JPH03243858A - Detection of dna - Google Patents

Detection of dna

Info

Publication number
JPH03243858A
JPH03243858A JP2040303A JP4030390A JPH03243858A JP H03243858 A JPH03243858 A JP H03243858A JP 2040303 A JP2040303 A JP 2040303A JP 4030390 A JP4030390 A JP 4030390A JP H03243858 A JPH03243858 A JP H03243858A
Authority
JP
Japan
Prior art keywords
dna
electrophoresis
polymer
capillary
amplified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2040303A
Other languages
Japanese (ja)
Other versions
JP2722752B2 (en
Inventor
Koichi Yamagata
浩一 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2040303A priority Critical patent/JP2722752B2/en
Publication of JPH03243858A publication Critical patent/JPH03243858A/en
Application granted granted Critical
Publication of JP2722752B2 publication Critical patent/JP2722752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To allow the easy and rapid detection of DNA which is amplified by a gene amplification method by executing the detection of the above- mentioned DNA by a capillary electrophoresis method. CONSTITUTION:The DNA is first extracted from the desired microorganisms, etc., in a specimen sample by a known method and this DNA is amplified by a PCR (Polymerase Chain Reaction) method. The PCR reaction liquid contg. the amplified DNA is directly analyzed by the capillary electrophoresis after the mineral oil in the upper layer is removed. The electrophoresis is effected by adding a polymer which is not gelatinized to a buffer soln. for electrophoresis in the capillary electrophoresis and any polymer is usable, insofar as the polymer is not gelatinized at the time of use. Such polymer includes, for example, the polymer known as low-melting agarose of a low gelatinization temp.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はDNAの検出方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for detecting DNA.

更に詳しくは、遺伝子増幅技術とキャピラリー電気泳動
法を利用したDNAの検出方法に関する。
More specifically, the present invention relates to a DNA detection method using gene amplification technology and capillary electrophoresis.

[従来の技術] 近年、遺伝子工学の発展に伴いDNAの検出方法が開発
され試みられるようになった。例えば、オリゴヌクレオ
チドを用いたDNAプローブ法、ハイブリダイゼーショ
ン法が試みられ、またDNAをエチジウムブロマイドを
含有するアガロースゲルを用いて電気泳動を行い分離し
、UVを照射して発生する蛍光を写真に撮るという方法
でDNAの検出が行われている。
[Prior Art] In recent years, with the development of genetic engineering, DNA detection methods have been developed and attempted. For example, DNA probe methods and hybridization methods using oligonucleotides have been attempted, and DNA is separated by electrophoresis using an agarose gel containing ethidium bromide, and the fluorescence generated by UV irradiation is photographed. DNA is detected using this method.

このようなりNAの検出を利用した応用は、種々の分野
に広がっており、例えば、遺伝子導入された形質転換体
の検出、遺伝病の診断等が挙げられるが、微生物検査に
おける応用もその1つである。
Applications using NA detection are spreading to various fields, such as detection of gene-introduced transformants and diagnosis of genetic diseases, but one example is application in microbial testing. It is.

微生物検査は、従来、感染症の診断あるいは食品の細菌
検査においてまずその試料中に存在する細菌等を好気条
件及び嫌気条件下等において増菌培養を行い集落の観察
を行った後、選択培地を用いて分離培養し集落の観察を
行い菌の諸性状の検査を行うことにより菌の同定を行っ
ている。あるいは、増菌培養の段階を省き試料中に存在
する細菌等を好気条件及び嫌気条件下等において選択培
地を用いて分離培養し集落の観察を行い菌の諸性状の検
査を行うことにより菌の同定を行っている(臨床検査技
術全書第7巻微生物検査、小酒井望編集、1985年医
学書院発行)。
Conventionally, in the diagnosis of infectious diseases or bacterial testing of food, microbial testing first involves enlarging the bacteria present in the sample under aerobic and anaerobic conditions, observing the colonies, and then using a selective medium. Bacteria are identified by isolating and culturing them, observing the colonies, and testing various properties of the bacteria. Alternatively, the bacteria present in the sample can be isolated and cultured using a selective medium under aerobic or anaerobic conditions, and the colonies can be observed and various properties of the bacteria can be tested. (Clinical Testing Techniques Complete Book Volume 7 Microbial Testing, edited by Nozomi Kosakai, published by Igaku Shoin in 1985).

