JPH03242364A - Production of calcium phosphate-based biomaterial - Google Patents

Production of calcium phosphate-based biomaterial

Info

Publication number
JPH03242364A
JPH03242364A JP2035676A JP3567690A JPH03242364A JP H03242364 A JPH03242364 A JP H03242364A JP 2035676 A JP2035676 A JP 2035676A JP 3567690 A JP3567690 A JP 3567690A JP H03242364 A JPH03242364 A JP H03242364A
Authority
JP
Japan
Prior art keywords
phosphoric acid
compound
calcium
apatite
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2035676A
Other languages
Japanese (ja)
Inventor
Masaya Sumida
政哉 澄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP2035676A priority Critical patent/JPH03242364A/en
Publication of JPH03242364A publication Critical patent/JPH03242364A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Prosthetics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain through a simple process the title biomaterial with its Ca/P ratio deviated from the stoichiometric composition by impregnating an apatite form before calcination with an aqueous solution of a Ca compound or phosphoric acid compound followed by calcination to effect phase separation to each specified proportion of CaO or tricalcium phosphate. CONSTITUTION:Firstly, an apatite (in particular, pref. hydroxiapatite) form before calcination is impregnated with an aqueous solution of a Ca compound or phosphoric acid compound. Said Ca compound is e.g. CaCO3, CaCl2. Said phosphoric acid compound is e.g. phosphoric acid, sodium phosphate. Thence, the resulting apatite is calcined into a sintered compact with a separated phase consisting of 2-60wt.% of CaO or 7-90wt.% of tricalcium phosphate. Thereby, the objective biomaterial with its Ca/P ratio deviated from the stoichiometric composition can be produced in high efficiency through a simple process using readily available raw materials such as commercially available hydroxyapatite powder.

Description

【発明の詳細な説明】 「利用分野」 本発明は、リン酸カルシウム系の医科用あるいは歯科用
生体材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application The present invention relates to a method for producing calcium phosphate-based medical or dental biomaterials.

「従来技術及びその問題点」 ハイドロキシアパタイトは、その優れた生体親和性及び
骨伝導性により人工歯根、人工骨など、医科用あるいは
歯科用生体材料への応用が広範に検討されており、数多
くのものが既に商品化されている。その製品形態はブロ
ック状及び顆粒状の人工骨、人工歯根、人工耳小骨など
多岐にわたる。
"Prior art and its problems" Due to its excellent biocompatibility and osteoconductivity, hydroxyapatite has been extensively studied for application to medical and dental biomaterials such as artificial tooth roots and artificial bones, and has been used in numerous applications. Something has already been commercialized. The products come in a wide variety of forms, including block-shaped and granular artificial bones, artificial tooth roots, and artificial ear ossicles.

ところで、以前は、化学量論組成のハイドロキシアパタ
イト〔化学式Ca+o(P 04)6(OH)!、Ca
ZP比= 1.67 )を得ることは非常に難しいとさ
れており、これを克服するために数多くの研究がなされ
てきた。例えば、特開昭53−81499号公報には、
化学量論組成に比べて不足したカルシウムを加え、反応
させて化学量論組成のハイドロキシアパタイトを得るこ
とが開示されており、また、特開昭59−21509号
公報にはカルシウム塩とリン酸塩を摩砕しつつ反応させ
ることによりCa/P比=1.67に極めて近いハイド
ロキシアパタイトを得ることが開示されている。このよ
うな状況に伴い、化学量論組成のハイドロキシアパタイ
トの粉末を入手することは容易になってきた。
By the way, previously, hydroxyapatite with stoichiometric composition [chemical formula Ca+o(P 04)6(OH)! , Ca
It is said that it is very difficult to obtain a ZP ratio of 1.67, and many studies have been conducted to overcome this problem. For example, in Japanese Patent Application Laid-Open No. 53-81499,
It is disclosed that hydroxyapatite with a stoichiometric composition is obtained by adding calcium that is insufficient compared to the stoichiometric composition and reacting. It is disclosed that hydroxyapatite having a Ca/P ratio very close to 1.67 can be obtained by reacting while grinding. Under these circumstances, it has become easier to obtain hydroxyapatite powder with a stoichiometric composition.

