差を受けこの電位差と較
正手段で求められた較正.値とにより亀裂の深さを算出
する深さ算出手段とを備えて上記目的を達成しようとす
る亀裂深さ測定装置である。
The present invention also provides a pair of first electrodes disposed on the surface of the -1 constant body through a crack in the body to be measured, and a pulse supply means for supplying a pulsed direct current to the first electrodes. , 1st
a pair of second electrodes disposed on the surface of the object to be measured through a crack inside the electrodes; and at least one pair of second electrodes arranged on the surface of the object to be measured through a crack between the first electrode and the second m-pole. a third electrode, a calibration means that receives each potential difference appearing at the second electrode and the third electrode and calculates a calibration value according to the change in potential difference; calibration. This is a crack depth measuring device that attempts to achieve the above object, and includes a depth calculation means for calculating the depth of a crack based on the above-mentioned values.

(作 用) このような手段を備えたことにより、被測定体の亀裂を
介して被flll+定体表面上に配置された第1電極に
パルス供給手段からパルス状の直流電流を供給し、この
とき第1電極の内側で亀裂を介して被測定体表面上に配
置された一対の第2電極間に現れる電位差を用いて深さ
算出手段により亀裂の深さを算出する。
(Function) With the provision of such a means, a pulsed direct current is supplied from the pulse supply means to the first electrode placed on the surface of the object to be measured through the crack of the object to be measured, and this At this time, the depth of the crack is calculated by the depth calculating means using the potential difference that appears between the pair of second electrodes arranged on the surface of the object to be measured via the crack inside the first electrode.

また、上記手段を備えたこことにより、被測定体の亀裂
を介して被測定体表面上に配置された一対の第1電極に
パルス供給手段からパルス状の直流電流を供給し、この
とき第2電極及び第3fs極に現れる各電位差を較正手
段は受けてこれら電位差変化に応じた較正値を求め、か
つ第2電極間に現れる電位差を受けこの電位差と較正手
段で求められた較正値とを用いて深さ算出手段により亀
裂の深さを算出する。
Further, with the above-mentioned device, a pulsed direct current is supplied from the pulse supply means to the pair of first electrodes arranged on the surface of the object to be measured through a crack in the object to be measured, and at this time, the second The calibration means receives each potential difference that appears between the electrodes and the third fs electrode, and calculates a calibration value corresponding to the change in these potential differences, and receives the potential difference that appears between the second electrode, and uses this potential difference and the calibration value determined by the calibration means. The depth of the crack is calculated using a depth calculating means.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は亀裂深さ測定装置の構成図である。この測定装
置はプローブ10及び測定装置本体20とから構成され
ている。プローブ10の構成を説明すると、金属1の表
面上には亀裂2を介し間隔gをおいて第1電極である一
対の電流電極1】,12が配置されるとともに、これら
電流電極11,12の内側で亀裂2を介して第2電極で
ある電位差検出電極13.14と第3電極である電位差
検出電極15.16がそれぞれ1対づつ配置されている
。このうち各電位差検出電極13.14は間隔P,をお
いて配置されており、又各電位差検出電極15.16は
間隔P2  (>PI)をおいて配置されている。又、
これら電位差検出電極13,14と15.16とには切
換スイッチ17の各端子が接続されている。
FIG. 1 is a block diagram of a crack depth measuring device. This measuring device is composed of a probe 10 and a measuring device main body 20. To explain the configuration of the probe 10, a pair of current electrodes 1], 12, which are first electrodes, are arranged on the surface of the metal 1 with a gap g apart through a crack 2. A pair of potential difference detection electrodes 13.14 as a second electrode and a pair of potential difference detection electrodes 15.16 as a third electrode are arranged on the inside through the crack 2. Among these, each potential difference detection electrode 13, 14 is arranged with a spacing P, and each potential difference detection electrode 15, 16 is arranged with a spacing P2 (>PI). or,
Each terminal of a changeover switch 17 is connected to these potential difference detection electrodes 13, 14 and 15.16.