近年、このような微生物検査においてもオリゴヌクレオ
チドを用いたDNAプローブ法あるいはハイブリダイゼ
ーション法が試みられるようになってきており、DNA
の検出による微生物検査の実用化が期待されている。
In recent years, DNA probe methods or hybridization methods using oligonucleotides have been attempted in such microbial testing, and DNA
It is expected that microbial testing will be put to practical use by detecting .

また、DNAはオリゴヌクレオチドをブライマーとして
用いた遺伝子増幅法(Polymerase Chai
nReaction法以下、略してPCR法H5aik
iら、5cience、 230.1350 (198
5)によって増幅させる方法が知られており、DNAの
検出には増幅させたDNAを用いる方法が試みられてい
る。
In addition, DNA can be processed using a gene amplification method (Polymerase Chai) using oligonucleotides as primers.
nReaction method, abbreviated as PCR method H5aik
i et al., 5science, 230.1350 (198
5) is known, and methods using amplified DNA have been attempted for DNA detection.

[発明が解決しようとする課題] DNAの検出方法のうち、特に微生物検査等においては
、オリゴヌクレオチドを標識修飾したプローブにより膜
上あるいは他の支持体上でハイブリダイゼーションを行
い、標識修飾したプローブを検出する方法は、十分な検
出感度と選択性を得るのが難しいのが実情である。
[Problems to be Solved by the Invention] Among DNA detection methods, particularly in microbial testing, oligonucleotides are hybridized on membranes or other supports using probes modified with labels, and the probes modified with labels are hybridized. The reality is that it is difficult to obtain sufficient detection sensitivity and selectivity using detection methods.

また、検体から得られた微生物由来のDNAをPCR法
によって増幅し、その増幅したDNAをアガロースゲル
電気泳動によって検出する方法では、ゲル作製に手間が
かかる、ゲルが扱いにくい、サンプルをゲルにアプライ
するのに手間がかかる、見た目には分かりやすいが定量
性がよくないなどの短所がある。従って、特に微生物検
査のような迅速性、簡便性かつ高感度が要求される分野
では自動化あるいは装置化しようとした場合に問題とな
っている。このような状況下、迅速、簡便かつ検出感度
の高いDNAの検出方法の開発が期待されている。
In addition, the method of amplifying DNA derived from microorganisms obtained from a sample by PCR and detecting the amplified DNA by agarose gel electrophoresis has the disadvantages that gel preparation is time-consuming, gels are difficult to handle, and the sample is not applied to the gel. It has disadvantages such as being time-consuming and visually easy to understand, but not very quantitative. Therefore, this poses a problem when attempting to automate or implement equipment, especially in fields such as microbial testing that require rapidity, simplicity, and high sensitivity. Under these circumstances, the development of a DNA detection method that is quick, simple, and has high detection sensitivity is expected.

本発明の目的は、まさにこの点にあり、PCR法を利用
して増幅されたDNAの検出を迅速かつ簡便に行う方法
を提供することにある。
The purpose of the present invention is precisely in this respect, and is to provide a method for quickly and easily detecting DNA amplified using the PCR method.

詳しくは、理論段数が高く十分な分離が得られる、分析
時間が短く時間当りの試料処理能力が高い、サンプルの
インジェク、トが行いやすい、サンプルが少なくてよく
、ゲルの作製が不要である、またこれらのことよりラン
ニングコストを低く抑えることができる、その他定量性
および再現性がよい等の長所を持つDNAの検出方法を
提供することにある。
In detail, it has a high number of theoretical plates and provides sufficient separation, short analysis times and high sample throughput per hour, easy sample injection, small sample size, and no need for gel preparation. Furthermore, it is an object of the present invention to provide a DNA detection method which has advantages such as being able to keep running costs low and having good quantitative performance and reproducibility.

