JPH03241661A - Alkaline zinc storage battery - Google Patents

Alkaline zinc storage battery

Info

Publication number
JPH03241661A
JPH03241661A JP2036968A JP3696890A JPH03241661A JP H03241661 A JPH03241661 A JP H03241661A JP 2036968 A JP2036968 A JP 2036968A JP 3696890 A JP3696890 A JP 3696890A JP H03241661 A JPH03241661 A JP H03241661A
Authority
JP
Japan
Prior art keywords
electrode
terminal
zinc
nickel
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2036968A
Other languages
Japanese (ja)
Inventor
Yoshihiro Eguchi
能弘 江口
Kenkichi Fujii
健吉 藤井
Toshiyuki Onda
敏之 温田
Kazuya Okabe
一弥 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP2036968A priority Critical patent/JPH03241661A/en
Publication of JPH03241661A publication Critical patent/JPH03241661A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Abstract

PURPOSE:To prevent a dendrite short circuit and improve the charge/discharge cycle by providing extracting terminals on the side section of a battery jar, and providing the extracting terminal of a nickel electrode above the extracting terminal of a zinc electrode. CONSTITUTION:A zinc electrode 2 has a copper-punched current collector formed with many holes as a core metal, zinc active material sheets are pressed on its both faces, and all zinc electrodes 2 are connected with a connecting terminal 6. A nickel electrode 1 is a well-known positive electrode filled with an active material mainly made of nickel hydroxide into a sintered nickel porous body by the chemical impregnation method, and nickel electrodes 1 are connected with a connecting terminal 5. All electrode plates are enveloped by liquid holding tanks 3 and separators 4. Extracting terminals are provided on the side section of a battery jar 7, and the terminal 5 of the nickel electrode 1 is provided above the terminal 6 of the zinc electrode 2. The dendrite grown from the zinc electrode terminal 6 in an electrolyte does not reach the nickel electrode terminal 5, thus no short circuit occurs.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、可搬用、据置用、電気自動車用の電源として
用いられる密閉形アルカリ亜鉛蓄電池に関するものであ
る@ 従来技術とその問題点 アルカリ亜鉛蓄電池は高エネルギー密度、高出力特性を
有している。しかしながら亜鉛の溶解度が高いために、
充電時、亜鉛のプントフィトが成長しセパレータの貫通
シW−)を起こしたり、あるいは形状変化つまりシェー
プチェンジのために活物質の利用率の低下を招く。この
ために電池容量が徐々に低下していた。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a sealed alkaline zinc storage battery used as a power source for portable, stationary, and electric vehicles. It has high energy density and high output characteristics. However, due to the high solubility of zinc,
During charging, zinc puntophytes grow and cause penetration of the separator (W-) or change in shape, resulting in a decrease in the utilization rate of the active material. This caused the battery capacity to gradually decrease.

又1据置用1電気自動車用等は電池容量が可搬用に比べ
て大きく、それに応じて極板高さが高くなる傾向にあり
、更にすべての用途の電池において、保守の容易さより
密閉化の要望が大である。
In addition, batteries for stationary use and for electric vehicles have larger capacities than portable ones, and the plate height tends to be higher accordingly.Furthermore, for all types of batteries, there is a demand for hermetically sealed batteries for ease of maintenance. is large.

比較的大容量の密閉形アルカリ亜鉛蓄電池において、従
来充放電サイクルの進行に伴い、高さ方向の電解液の偏
在、或いは濃度の不均一が生じ晶かった。
Conventionally, in a relatively large-capacity sealed alkaline zinc storage battery, as the charge/discharge cycle progresses, the electrolyte becomes unevenly distributed in the height direction or its concentration becomes uneven.

このため極板の電流密度に不均一が生じたり、充電末期
の亜鉛極の酸素ガス吸収が不均一になり・亜鉛極の利用
面積が低下しサイクル寿命が小容量の密閉形アルカリ亜
鉛蓄電池に比べて劣る欠点を有していた。
As a result, the current density of the electrode plates becomes uneven, oxygen gas absorption by the zinc electrode becomes uneven at the end of charging, the usable area of the zinc electrode is reduced, and the cycle life is shorter than that of a sealed alkaline zinc storage battery with a small capacity. It had some disadvantages.