一方、測定装置本体20は次のような構或となっている
。すなわち、パルス供給手段としてのバルス波発振器2
1が設けられ、このノくルス波発振器21は第2図に示
すようなパルス幅Aと間隔Bとの比A/Bが数分の1以
下で、そのピーク電流値が例えば1Aで平均電流は0.
2A以下となるノくルス状の直流電流(以下、直流パル
ス電流と称する)を発生するものである。このノくルス
波発振器21の出力電圧は定電流回路22を制御して電
流電極11.12にパルス状電流を供給するように接続
されている。なお、パルス電流は制御ノくルスのピーク
電圧に比例したピーク電流で、ノ<ルス電圧の正の特間
のみ流れるように制御された定電流回路22を通して電
流電極11.12に供給されている。このパルス電流に
よって電位差検出電極13.14に生じた電位差は交流
増幅器23で増幅され、その出力はパルス波発振器21
のノくルス電圧で制御される同期検波器24を通って検
波され、平滑回路25で平滑化された電圧になる。この
平滑化された出力電圧をマイクロコンピュータ26に送
るものである。このマイクロコンピュータ26は平滑回
路25の平滑出力電圧を受けてこの電圧値から亀裂2の
深さdを算出する機能を有するものである。なお、この
マイクロコンピュータ26にはディジタル表示器27及
び設定器28が接続されている。この設定器28は各電
極13,14と15.16との各間隔P.,P2や比例
定数αが設定されており、かつ測定モード及び較正モー
ドとの各モードにセットされるようになっている。
On the other hand, the measuring device main body 20 has the following structure. That is, the pulse wave oscillator 2 as a pulse supply means
1 is provided, and this Norms wave oscillator 21 has a ratio A/B of pulse width A and interval B as shown in FIG. is 0.
It generates a pulse-like DC current (hereinafter referred to as DC pulse current) of 2A or less. The output voltage of this Norms wave oscillator 21 is connected to control a constant current circuit 22 to supply a pulsed current to the current electrodes 11, 12. The pulse current is a peak current proportional to the peak voltage of the control pulse, and is supplied to the current electrodes 11.12 through a constant current circuit 22 that is controlled to flow only during the positive pulse voltage. . The potential difference generated between the potential difference detection electrodes 13 and 14 by this pulse current is amplified by the AC amplifier 23, and its output is sent to the pulse wave oscillator 21.
The voltage is detected through a synchronous detector 24 controlled by the Norms voltage, and is smoothed by a smoothing circuit 25 to become a voltage. This smoothed output voltage is sent to the microcomputer 26. This microcomputer 26 has a function of receiving the smoothed output voltage of the smoothing circuit 25 and calculating the depth d of the crack 2 from this voltage value. Note that a digital display 27 and a setting device 28 are connected to this microcomputer 26. This setting device 28 is used for each interval P between each electrode 13, 14 and 15.16. , P2 and a proportionality constant α are set, and are set in each mode of measurement mode and calibration mode.

ところで、この亀裂2の深さdを算出する場合、マイク
ロコンピュータ26は較正して深さdを算出している。
By the way, when calculating the depth d of this crack 2, the microcomputer 26 is calibrated to calculate the depth d.

ここで、較正法について説明する。Here, the calibration method will be explained.