[課題を解決するための手段および作用]本発明者は、
上記の目的を達成するため鋭意検討を行った結果、微生
物検査等を行う際に検体中のDNAの一部分をまずPC
R法を利用して増幅し、増幅したDNAの検出をキャピ
ラリー電気泳動法を用いて行うことにより、迅速、簡便
かつ高感度にDNAを検出することができることを見出
し、さらに研究を重ねて本発明を完成するに至った。
[Means and effects for solving the problem] The present inventors:
As a result of intensive research to achieve the above objectives, we have found that when performing microbiological tests, etc., a portion of the DNA in the specimen is first
It was discovered that by amplifying using the R method and detecting the amplified DNA using capillary electrophoresis, DNA can be detected quickly, easily, and with high sensitivity.After further research, the present invention was developed. I was able to complete it.

ここで、本発明で検出されるDNAは、DNAの検出の
目的によりどのような由来のものであってもよい。例え
ば、微生物検査においては、微生物由来のDNAが用い
られ、遺伝子導入された形質転換体の検出法として用い
られる場合は、導入された外来遺伝子のDNAが用いら
れ、また、遺伝病の場合は、塩基配列の−7−8が変異
したDNAが用いられる。
Here, the DNA detected in the present invention may be of any origin depending on the purpose of DNA detection. For example, in microbial testing, DNA derived from microorganisms is used, and when used as a method for detecting gene-introduced transformants, DNA of introduced foreign genes is used, and in the case of genetic diseases, DNA with a base sequence of -7 to 8 mutated is used.

本発明においては、公知の方法(生化学実験講座2、核
酸の化学■、41〜54 (1975) 、日本生化学
全編、東京化学同人発行)によってまず検体試料中の目
的とする微生物等からDNAを抽出し、そのDNAをP
CR法(Polymerase Chain Reac
tion法以下、5aikiら、5cience、 2
30.1350 (1985))によって増幅する。こ
の増幅されたDNAを含むPCR反応液を上層のミネラ
ルオイルを除いた後直接、キャピラリー電気泳動によっ
て分析する。
In the present invention, DNA is first extracted from a target microorganism, etc. in a specimen sample by a known method (Biochemistry Experiment Course 2, Chemistry of Nucleic Acids, 41-54 (1975), Nippon Biochemistry, published by Tokyo Kagaku Doujin). Extract the DNA and P
CR method (Polymerase Chain Reac
tion method, 5aiki et al., 5science, 2
30.1350 (1985)). After removing the upper layer of mineral oil from the PCR reaction solution containing this amplified DNA, it is directly analyzed by capillary electrophoresis.

キャピラリー電気泳動は以下の方法によって行うが分析
条件及び操作方法等はこれに限定されない。
Capillary electrophoresis is performed by the following method, but analysis conditions and operating methods are not limited thereto.

本発明に用いるキャピラリー電気泳動では、電気泳動用
緩衝液にゲル化していないポリマーを添加して電気泳動
を行うが、使用時にゲル化しないポリマーであればいか
なるものであっても使用することができる。例えば、ゲ
ル化温度が低いいわゆる低融点アガロース、デンプン等
が挙げられる。
In capillary electrophoresis used in the present invention, electrophoresis is performed by adding a non-gelling polymer to the electrophoresis buffer, but any polymer that does not gel during use can be used. . Examples include so-called low melting point agarose, starch, etc., which have a low gelation temperature.

また、電気泳動用緩衝液には、SDS  (ドデシル硫
酸ナトリウム)、胆汁酸系等の界面活性剤を0.01〜
0.5%添加することが好ましいが添加しなくてもよい
In addition, the electrophoresis buffer contains surfactants such as SDS (sodium dodecyl sulfate) and bile acids at a concentration of 0.01 to
It is preferable to add 0.5%, but it may not be added.