この対策として電池の極群の極板面が電槽底面に対し並
行に配した構成が提案された。
As a countermeasure to this problem, a configuration was proposed in which the electrode plate surface of the battery electrode group was arranged parallel to the bottom surface of the battery case.

この提案により電解液の偏在、濃度の不均一が解消され
、その分サイクル寿命が改善された。
This proposal eliminates uneven distribution of electrolyte and uneven concentration, and improves cycle life accordingly.

しかしながら電解液及び亜鉛酸イオンの下方への移行が
大きくフリーな電解液を持つベント形電池にみられる亜
鉛極板の形状変化が生じ十分なサイクル寿命を実現でき
なかった。又、アルカリ電解液に漬ったニッケ)′v極
端子に亜鉛プントフィトが伸長して触れることにより、
水素ガスの発生反応或いは容量低下を起こすなどの問題
があった。
However, the downward migration of the electrolyte and zincate ions caused a change in the shape of the zinc electrode plate seen in vented batteries with a free electrolyte, making it impossible to achieve a sufficient cycle life. In addition, when the zinc puntophyte extends and touches the Nikkei'v electrode terminal soaked in the alkaline electrolyte,
There were problems such as a hydrogen gas generation reaction or a decrease in capacity.

これを解決するべく、保液層な各極板に独立させること
で電解液及び亜鉛酸イオンの下方への移行を抑制した。
In order to solve this problem, we suppressed the downward migration of electrolyte and zincate ions by making each electrode plate independent as a liquid retaining layer.

これによりサイクル寿命は、大幅に改良された。This significantly improved cycle life.

しかしながら、シロートにより急激に容量低下を生じる
電池がたまにあり、サイクル寿命を更に改良するにはさ
らなる改良の必要がある。
However, there are some batteries whose capacity suddenly decreases due to silting, and further improvements are needed to further improve cycle life.

この時に生じるシッートは、保液層に沿って伸長する亜
鉛のデンドライトショート、或いは電解液に漬った亜鉛
極端子から成長するデンドライトショートによるもので
あった。
The sheets generated at this time were due to dendrite shorts of zinc extending along the liquid retaining layer or dendrite shorts growing from the zinc electrode terminal immersed in the electrolytic solution.

この対策として、セパレータの端部な保液層よりも突出
させることによりある程度のデンドライト抑制の効果が
得られたが不充分であった。
As a countermeasure to this problem, a certain degree of dendrite suppression effect was obtained by making the separator protrude beyond the liquid retaining layer at the end, but this was insufficient.

上記従来の種々の提案では、有効且つ簡単なプントフィ
ト防止対策とはなり得なかった。
The various conventional proposals described above have not been able to provide effective and simple measures to prevent Puntophyte.

発明の目的 本発明は上記従来の問題点に鑑みなされたものでデンド
ライトショートを防止した、充放電サイクル寿命の優れ
たアルカリ亜鉛蓄電池を提供することを目的とするもの
である。
OBJECTS OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide an alkaline zinc storage battery which prevents dendrite short circuits and has an excellent charge/discharge cycle life.

発明の構成 本発明は上記目的を達成するべく、 亜鉛極とニッケル極とこれに介在するセパレータと保液
層からなる極群と、遊離な液が存在しない程度に制限さ
れた7μカリ電解液を有し、該極群の極板面が電槽底面
に対し対向するように配した電池において、引き出し端
子が電槽の側部にあり且つニッケルJ:Mの引き出し端
子位置が亜鉛極の引き出し端子位置より上部にあること
を特徴とするアルカリ亜鉛蓄電池である。
Structure of the Invention In order to achieve the above object, the present invention includes an electrode group consisting of a zinc electrode, a nickel electrode, a separator and a liquid retaining layer interposed therebetween, and a 7μ potash electrolyte limited to such an extent that no free liquid exists. In a battery arranged such that the electrode plate surface of the electrode group faces the bottom surface of the battery case, the lead-out terminal is on the side of the battery case, and the lead-out terminal position of the nickel J:M electrode is the lead-out terminal of the zinc electrode. It is an alkaline zinc storage battery characterized by being located above the position.