この場合、金属1は亀裂2の無いもの、又は金属1の亀
裂2の無い部分に各電位差検出電極13〜16が配置さ
れる。そこで、設定器28は較正モードにセットされて
パルス波発振器21から各電流電極11.12間に直流
パルス電流が供給される。このとき、各電位差検出電極
13.14及び各電位差検出電極15.16間に現れる
各基準電位差V。1及びV。2は切換スイッチ17を通
してそれぞれ交流増躯器23で増都され、次の同期検波
器24で険波されて平滑回路25を通してマイクロコン
ピュータ26に送られる。このマイクロコンピュータ2
6は各基準電位差V。1とび■。2との偏差を求め、こ
の一差を各電位差検出電極の間隔P,とP2との偏差で
除算して電位差変化率ΔVo/ΔP. = (VO2  Vol) / ( P 2  P +
 )を求め、そうして材質に応じて予め設定された比例
定数αを上記変化弔に乗算して較正値を求める。
In this case, the metal 1 has no cracks 2, or the potential difference detection electrodes 13 to 16 are arranged in a portion of the metal 1 where no cracks 2 are present. Therefore, the setting device 28 is set to a calibration mode, and a DC pulse current is supplied from the pulse wave oscillator 21 between each current electrode 11, 12. At this time, each reference potential difference V appears between each potential difference detection electrode 13.14 and each potential difference detection electrode 15.16. 1 and V. 2 are multiplied by the alternating current amplifiers 23 through the changeover switches 17, and are further increased by the next synchronous detector 24 and sent to the microcomputer 26 through the smoothing circuit 25. This microcomputer 2
6 is each reference potential difference V. 1 jump■. 2, and divide this difference by the deviation between the interval P of each potential difference detection electrode and P2 to obtain the potential difference change rate ΔVo/ΔP. = (VO2 Vol) / (P 2 P +
) is determined, and the above-mentioned change is multiplied by a proportionality constant α, which is preset according to the material, to determine a calibration value.

すなわち、 α(VO2  Vow) / (P2  P + )一
α・ΔVO/ΔPo         ・・・(1)で
ある。そして、マイクロコンピュータ26は亀裂2の深
さdを次式から算出する。
That is, α(VO2 Vow) / (P2 P + ) - α·ΔVO/ΔPo (1). Then, the microcomputer 26 calculates the depth d of the crack 2 from the following equation.

d − a (V − V H)XΔPo/ΔVo”(
1/2)・・・(2〉 このように各電位差電極13.14及び15.16を用
いてΔVO/ΔPoが求められるが、これは被測定体の
材質による抵抗率の差を補正するとともに、接触起電力
により生じる誤差も打ち消し合うことになる。ここで、
亀裂2の深さdの測定により検出した電位?::.■は
亀裂2が深くなると亀裂深さdに比例的でなく、第3図
に示すように(’/  Vow) − ood    
     −(3)のような関係の曲線となる。上記第
〈3〉式の指数mは測定電位差Vと亀裂深さdとの関係
を両対数表示するとき、その曲線の傾きから求められる
d − a (V − V H)XΔPo/ΔVo”(
1/2)...(2> In this way, ΔVO/ΔPo is obtained using each potential difference electrode 13.14 and 15.16, but this is done by correcting the difference in resistivity due to the material of the object to be measured and , the error caused by the contact electromotive force will also cancel out.Here,
Potential detected by measuring depth d of crack 2? ::. ■ is not proportional to the crack depth d as the crack 2 gets deeper, and as shown in Figure 3, ('/Vow) - ood
- A curve with the relationship as shown in (3) is obtained. The index m in the above equation <3> is obtained from the slope of the curve when the relationship between the measured potential difference V and the crack depth d is expressed in logarithm.

従って、被検査体の亀裂深さdは d−α(V  Vor)”XΔpo/ΔVO−(1/2
)・・・(4) の関係式を用いてマイクロコンピュータで算出される。
Therefore, the crack depth d of the inspected object is d−α(V Vor)”XΔpo/ΔVO−(1/2
)...(4) Calculated by a microcomputer using the relational expression.

なお、αはΔP./Δvoの較正により自動的に含んだ
値として求められるので、実際には(2 m lとなる
Note that α is ΔP. /Δvo is automatically included in the calibration, so it is actually (2 ml).

次に上記の如く構成された装置の作用について説明する
Next, the operation of the apparatus configured as described above will be explained.

亀裂測定に際して設定器28は掴定モードにセットされ
、又切換スイッチ17は電位差検出電極13.14側に
切換られる。この状態にパルス波発振器21は第2図に
示すような直流パルス電流を発生する。この直流パルス
電流は定電流回路22を通して電流電極11.12間に
供給される。
When measuring a crack, the setting device 28 is set to the gripping mode, and the changeover switch 17 is switched to the potential difference detection electrode 13, 14 side. In this state, the pulse wave oscillator 21 generates a DC pulse current as shown in FIG. This DC pulse current is supplied between the current electrodes 11 and 12 through the constant current circuit 22.