また、電気泳動用緩衝液は例えば0.1Mのトリス(ヒ
ドロキシメチル)アミンメタン及びほう酸を緩衝剤とし
て含有するもの等が用いられるが、分離分析対象となる
試料に応じて種々の緩衝剤を用いることができる。
The electrophoresis buffer used is one containing, for example, 0.1M tris(hydroxymethyl)aminemethane and boric acid as a buffer, but various buffers may be used depending on the sample to be separated and analyzed. I can do it.

キャピラリーの材質は、フユーズドシリカが好ましいが
これに限定されない。例えば、テフロンチューブ等であ
ってもよい。キャピラリーの内径は10〜200μmが
好ましく、特に好ましくは50〜100μmであるがこ
れに限定されない。
The material of the capillary is preferably fused silica, but is not limited thereto. For example, it may be a Teflon tube or the like. The inner diameter of the capillary is preferably 10 to 200 μm, particularly preferably 50 to 100 μm, but is not limited thereto.

キャピラリーの長さは、通常30〜50cmが用いられ
るがこれに限定されない。
The length of the capillary is usually 30 to 50 cm, but is not limited thereto.

また、電源としては最大出力電圧30kV程度のものが
好ましいがこれより小さいものであってもよく、これよ
り大きなものであってもよい。また、電流は直流が好ま
しいがパルス状に発生するものでもよくまた、これらに
限定されない。
Further, the power source preferably has a maximum output voltage of about 30 kV, but it may be smaller or larger than this. Further, the current is preferably a direct current, but may be generated in a pulsed manner, and is not limited thereto.

また、検出器としては例えばUV検出器あるいは蛍光検
出器が好ましいが電気化学検出器等であってもよく、ま
た、これらに限定されない。
Further, as the detector, for example, a UV detector or a fluorescence detector is preferable, but an electrochemical detector or the like may also be used, and the detector is not limited to these.

また、記録計は保持時間、ピーク高、ピーク面積計算等
のデータ処理機能を持つものが好ましいがこれに限定さ
れない。
Furthermore, the recorder preferably has data processing functions such as retention time, peak height, and peak area calculations, but is not limited thereto.

上記のポリマー等を含有する電気泳動用緩衝液を満たし
たキャピラリー内に端部から試料を導入し、キャピラリ
ーの両端をポリマー等を含有する電気泳動用緩衝液を入
れたそれぞれ別の電極槽に浸す。この二つの電極槽にそ
れぞれPt電極を浸し両極に電圧を印加する。キャピラ
リー両端に電圧を印加することによってキャピラリー内
部のポリマー等を含む電気泳動用緩衝液に流れが生じ、
溶出された試料の成分を上記の検出器によって検出する
。検出器からの電気的な信号は記録計に伝達されそこで
処理される。
A sample is introduced from the end into a capillary filled with an electrophoresis buffer containing the above polymer, etc., and both ends of the capillary are immersed in separate electrode baths filled with an electrophoresis buffer containing a polymer, etc. . A Pt electrode is immersed in each of these two electrode baths, and a voltage is applied to both electrodes. By applying a voltage to both ends of the capillary, a flow is generated in the electrophoresis buffer containing polymers inside the capillary.
The components of the eluted sample are detected by the above detector. Electrical signals from the detector are transmitted to a recorder and processed there.

[実施例] 以下の実施例により本発明のさらに詳細な説明を行うが
、本発明はこれらの実施例によって何等限定されるもの
ではない。
[Examples] The present invention will be explained in more detail with reference to the following Examples, but the present invention is not limited to these Examples in any way.