又、複数のセルよりなる前記電池において、下側セルの
ニッケル極端子が少なくとも一つ上の亜鉛極端子に接続
されているアルカリ亜鉛蓄電池である。
Further, in the battery comprising a plurality of cells, the nickel electrode terminal of the lower cell is connected to at least one zinc electrode terminal above the alkaline zinc storage battery.

実施例 以下・本発明の詳細について一突旌例により説明する。Example The details of the present invention will be explained below by way of example.

第1図は本発明のアルカリ亜鉛蓄電池の断面図、第2図
はモノブロック形電槽における部分断面図、第6図は本
発明の電池と従来品の電池のサイクル寿命特性の比較図
である。
Fig. 1 is a cross-sectional view of the alkaline zinc storage battery of the present invention, Fig. 2 is a partial cross-sectional view of a monoblock type battery case, and Fig. 6 is a comparison diagram of the cycle life characteristics of the battery of the present invention and a conventional battery. .

ここで1はニッケ/l’極、2は亜鉛極、6は保液JI
、4はセパレータ、5はニッケル極端子、6は亜鉛極端
子、7は電槽、8は金属性リングである。
Here, 1 is the nickel/l' electrode, 2 is the zinc electrode, and 6 is the liquid retaining JI
, 4 is a separator, 5 is a nickel electrode terminal, 6 is a zinc electrode terminal, 7 is a battery case, and 8 is a metal ring.

亜鉛極は、多数の孔が形成された銅パンチング集電体な
芯金としてその両面に亜鉛活物質シートが圧着されてい
る0接続端子により全ての亜鉛極が接続されている。
All the zinc electrodes are connected to each other by a zero connection terminal, which is a copper punched current collector core metal with a large number of holes, and zinc active material sheets are crimped on both sides of the metal core.

ニッケρ極は、焼結式ニッケρ多孔体に水酸化ニッケル
を主成分とする活物質を化学含浸法により充填した公知
の正極である。接続端子により正極が接続されている。
A nickel ρ electrode is a known positive electrode in which a sintered nickel ρ porous body is filled with an active material whose main component is nickel hydroxide by a chemical impregnation method. The positive electrode is connected by a connecting terminal.

各々の極板は保液層及びセパレータに包まれている。保
液層は、不織布又は保液紙よりなるものである。
Each electrode plate is surrounded by a liquid retaining layer and a separator. The liquid retaining layer is made of nonwoven fabric or liquid retaining paper.

上記構成からなる極群を電槽底面に対向するように挿入
し、比重1.35のKOH水溶液を注液し、公称容量1
0Ahのアルカリ亜鉛蓄電池とした。尚、ここで極板面
と電槽底面が対向するとは、極板面と電槽底面の交差角
度(小さい方の角度)がS0以上で45°以下であるこ
とを言う。
Insert the electrode group consisting of the above configuration so as to face the bottom of the container, inject a KOH aqueous solution with a specific gravity of 1.35, and then fill it with a nominal volume of 1.
It was a 0Ah alkaline zinc storage battery. Here, the expression that the electrode plate surface and the bottom surface of the battery case face each other means that the intersection angle (smaller angle) between the electrode plate surface and the bottom surface of the container is greater than or equal to S0 and less than or equal to 45 degrees.

尚、極板寸法は100X10011fiである。The dimensions of the electrode plate are 100×10011fi.

充放電サイクル試験の条件は、放電々流2Ahで放電深
度は公称容量の60%、充電々流1ムhで充電量は放電
量の105%とした。
The conditions for the charge/discharge cycle test were that the discharge current was 2 Ah, the depth of discharge was 60% of the nominal capacity, and the charging current was 1 μh, and the charge amount was 105% of the discharge amount.

電池Aは第1図の本発明の電池であり、電池Bは端子接
続部が電槽蓋部中央にある従来品電池を横置きにしたも
のである。
Battery A is a battery according to the present invention shown in FIG. 1, and battery B is a conventional battery placed horizontally in which the terminal connection portion is located in the center of the battery case lid.

第3図に充放電サイクル寿命の特性比較を示した。Figure 3 shows a comparison of characteristics of charge/discharge cycle life.

電池A、B各々3七ルの特性を示した。Batteries A and B each exhibited characteristics of 37L.

この結果より、電池Bの初期サイクル性能は、放電容量
が電池Aに比べてわずかに劣るが比較的良い。
From this result, the initial cycle performance of battery B is relatively good, although the discharge capacity is slightly inferior to that of battery A.