一方、従来、化学量論組成の純粋なハイドロキシアパタ
イトが生体材料には好ましいとされていたが、近年、用
途に応して特定の機能を付与するため、純粋なハイドロ
キシアパタイト以外の研究も行われるようになった。例
えば、本発明者は、特願平1284209号明細書にお
いて、カルシウム過剰アパタイトを900°C以上の温
度で焼成して酸化カルシウムを分相させたものは、純粋
なハイドロキシアパタイトより骨伝導能に優れているこ
とを開示した。また、生体内非吸収性であるハイドロキ
シアパタイトに吸収性を付与するために、生体内で吸収
されるβ−リン酸三カルシウムを複合化させる研究もな
されている(例えば、第82回日本補綴歯科学会学術大
会論文集、94頁など)。
On the other hand, pure hydroxyapatite with a stoichiometric composition has traditionally been considered preferable for biomaterials, but in recent years, research on materials other than pure hydroxyapatite has been conducted in order to impart specific functions depending on the application. It became so. For example, in Japanese Patent Application No. 1284209, the present inventor discovered that calcium-rich apatite fired at a temperature of 900°C or higher to phase separate calcium oxide has superior bone conductivity than pure hydroxyapatite. disclosed that In addition, in order to impart absorbability to hydroxyapatite, which is non-absorbable in the living body, research is being conducted to combine β-tricalcium phosphate, which is absorbed in the living body (for example, the 82nd Japan Prosthodontics Proceedings of academic conferences, 94 pages, etc.).

しかしながら、これらの原料粉末はいずれも合成段階か
らその都度特別に調製したものである。
However, all of these raw material powders are specially prepared each time from the synthesis stage.

また、工業的規模で化学量論組成のハイドロキシアパタ
イトの生産が行われているメーカーでも、化学量論組成
のものを製造するために設定されている合成装置のパラ
メーターを変更しなければならず、さらに、その後の合
成品への夾雑を防止するために装置を洗浄する煩雑さを
考慮すると、合成工程から特定のCa/P比のアパタイ
トを得ようとすることは、非常に問題である。一方、市
販の化学量論組成のハイドロキシアパタイト粉末と酸化
カルシウム又はβ−リン酸三カルシウム粉末を混合して
複合材料を得るのは、混合の均一性の点で問題がある。
In addition, even manufacturers who produce hydroxyapatite with a stoichiometric composition on an industrial scale have to change the parameters of the synthesis equipment set to produce hydroxyapatite with a stoichiometric composition. Furthermore, trying to obtain apatite with a specific Ca/P ratio from the synthesis process is very problematic, considering the complexity of cleaning the equipment to prevent contamination in subsequent synthetic products. On the other hand, when a composite material is obtained by mixing commercially available stoichiometric hydroxyapatite powder with calcium oxide or β-tricalcium phosphate powder, there is a problem in the uniformity of the mixture.

「発明の目的」 本発明の目的は、市販のノ\イドロキシアパタイト粉末
など、容易に入手できる原料を用いて、簡単な操作工程
でCa/P比が化学量論組成からはずれたリン酸カルシ
ウム系生体材料を効率よく製造する方法を提供すること
にある。
"Objective of the Invention" The object of the present invention is to produce a calcium phosphate-based biological material whose Ca/P ratio deviates from the stoichiometric composition through a simple operation process using easily available raw materials such as commercially available nohydroxyapatite powder. The objective is to provide a method for efficiently manufacturing materials.