を用いて適当な増菌培地に接種し、37℃、好気的条件
下で終夜培養を行い、その培地1.5mlから遠心操作
により菌体を回収した。10mM)!Jス塩酸緩衝液(
pH7,5)で1回洗浄後、同緩衝液にリゾチームを1
mg/mlとなるように溶かした液0゜5mlで懸濁さ
せ、37℃、IO分で溶菌させた。
The cells were inoculated into an appropriate enrichment medium using the following method, cultured overnight at 37°C under aerobic conditions, and bacterial cells were collected from 1.5 ml of the medium by centrifugation. 10mM)! JS hydrochloric acid buffer (
After washing once with pH 7.5), add 1 lysozyme to the same buffer.
The cells were suspended in 0.5 ml of a solution containing mg/ml and lysed at 37° C. for IO minutes.

溶菌液に前記緩衝液で飽和させたフェノールを同容量加
え、よく撹はんした。遠心後、上層液を回収し、エタノ
ール沈澱処理を行って核酸成分を沈澱させ、その沈澱物
を前記緩衝液、1mlに溶かして、これを試料とした。
The same volume of phenol saturated with the above buffer was added to the lysate and stirred well. After centrifugation, the upper layer solution was collected and subjected to ethanol precipitation treatment to precipitate the nucleic acid component.The precipitate was dissolved in 1 ml of the above buffer solution and used as a sample.

2、ブライマーの台底 サルモネラ菌DNAを特異的に増幅するプライマーとし
て、下記の塩基配列をもつオリゴヌクレオチド(特願平
1−185683号)を化学合成した。
2. An oligonucleotide (Japanese Patent Application No. 1-185683) having the following base sequence was chemically synthesized as a primer for specifically amplifying the Salmonella enterica DNA of the base of the primer.

(5°) d−GGCGAGCAGTTTGTCTGT
C(3°)(5′) d−GTTTCGCCTGGCT
GATACG (3”〉化学合或は高滓DNA台底装置
N5−1を用い、トリエステル法により行った。台底し
たオリゴヌクレオチドの精製はC18逆相カラムを用い
て行った。
(5°) d-GGCGAGCAGTTTGTCTGT
C (3°) (5') d-GTTTCGCCTGGCT
GATACG (3'') chemical synthesis was carried out by the triester method using a high-grade DNA platform apparatus N5-1. Purification of the oligonucleotides formed at the bottom was performed using a C18 reverse phase column.

3、  PCR 前記試料液を3μl用いそれに滅菌蒸留水16、05μ
Rs 10x反応用緩衝液3μASdNTP溶液4.8
μ11ブライマーをそれぞれ1.5μlそして耐熱性D
NAポリメラーゼ0.15μlを加え30μlの反応液
を調製した。この反応液の入った容器にミネラルオイル
(SIGMA社製)を50μl加え反応液上に重層する
。各添加された液の内容を下記に示す。
3. PCR Use 3 μl of the sample solution and add 16.05 μl of sterile distilled water to it.
Rs 10x reaction buffer 3μ ASdNTP solution 4.8
1.5 μl each of μ11 Brimer and heat resistant D
0.15 μl of NA polymerase was added to prepare a 30 μl reaction solution. Add 50 μl of mineral oil (manufactured by SIGMA) to the container containing this reaction solution and layer it on top of the reaction solution. The contents of each added liquid are shown below.

10X反応用緩衝液;  500 mM KCI、  
100[11M Tris−HCI(pH8,3)、 
15 mM Mgclz、 0.1%(w/v)ゼラチ
ン dNTP溶液、  dATP、 clcTP、 dGT
P、 dTTPを混合させたもので各最終濃度が1.2
5 mMブライマー; 前述した化学合成精製品の各水
溶液(500unit/ml> 耐熱性DNAポリメラーゼ;  Taq DNAポリメ
ラーゼ(5unit/ml ;  Perkin Bl
mer Cetus社製)反応条件は、次の通りである
10X reaction buffer; 500 mM KCI,
100 [11M Tris-HCI (pH 8,3),
15 mM Mgclz, 0.1% (w/v) gelatin dNTP solution, dATP, clcTP, dGT
A mixture of P and dTTP, each with a final concentration of 1.2
5 mM Brimer; Each aqueous solution of the chemically synthesized purified product described above (500 units/ml> Thermostable DNA polymerase; Taq DNA polymerase (5 units/ml); Perkin Bl
mer Cetus) reaction conditions are as follows.