そして、電位差検出電極13.14間に現われる電位差
Vは切換スイッチ17を通して測定装置本体20に送ら
れ、この本体20の交流増幅器23で1曽幅されて同期
検波器24に送られる。この同期検波器24はパルス波
発振器21のパルス電1工に同明して各電位差検出電極
13.14間の電位差■を取り込む。そして、この電位
差Vは平滑回路25で平滑されてマイクロコンピュータ
26に送られる。このマイクロコンピュータ26は′屯
位差Vを取り込み、この電位差Vから上記第(4)式を
演算して亀裂の深さdを算出する。
Then, the potential difference V appearing between the potential difference detection electrodes 13 and 14 is sent to the measuring device main body 20 through the changeover switch 17, is amplified by 1 in the AC amplifier 23 of this main body 20, and is sent to the synchronous detector 24. This synchronous detector 24 is identical to the pulse generator 1 of the pulse wave oscillator 21 and takes in the potential difference (2) between each potential difference detection electrode 13, 14. This potential difference V is then smoothed by a smoothing circuit 25 and sent to a microcomputer 26. The microcomputer 26 takes in the potential difference V and calculates the crack depth d by calculating the above equation (4) from this potential difference V.

このように上記一実施例においては、金属1の亀裂2を
介して金属表面上に配置された各電流電極11.12に
直流パルス電流を供給し、このとき各電位差検出電極1
3.14間に現れる電位差Vから亀裂2の深さdを算出
するようにしたので、ピーク値が高くかつ平均値の小さ
い直流電流を供給できて深い亀裂2から浅い亀裂2まで
例えば深さ1關未満から50mmまでの亀裂2を測定で
きる。
Thus, in the above embodiment, a DC pulse current is supplied to each current electrode 11, 12 arranged on the metal surface through the crack 2 in the metal 1, and at this time, each potential difference detection electrode 1
Since the depth d of the crack 2 is calculated from the potential difference V that appears between 3.14 and 3.14, it is possible to supply a DC current with a high peak value and a small average value, and from the deep crack 2 to the shallow crack 2, for example, the depth d is 1. It is possible to measure cracks 2 from less than 50mm in diameter.

そして、上記直流パルス電流は平均値が小さいので例え
ば直流パルス電流はピーク電流がIAでも0.2A程度
で良く電源が小型にでき、容易に携帯用とすることがで
きる。また、パルス電流としたため、パルス幅が狭いと
き電流は内部まで流れず、表面伝播電流となるので、深
い亀裂でも亀裂深さによって電位差Vが大きく変わり、
,精度良く亀裂を71p1定できる。さらに各電位差検
出電極13.14間の電位差を同期検波して取り込んで
いるので、ノイズの影響を大幅に軽減できて安定した深
さJl定ができる。較正は、2対の電位差検出電極13
〜16間の各電位差から電位差変化率を求めて行なうの
で、金属1と各電位差検出電極13〜16などとの材質
の違いによる接触起電力の影響を受けることがなく、誤
差が発生することがない。
Since the DC pulse current has a small average value, for example, even if the peak current of the DC pulse current is IA, it is only about 0.2 A, and the power supply can be made small, and it can be easily made portable. In addition, since the pulse current is used, when the pulse width is narrow, the current does not flow to the inside and becomes a surface propagation current, so even in deep cracks, the potential difference V changes greatly depending on the crack depth.
, 71p1 cracks can be determined with high accuracy. Furthermore, since the potential difference between the respective potential difference detection electrodes 13 and 14 is synchronously detected and captured, the influence of noise can be significantly reduced and stable depth Jl can be determined. Calibration is performed using two pairs of potential difference detection electrodes 13.
Since the rate of change in potential difference is determined from each potential difference between 16 and 16, there is no influence of contact electromotive force due to the difference in material between the metal 1 and each potential difference detection electrode 13 to 16, etc., and errors can occur. do not have.

従って、亀裂深さdを高精度にillll定できる。Therefore, the crack depth d can be determined with high precision.

なお、本発明は上記一実施例に限定されるものでなくそ
の主旨を逸脱しない範囲で変形してもよい。
Note that the present invention is not limited to the above-mentioned embodiment, and may be modified without departing from the spirit thereof.