「発明の構成」 本発明ニよるリン酸カルシウム系生体材料の製造方法は
、焼成前のアパタイト成形体にカルシウム化合物又はリ
ン酸化合物の水溶液を含浸させ、焼成して酸化カルシウ
ム2〜60重量%又はリン酸三カルシウムフル90重量
%を分相させることを特徴とする。
"Structure of the Invention" The method for producing a calcium phosphate-based biomaterial according to the present invention involves impregnating an apatite molded body before firing with an aqueous solution of a calcium compound or a phosphoric acid compound, and firing it to produce 2 to 60% by weight of calcium oxide or phosphoric acid. It is characterized by phase separation of 90% by weight of tricalcium.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

原料に用いるアパタイトは、容易に入手できるものであ
れば、どのようなものでもよい。その場合、化学量論組
成のものが最も好ましいが、化学量論組成からはずれた
ものでも、化学分析、X線回折などにより非化学量論性
(どれくらい、化学量論組成から偏倚しているか)を分
析してあれば用いることができる。アパタイトとしては
、ハイドロキシアパタイトが最も好ましいが、フッ素ア
パタイト、塩素アパタイトを用いることもできる。
Any apatite can be used as a raw material as long as it is easily available. In that case, it is most preferable to have a stoichiometric composition, but even if it deviates from the stoichiometric composition, it can be determined by chemical analysis, X-ray diffraction, etc. that it is non-stoichiometric (how much it deviates from the stoichiometric composition). It can be used if it has been analyzed. As the apatite, hydroxyapatite is most preferred, but fluoroapatite and chloroapatite can also be used.

このような原料から生体材料を製造する方法としては、
通常、以下の3方法がある。すなわち、■粉末のまま乾
式成形(プレス)により圧粉体を作製しく多孔質焼結体
を製造する場合には、ここで焼失性物質を混合する)、
焼成し、緻密質又は多孔質焼結体を得る方法、■粉末を
水に分散させ、バインダー、必要に応じて発泡剤、界面
活性剤などを加え、湿式成形用原料スラリーとし、各種
湿式成形に付した後、焼成することにより緻密質又は多
孔質焼結体を得る方法、■前述の■の原料スラリーをウ
レタンフオームなどの焼失性三次元網状構造体にコーテ
ィングし、加熱によりこれを消失させ、さらに焼成する
ことにより多孔質焼結体を得る方法がある。本発明を実
施するには、■では圧粉体又は仮焼後の成形体(以下、
仮焼体という)、■及び■の方法では乾燥体及び仮焼体
のいずれでもよい。すなわち、本発明を実施する場合に
は、上記■〜■のいずれかの方法で製造した焼成前の成
形体にカルシウム化合物又はリン酸化合物の水溶液を含
浸させる。
Methods for producing biomaterials from such raw materials include:
Generally, there are three methods: In other words, ■ When producing a porous sintered body by dry molding (pressing) the powder, a burnable substance is mixed here),
How to obtain a dense or porous sintered body by firing: ■ Disperse the powder in water, add a binder, a blowing agent, a surfactant, etc. as necessary, and make a raw material slurry for wet molding, which can be used for various wet moldings. A method of obtaining a dense or porous sintered body by attaching the slurry to a burnable three-dimensional network structure such as urethane foam, and burning it off by heating. There is a method of obtaining a porous sintered body by further firing. In order to carry out the present invention, in (1), a compacted powder body or a compacted body after calcination (hereinafter referred to as
(referred to as a calcined body), either a dried body or a calcined body may be used in methods (1) and (2). That is, when carrying out the present invention, an aqueous solution of a calcium compound or a phosphoric acid compound is impregnated into a pre-fired molded article produced by any of the methods (1) to (2) above.

カルシウム化合物としては、炭酸カルシウム、水酸化カ
ルシウム、塩化カルシウム、硝酸カルシウム、酢酸カル
シウム、乳酸カルシウムなどがあるが、均一な混合とい
う観点から水溶性のものが好ましい。また、ここで、ア
パタイトとしてハイドロキシアパタイトを適用する際に
、例えば塩化カルシウムを用いると、焼成工程でも塩素
は揮発せず、結晶構造中に取り込まれ、ハイドロキシア
パタイトが一部塩素アパタイトになるおそれがあるので
、これが問題となる場合には、酢酸力ルシラム、乳酸カ
ルシウムなどを用いるか、又は本発明者が特願昭63−
247236号明細書で提案したカルシウムゾルを用い
るのが好ましい。
Examples of the calcium compound include calcium carbonate, calcium hydroxide, calcium chloride, calcium nitrate, calcium acetate, and calcium lactate, but water-soluble compounds are preferred from the viewpoint of uniform mixing. In addition, when applying hydroxyapatite as apatite, for example, if calcium chloride is used, chlorine will not volatilize during the firing process, but will be incorporated into the crystal structure, and there is a risk that some of the hydroxyapatite will become chloroapatite. Therefore, if this becomes a problem, use luciram acetate, calcium lactate, etc., or the inventor proposed
Preferably, the calcium sol proposed in No. 247236 is used.