熱変性;  94℃ 1分 アニーリング;  37℃ 1分 重合反応;  60℃ ■分 熱変性からアニーリングを経て重合反応に至る過程を1
サイクル(所要時間5.7分)とし、これを42サイク
ル(所要時間約4時間)行った。これらの操作は、Pe
rkin Homer Cetus社製DNA The
rmal Cyclerに上記反応条件をプログラムす
ることにより行った。
Thermal denaturation; 94℃ 1 minute annealing; 37℃ 1 minute polymerization reaction; 60℃ ■1 minute The process from thermal denaturation to annealing to polymerization reaction
cycle (required time: 5.7 minutes), and 42 cycles (required time: approximately 4 hours) were performed. These operations
rkin Homer Cetus DNA The
The reaction was carried out by programming the above reaction conditions into Rmal Cycler.

80m1の蒸留水に0.5gの低融点アガロースを加え
、よく撹はんした後加熱し溶解させ放冷後、これに12
1 gのトリス(ヒドロキシメチル)アミノメタン、9
3mgのエチレンジアミン四酢酸二ナトリウム、20m
gのドデシル硫酸ナトリウムおよび100μgのエチジ
ウムブロマイドを溶解させた。これにさらにほう酸を加
え、pHを8.1に調型し、蒸留水を加えて正確に10
0m1にした。
Add 0.5 g of low melting point agarose to 80 ml of distilled water, stir well, heat to dissolve, let cool, and add 12 g of low melting point agarose to 80 ml of distilled water.
1 g tris(hydroxymethyl)aminomethane, 9
3mg disodium ethylenediaminetetraacetate, 20m
g of sodium dodecyl sulfate and 100 μg of ethidium bromide were dissolved. Add boric acid to this, adjust the pH to 8.1, add distilled water and adjust the pH to 8.1.
I set it to 0m1.

第1Efflに示したシステムを用いてキャピラリー電
気泳動を行った。すなわち、蛍光検出器(1)はRF−
540型(島津製作所製、励起波長300nm、検出波
長590nmに設定)、高電圧電源(2〉はHER30
P  O,16−3l型(検定プレシジョンデバイセズ
製)、記録計(3)はC’−R4A型(島津製作所製)
、電極(4)はPt線(0,5mmφ−30mm) 、
電極槽(5)は1.5mlのサンプリングチューブを用
いた。
Capillary electrophoresis was performed using the system shown in the first Effl. That is, the fluorescence detector (1) is RF-
540 type (manufactured by Shimadzu Corporation, excitation wavelength set to 300 nm, detection wavelength set to 590 nm), high voltage power supply (2> is HER30
P O, 16-3l type (manufactured by Precision Devices), recorder (3) is C'-R4A type (manufactured by Shimadzu Corporation)
, the electrode (4) is a Pt wire (0.5mmφ-30mm),
A 1.5 ml sampling tube was used for the electrode tank (5).