(発明の効果) 以上詳記したように本発明によれば、深い亀裂から浅い
亀裂までの深さを精度高く測定できる亀裂深さ測定装置
を提供できる。
(Effects of the Invention) As described in detail above, according to the present invention, it is possible to provide a crack depth measuring device that can measure the depth from a deep crack to a shallow crack with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明に係わる亀裂深さDI定装置
の一尖施例を説明するための図であって、第1図は構成
図、第2図は直流パルス電流の波形図、第3図は較正時
に用いる定数を説明するための図、第4図は従来装置の
構成図である。 10・・・ブローブ、11.12・・・電流電極、13
〜16・・・電位差検出電極、17・・・切換スイッチ
、20・・・7N−1定装置本体、21・・・パルス波
発振器、22・・・定電流回路、23・・・交流増幅器
、24・・・同期検波器、25・・・平滑回路、26・
・・マイクロコンピュータ、27・・・表示器、28・
・・設定器。
1 to 3 are diagrams for explaining an example of a crack depth DI determining device according to the present invention, in which FIG. 1 is a configuration diagram and FIG. 2 is a waveform diagram of a DC pulse current. , FIG. 3 is a diagram for explaining constants used during calibration, and FIG. 4 is a configuration diagram of a conventional device. 10...Brobe, 11.12...Current electrode, 13
~16... Potential difference detection electrode, 17... Changeover switch, 20... 7N-1 constant device main body, 21... Pulse wave oscillator, 22... Constant current circuit, 23... AC amplifier, 24... Synchronous detector, 25... Smoothing circuit, 26...
...Microcomputer, 27...Display device, 28.
...Setting device.

Claims (2)

【特許請求の範囲】[Claims] (1)被測定体の亀裂を介して前記被測定体表面上に配
置された一対の第1電極と、これら第1電極にパルス状
の直流電流を供給するパルス供給手段と、前記第1電極
の内側で前記亀裂を介して前記被測定体表面上に配置さ
れた一対の第2電極と、これら第2電極間に現れる電位
差から前記亀裂の深さを算出する深さ算出手段とを具備
したことを特徴とする亀裂深さ測定装置。
(1) A pair of first electrodes arranged on the surface of the object to be measured through a crack in the object to be measured, a pulse supply means for supplying a pulsed direct current to these first electrodes, and the first electrode a pair of second electrodes disposed on the surface of the object to be measured via the crack inside the device; and depth calculation means for calculating the depth of the crack from the potential difference appearing between the second electrodes. A crack depth measuring device characterized by:
(2)被測定体の亀裂を介して前記被測定体表面上に配
置された一対の第1電極と、これら第1電極にパルス状
の直流電流を供給するパルス供給手段と、前記第1電極
の内側で前記亀裂を介して前記被測定体表面上に配置さ
れた一対の第2電極と、前記第1電極と前記第2電極と
の間で前記亀裂を介して前記被測定体表面上に配置され
た少なくとも一対の第3電極と、前記第2電極及び前記
第3電極に現れる各電位差をそれぞれ受けて電位差変化
に応じた較正値を求める較正手段と、前記第2電極間に
現れる電位差を受けこの電位差と前記較正手段で求めら
れた較正値とにより前記亀裂の深さを算出する深さ算出
手段とを具備したことを特徴とする亀裂深さ測定装置。
(2) a pair of first electrodes disposed on the surface of the object to be measured through a crack in the object to be measured, a pulse supply means for supplying a pulsed direct current to these first electrodes, and the first electrode a pair of second electrodes arranged on the surface of the object to be measured through the crack between the first electrode and the second electrode; and a pair of second electrodes arranged on the surface of the object to be measured through the crack between the first electrode and the second electrode at least one pair of third electrodes arranged; a calibration means for receiving each potential difference appearing at the second electrode and the third electrode to obtain a calibration value according to a change in the potential difference; A crack depth measuring device comprising: depth calculation means for calculating the depth of the crack based on the potential difference between the receivers and the calibration value obtained by the calibration means.
JP16013689A 1989-06-22 1989-06-22 Apparatus for measuring depth of crack Pending JPH0324403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16013689A JPH0324403A (en) 1989-06-22 1989-06-22 Apparatus for measuring depth of crack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16013689A JPH0324403A (en) 1989-06-22 1989-06-22 Apparatus for measuring depth of crack