また、リン酸化合物としては、正リン酸(以下、リン酸
と略記する)、リン酸ナトリウム、リン酸水素カリウム
、リン酸アンモニウム、リン酸マグネシウム、トリエチ
ルホスフェート等のリン酸エステル類などが挙げられる
が、カルシウムと同様な理由から溶解度の高いものが好
ましい。また、リン酸ナトリウムやリン酸カリウムを用
いた場合、ナトリウムやカリウムが揮発せず、アパタイ
ト中に不純物として残ってしまうおそれがあるので、こ
れが問題となる場合には、リン酸、リン酸アンモニウム
、リン酸エステル類を用いるべきである。
Examples of phosphoric acid compounds include phosphoric acid esters such as orthophosphoric acid (hereinafter abbreviated as phosphoric acid), sodium phosphate, potassium hydrogen phosphate, ammonium phosphate, magnesium phosphate, and triethyl phosphate. However, for the same reason as calcium, those with high solubility are preferred. In addition, when using sodium phosphate or potassium phosphate, the sodium or potassium may not volatilize and may remain as an impurity in the apatite, so if this becomes a problem, use phosphoric acid, ammonium phosphate, Phosphate esters should be used.

また、リン酸、一部のリン酸エステルの中には酸性が強
く、一部アパタイトを溶解してしまうおそれもあるので
、これらが問題となる場合には、このような化合物の使
用を避けるべきである。
Additionally, phosphoric acid and some phosphoric acid esters are highly acidic and may dissolve some apatite, so if these are a problem, avoid using such compounds. It is.

本発明の方法において含浸させる水溶性カルシウム化合
物又はリン酸化合物の量は、焼成により分相させたい量
に応じて適宜決定することができる。本発明においては
、焼結体中に酸化カルシウムを2〜60重量%重量%分
易か又はリン酸三カルシウムを7〜90重量%重量%分
易ことが必要である。酸化カルシウムが2重量%未満で
あると、骨伝導能が充分に改善されず、酸化カルシウム
が60重量%を超えると、結晶形、収縮率の違いから、
焼結体が崩壊するおそれがある。また、リン酸三カルシ
ウムが7重量%未満であると、生体吸収性が低く、90
重量%を超えると、吸収性はリン酸三カルシウムに等し
くなる。
The amount of the water-soluble calcium compound or phosphoric acid compound to be impregnated in the method of the present invention can be appropriately determined depending on the amount of phase separation desired by firing. In the present invention, it is necessary to contain 2 to 60% by weight of calcium oxide or 7 to 90% by weight of tricalcium phosphate in the sintered body. If the calcium oxide content is less than 2% by weight, bone conduction ability will not be sufficiently improved, and if the calcium oxide content exceeds 60% by weight, due to differences in crystal shape and shrinkage rate,
There is a risk that the sintered body will collapse. Furthermore, if tricalcium phosphate is less than 7% by weight, bioabsorption is low and 90%
Above the weight percent, the absorbency is equal to tricalcium phosphate.

なお、酸化カルシウム又はリン酸三カルシウムの分相量
は、X線回折分析により求めることができる。
Note that the amount of phase separation of calcium oxide or tricalcium phosphate can be determined by X-ray diffraction analysis.

上記のように、成形体を含浸した後、乾燥し、焼成する
。焼成は、常法で行うことができる。
After impregnating the molded body as described above, it is dried and fired. Firing can be performed by a conventional method.