キャピラリー(6)は5cientific Glas
sBngineering社のフユーズドシリ力キャピ
ラリーの内径75μmのものを使用した。キャビラIJ
 −の全長は450mmであり子種側から300mmの
所から2[[1mの幅で被覆を剥し、蛍光検出器に取り
付けた。このキャピラリー内には使用時に上記の低融点
アガロースを含有する電気泳動用緩衝液を満たし、両端
はそれぞれ低融点アガロースを含有する電気泳動用緩衝
液を入れた子種側電極槽及び極側電極槽に浸しておいた
。このとき二つの電極槽内の緩衝液の液面の高さが同じ
になるように調整しておいた。
Capillary (6) is 5cientific Glass
A fused silica capillary manufactured by sBngineering with an inner diameter of 75 μm was used. Cabila IJ
The total length of - was 450 mm, and the coating was peeled off at a width of 2 m from 300 mm from the seed side and attached to a fluorescence detector. During use, this capillary is filled with an electrophoresis buffer containing the above-mentioned low-melting point agarose, and the progeny-side electrode tank and the pole-side electrode tank each contain an electrophoresis buffer containing low-melting-point agarose at both ends. I soaked it in At this time, the liquid levels of the buffer solutions in the two electrode tanks were adjusted to be the same height.

試料のキャピラリーへの導入はキャピラリーの+極側の
端部を+側電極槽から引き上げ試料溶液中に10秒間浸
して行った。このとき試料の液面の高さは電極槽内の緩
衝液の液面より50mm高くなるように調整して行った
The sample was introduced into the capillary by lifting the + side end of the capillary from the + side electrode tank and immersing it in the sample solution for 10 seconds. At this time, the height of the liquid level of the sample was adjusted to be 50 mm higher than the liquid level of the buffer solution in the electrode tank.

試料をキャピラリー内に導入した後、キャピラリーの端
部を電極槽に戻しキャピラリーの両端に7、5 kVの
直流電圧を印加した。電流値は12〜15μ八となり、
キャピラリー内には子種側から一極側に向かって緩衝液
の流れが生じ、DNAは分離され、溶出されて蛍光検出
器で検出された。PCR反応によって増幅されたサルモ
ネラ菌DNAは期待される溶出時間にシャープなピーク
として検出された。この結果を第2図に示す。
After introducing the sample into the capillary, the end of the capillary was returned to the electrode bath, and a DC voltage of 7.5 kV was applied to both ends of the capillary. The current value is 12~15μ8,
A buffer solution was generated in the capillary from the progeny side to the unipolar side, and the DNA was separated, eluted, and detected with a fluorescence detector. Salmonella bacteria DNA amplified by PCR reaction was detected as a sharp peak at the expected elution time. The results are shown in FIG.

[発明の効果コ 本発明の方法によれば、PCR反応後の増幅されたDN
Aを含む溶液をゲルを作製することなしにキャピラリー
電気泳動を用いて簡便迅速かつ定量性再現性よく十分な
分離度で分析でき、しかもキャピラリー電気泳動に必要
なサンプル量が少なくて済むためPCHの反応系を小さ
くすることができランニングコストを低く抑えることが
できる。
[Effects of the Invention] According to the method of the present invention, the amplified DNA after PCR reaction
A-containing solutions can be easily and quickly analyzed using capillary electrophoresis without creating a gel, with good quantitative reproducibility and sufficient resolution.Moreover, the amount of sample required for capillary electrophoresis is small, making it easy to analyze PCH. The reaction system can be made smaller and running costs can be kept low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、キャピラリー電気泳動のシステムを、第2図
は、増幅されたサルモネラDNAの蛍光検出器による検
出を示す。 1・・・蛍光検出器 2・・・高電圧電源 3・・・記録計 4・・・電極 5・・・電極槽 6・・・キャピラリー
FIG. 1 shows a system for capillary electrophoresis, and FIG. 2 shows detection of amplified Salmonella DNA by a fluorescence detector. 1... Fluorescence detector 2... High voltage power supply 3... Recorder 4... Electrode 5... Electrode tank 6... Capillary

Claims (1)

【特許請求の範囲】[Claims] (1)遺伝子増幅法により増幅させたDNAの検出を、
キャピラリー電気泳動法によって行うことを特徴とする
DNAの検出方法。
(1) Detection of DNA amplified by gene amplification method,
A method for detecting DNA, characterized in that it is carried out by capillary electrophoresis.
JP2040303A 1990-02-21 1990-02-21 DNA detection method Expired - Lifetime JP2722752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2040303A JP2722752B2 (en) 1990-02-21 1990-02-21 DNA detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2040303A JP2722752B2 (en) 1990-02-21 1990-02-21 DNA detection method