Publications (1)

Publication Number Publication Date
JPH0324403A true JPH0324403A (en) 1991-02-01

Family

ID=15708653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16013689A Pending JPH0324403A (en) 1989-06-22 1989-06-22 Apparatus for measuring depth of crack

Country Status (1)

Country Link
JP (1) JPH0324403A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217304A (en) * 1991-08-02 1993-06-08 The United States Of America As Represented By The United States Department Of Energy Electrical network method for the thermal or structural characterization of a conducting material sample or structure
JP2007003436A (en) * 2005-06-27 2007-01-11 Tokyo Electric Power Co Inc:The Sensor for crack depth measuring device and crack depth measuring device
JP2008083038A (en) * 2006-08-30 2008-04-10 Atlus:Kk Method of detecting damage of structure made of conductive material
JP2009503467A (en) * 2005-07-27 2009-01-29 イデント テクノロジー アーゲー Detection system especially for implementing safety systems
CN111006576A (en) * 2019-12-18 2020-04-14 戴彬 Building wall and bridge deck crack monitoring system
US10765572B2 (en) 2014-04-03 2020-09-08 Aplix Method of assembling at least two units, and a corresponding assembled structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217304A (en) * 1991-08-02 1993-06-08 The United States Of America As Represented By The United States Department Of Energy Electrical network method for the thermal or structural characterization of a conducting material sample or structure
JP2007003436A (en) * 2005-06-27 2007-01-11 Tokyo Electric Power Co Inc:The Sensor for crack depth measuring device and crack depth measuring device
JP2009503467A (en) * 2005-07-27 2009-01-29 イデント テクノロジー アーゲー Detection system especially for implementing safety systems
JP2008083038A (en) * 2006-08-30 2008-04-10 Atlus:Kk Method of detecting damage of structure made of conductive material
US10765572B2 (en) 2014-04-03 2020-09-08 Aplix Method of assembling at least two units, and a corresponding assembled structure
CN111006576A (en) * 2019-12-18 2020-04-14 戴彬 Building wall and bridge deck crack monitoring system

Similar Documents

Publication Publication Date Title
US3971365A (en) Bioelectrical impedance measuring system
JP3907353B2 (en) Bioimpedance measurement device
EP0315854B1 (en) Measurement method for moisture content in the skin and apparatus therefor
EP0417796B1 (en) Hematocrit measuring instrument
JPH0778489B2 (en) Non-contact method and measuring device for measuring the magnitude of parameters relating to conductive materials
US3750649A (en) Pulmonary impedance bridge
US10401465B2 (en) Compensation and calibration for a low power bio-impedance measurement device
KR20160144621A (en) Impedance measuring apparatus
US4269684A (en) Apparatus for oxygen partial pressure measurement
JPH0324403A (en) Apparatus for measuring depth of crack
JPH0356848A (en) Method and device for surface cracking measurement
US4452672A (en) Process and apparatus for polarographic determination of oxygen and carbon dioxide
JPH06277191A (en) Method for measuring bio-impedance
JP4795807B2 (en) Bioimpedance measuring device
US6168707B1 (en) Ion measurement apparatus and methods for improving the accuracy thereof
JP2000271101A (en) Body impedance measuring device
RU2287832C1 (en) Device for measuring polarization potential of metallic underground structure in zone of effect of wandering currents
RU1807368C (en) Device for inspecting quality of stuffing of electrolyzer cathode interblock joints
US20160113547A1 (en) Device for detecting electric potentials
JPH04191650A (en) Measuring apparatus for ion
JPH01189552A (en) Measuring apparatus of bioimpedance
JPH04118524A (en) Liquid level meter
JPH0755744A (en) Method and equipment for measuring conductivity
JPS6313486Y2 (en)
JPS6097247A (en) Continuous liquid-concentration measuring device