[発明の実施例j 次に、実施例に基づいて本発明をさらに詳しく説明する
が、本発明はこれに限定されるものではない。
[Example j of the invention] Next, the present invention will be described in more detail based on Examples, but the present invention is not limited thereto.

実施例1 公知の過酸化水素発泡法で作製したハイドロキシアパタ
イト多孔質乾燥体1.3gに水2gとリン酸水素二アン
モニウム0.02 gから調製した水溶液をスポイトで
滴下、含浸させた後、1100°Cで1時間焼成し、焼
結体を作製した。得られた焼結体を粉砕し、X線回折を
行ったところ、第1図に示すX線回折図が得られた。第
1図において、aはリン酸三カルシウムのピークを示す
。この図から、得られた焼結体がハイドロキシアパタイ
トとリン酸三カルシウムの混合物であり、リン酸三カル
シウムの量は約9重量%であることが分かった。
Example 1 An aqueous solution prepared from 2 g of water and 0.02 g of diammonium hydrogen phosphate was added dropwise to 1.3 g of a dried porous hydroxyapatite body prepared by a known hydrogen peroxide foaming method using a dropper to impregnate it. It was fired at °C for 1 hour to produce a sintered body. When the obtained sintered body was crushed and subjected to X-ray diffraction, the X-ray diffraction diagram shown in FIG. 1 was obtained. In FIG. 1, a indicates the peak of tricalcium phosphate. From this figure, it was found that the obtained sintered body was a mixture of hydroxyapatite and tricalcium phosphate, and the amount of tricalcium phosphate was about 9% by weight.

実施例2 公知の過酸化水素発泡法で作製したハイドロキシアパタ
イト多孔質乾燥体1.5gに水2gと酢酸カルシウム0
.07 gから調製した水溶液をスポイトで滴下、含浸
させた後、1100°Cで1時間焼成し、焼結体を作製
した。得られた焼結体を粉砕し、X線回折を行ったとこ
ろ、第2図に示すX線回折図が得られた。第2図におい
て、bは酸化カルシウムのピークを示す。この図から、
得られた焼結体がハイドロキシアパタイトと酸化カルシ
ウムの混合物であり、酸化カルシウムの量は約3重量%
であることが分かった。
Example 2 2 g of water and 0 calcium acetate were added to 1.5 g of dried porous hydroxyapatite produced by a known hydrogen peroxide foaming method.
.. After dripping an aqueous solution prepared from 0.07 g with a dropper to impregnate it, it was fired at 1100°C for 1 hour to produce a sintered body. When the obtained sintered body was crushed and subjected to X-ray diffraction, the X-ray diffraction diagram shown in FIG. 2 was obtained. In FIG. 2, b indicates the peak of calcium oxide. From this figure,
The obtained sintered body is a mixture of hydroxyapatite and calcium oxide, and the amount of calcium oxide is about 3% by weight.
It turned out to be.

「発明の効果」 本発明の方法によれば、市販のハイドロキシアパタイト
粉末など、容易に入手できる原料を用いて、Ca/P比
が化学量論組成から偏倚したリン酸カルシウム系生体材
料を簡単な操作で効率よく製造することができる。
"Effects of the Invention" According to the method of the present invention, calcium phosphate biomaterials with a Ca/P ratio that deviates from the stoichiometric composition can be prepared using easily available raw materials such as commercially available hydroxyapatite powder. It can be manufactured efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られた焼結体のX線回折図、第2
図は実施例2で得られた焼結体のX線回折図である。 符号の説明 a・・・リン酸三カルシウムのピーク b・・・酸化カルシウムのピーク
Figure 1 is an X-ray diffraction diagram of the sintered body obtained in Example 1,
The figure is an X-ray diffraction diagram of the sintered body obtained in Example 2. Explanation of symbols a: Tricalcium phosphate peak b: Calcium oxide peak

Claims (2)