Publications (2)

Publication Number Publication Date
JPH03243858A true JPH03243858A (en) 1991-10-30
JP2722752B2 JP2722752B2 (en) 1998-03-09

Family

ID=12576852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040303A Expired - Lifetime JP2722752B2 (en) 1990-02-21 1990-02-21 DNA detection method

Country Status (1)

Country Link
JP (1) JP2722752B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107226A (en) * 1990-05-18 1993-04-27 Univ Northeastern Pulse electric field capillary tube electrophoresis
JP2011141297A (en) * 1999-07-26 2011-07-21 Applied Biosystems Llc Method and apparatus for reducing peak broadening accompanied by establishment of an electric field
JP2015114150A (en) * 2013-12-10 2015-06-22 株式会社島津製作所 Electrophoretic separation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANALITICAL CHEMISTRY=1987 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107226A (en) * 1990-05-18 1993-04-27 Univ Northeastern Pulse electric field capillary tube electrophoresis
JP2011141297A (en) * 1999-07-26 2011-07-21 Applied Biosystems Llc Method and apparatus for reducing peak broadening accompanied by establishment of an electric field
JP2011174951A (en) * 1999-07-26 2011-09-08 Applied Biosystems Llc Method for reducing peak broadening associated with establishment of electric field, and apparatus
JP2015114150A (en) * 2013-12-10 2015-06-22 株式会社島津製作所 Electrophoretic separation method

Also Published As

Publication number Publication date
JP2722752B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
US6197508B1 (en) Electrochemical denaturation and annealing of nucleic acid
CN107385040B (en) Amplicon rescue multiplex polymerase chain reaction for amplification of multiple targets
US5824477A (en) Electrochemical denaturation of double-stranded nucleic acid
JP3086255B2 (en) Denaturation method by electrochemical treatment of nucleic acid-containing solution, and amplification method, replication method, detection method and kit using such denaturation method
JP2854904B2 (en) Gene testing method
US5527670A (en) Electrochemical denaturation of double-stranded nucleic acid
US5830657A (en) Method for single-tube sequencing of nucleic acid polymers
US5683657A (en) DNA meltometer
JPH09510107A (en) Electrochemical denaturation of double-stranded nucleic acids
WO1992004470A1 (en) Electrochemical denaturation of double-stranded nucleic acid
EP2740804A1 (en) Nucleic acid analysis method
CN113304700A (en) Method for preparing magnetic polymer microspheres and application thereof
Becker et al. Genomic footprinting in mammalian cells with ultraviolet light.
Pfeifer et al. Genomic footprinting by ligation mediated polymerase chain reaction
JPH03243858A (en) Detection of dna
Hull et al. Protein—DNA interactions in vivo—examining genes in Saccharomyces cerevisiae and Drosophila melanogaster by chromatin footprinting
JP2003144152A (en) Method for detecting target nucleic acid fragment and detection kit for target nucleic acid fragment
JP4580104B2 (en) A method for in vitro detection of a target substance in a specimen, comprising labeling of the target substance with a reporter gene and a sequence necessary for its expression in vitro
JP3186259B2 (en) Gene polymorphism analysis method and analyzer using capillary electrophoresis
JPH03112498A (en) Oligonucleotide for detecting campylobacter jejuni and detection using the same oligonucleotide
RU2732922C2 (en) Method for molecular labelling, based on microsatellite loci, intended for genetic certification of plant variety of rubus genus plants
JP2001169778A (en) Method and kit for rapidly testing bacterial gene
JP2002125694A (en) Method for detecting enteric bacterium by pcr-sscp (single-strand conformation polymorphism) method
JPH0775599A (en) Method for detecting target nucleic acid and kit therefor
CA3139356A1 (en) Combined solution phase and solid phase dna amplification