【特許請求の範囲】[Claims] 1.焼成前のアパタイト成形体にカルシウム化合物又は
リン酸化合物の水溶液を含浸させ、焼成して酸化カルシ
ウム2〜60重量%又はリン酸三カルシウム7〜90重
量%を分相させることを特徴とするリン酸カルシウム系
生体材料の製造方法。
1. A calcium phosphate system characterized by impregnating an apatite molded body before firing with an aqueous solution of a calcium compound or a phosphoric acid compound and firing it to phase separate 2 to 60% by weight of calcium oxide or 7 to 90% by weight of tricalcium phosphate. Method for producing biomaterials.
2.成形体が圧粉体、乾燥体又は仮焼体である請求項1
記載のリン酸カルシウム系生体材料の製造方法。
2. Claim 1: The molded body is a green compact, a dried body or a calcined body.
The method for producing the described calcium phosphate biomaterial.
JP2035676A 1990-02-16 1990-02-16 Production of calcium phosphate-based biomaterial Pending JPH03242364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2035676A JPH03242364A (en) 1990-02-16 1990-02-16 Production of calcium phosphate-based biomaterial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2035676A JPH03242364A (en) 1990-02-16 1990-02-16 Production of calcium phosphate-based biomaterial

Publications (1)

Publication Number Publication Date
JPH03242364A true JPH03242364A (en) 1991-10-29

Family

ID=12448486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2035676A Pending JPH03242364A (en) 1990-02-16 1990-02-16 Production of calcium phosphate-based biomaterial

Country Status (1)

Country Link
JP (1) JPH03242364A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047334A1 (en) * 1996-06-14 1997-12-18 Bioland Method for preparing an implantable composite material, resulting material, implant including said material, and kit therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047334A1 (en) * 1996-06-14 1997-12-18 Bioland Method for preparing an implantable composite material, resulting material, implant including said material, and kit therefor
FR2749756A1 (en) * 1996-06-14 1997-12-19 Bioland PROCESS FOR THE PREPARATION OF AN IMPLANTABLE COMPOSITE MATERIAL, MATERIAL OBTAINED, IMPLANT COMPRISING SUCH MATERIAL, AND IMPLEMENTATION KIT
US6018095A (en) * 1996-06-14 2000-01-25 Bioland Method for preparing an implantable composite material, resulting material, implant including said material, and kit therefor

Similar Documents

Publication Publication Date Title
US5137534A (en) Method for producing dental and medical bone prosthesis and bone prosthesis produced thereby
JP3658172B2 (en) A storage stable formulation for calcium phosphate minerals prepared in situ
US5679294A (en) α-tricalcium phosphate ceramic and production method thereof
EP1335757A1 (en) Porous calcium phosphate cement
EP1380313B1 (en) Method of preparing porous calcium phosphate morsels and granules via Gelatin processing
JP2004026648A (en) Method for manufacture alpha- and beta-tricalcium phosphate powder
EP0335359A2 (en) Porous ceramic material and production process thereof
JPS63103809A (en) Production of porous calcium phosphate sphere
RU2546539C1 (en) Method of producing powdered material based on carbonated hydroxyapatite and brushite
JPH03242364A (en) Production of calcium phosphate-based biomaterial
JP2756703B2 (en) Spherical apatite, method for producing the same, and molded article with porous structure
JP4764985B2 (en) Fibrous calcium phosphate
JPH0415062A (en) Living body material with multiphase structure and its manufacture
RU2392007C2 (en) Manufacture method of calcium phosphate-based porous material
JPS5913443B2 (en) Production method of CaO-P↓2O↓5-based apatite
JPH01100048A (en) Production of calcium phosphate-based set material
JPH0665635B2 (en) Molding material
JPH0536064B2 (en)
CN100366301C (en) Coral hydroxyapatite artificial bone with betatype tricalcium phosphate coating and its preparation
JPH0588623B2 (en)
JPS6366790B2 (en)
JP2696345B2 (en) Calcium phosphate ceramic sintered body
JP2662984B2 (en) Composite composition for producing calcium phosphate-based cured product and method for producing cured product
KR100692608B1 (en) Fluorapatite/ collagen complex for transplnting and preparing method thereof
JP2892092B2 (en) Calcium phosphate compound molded article and method for producing the same