しかし、サイクルが進むに伴い、突然容量低下が発生し
ている。これは充放電中に、電解液及び亜鉛酸イオンが
下方へ徐々に移行して、その結果充電末期に電解液に漬
った亜鉛極においてプントフィトが成長してニッケ/1
/極端子にまで至り、短絡が生じたためである。
However, as the cycle progresses, a sudden decrease in capacity occurs. This is because the electrolyte and zincate ions gradually move downward during charging and discharging, and as a result, puntophytes grow on the zinc electrode immersed in the electrolyte at the end of charging.
/ This is because the short circuit occurred as it reached the extreme terminal.

本発明の電池Aは、従来品より高い放電容量を示した。Battery A of the present invention exhibited a higher discharge capacity than conventional products.

さらに初期性能の60%に至るまで電池のシッートの傾
向はなく、良好なサイクル寿命を実現できることが確認
できた。
Furthermore, there was no tendency for the battery to sit up to 60% of its initial performance, confirming that a good cycle life could be achieved.

これはニッケル極端子が電槽上部で接続したので、電解
液に漬ることがなくなり、電解液中で亜鉛極端子から成
長したデンドライトがニッケ/1/極端子まで到達する
ことがなく、シロートが生じないことによる。
This is because the nickel electrode terminal is connected at the top of the tank, so it is not immersed in the electrolyte, and the dendrites that grow from the zinc electrode terminal in the electrolyte do not reach the nickel/1/electrode terminal, which prevents the sillage from being immersed in the electrolyte. By not occurring.

上記実施例では第1図に示した単電池について示したが
、モノブロック形電槽を用いたアルカリ亜鉛蓄電池では
、下側セμのニッケル極端子を少なくとも一つ上の亜鉛
極端子に接続することによって、第1図に示した単電池
と同様の結果が得られる。
In the above example, the single cell shown in Fig. 1 was shown, but in an alkaline zinc storage battery using a monoblock type battery case, the nickel electrode terminal of the lower cell is connected to at least one zinc electrode terminal above. By doing so, results similar to those of the single cell shown in FIG. 1 can be obtained.

発明の効果 上述した如く、本発明はデンドフィトシッートを防止し
た、充放電サイクル寿命の優れたアルカリ亜鉛蓄電池を
提供することが出来るので、その工業的価値は極めて大
である。
Effects of the Invention As described above, the present invention can provide an alkaline zinc storage battery which is free from dendophytosit and has an excellent charge/discharge cycle life, and therefore has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のアルカリ亜鉛蓄電池の断面図1第2図
はモノブロック形電槽における部分断面図、第3図はサ
イクル寿命特性の比較図である。
FIG. 1 is a sectional view of the alkaline zinc storage battery of the present invention. FIG. 2 is a partial sectional view of a monoblock type battery case, and FIG. 3 is a comparison diagram of cycle life characteristics.

Claims (2)

【特許請求の範囲】[Claims] (1)亜鉛極とニッケル極とこれに介在するセパレータ
と保液層からなる極群と、遊離な液が存在しない程度に
制限されたアルカリ電解液を有し、該極群の極板面が電
槽底面に対し対向するように配した電池において、引き
出し端子が電槽の側部にあり且つニッケル極の引き出し
端子位置が亜鉛極の引き出し端子位置より上部にあるこ
とを特徴とするアルカリ亜鉛蓄電池。
(1) It has an electrode group consisting of a zinc electrode, a nickel electrode, a separator and a liquid retaining layer interposed therebetween, and an alkaline electrolyte limited to the extent that no free liquid exists, and the electrode plate surface of the electrode group is An alkaline zinc storage battery, which is arranged to face the bottom of the battery case, and the lead-out terminal is located on the side of the battery case, and the lead-out terminal position of the nickel electrode is located above the lead-out terminal position of the zinc electrode. .
(2)複数のセルよりなる請求項1記載の電池において
、下側セルのニッケル極端子が少なくとも一つ上の亜鉛
極端子に接続されているアルカリ亜鉛蓄電池。
(2) A battery according to claim 1, comprising a plurality of cells, wherein the nickel electrode terminal of the lower cell is connected to at least one upper zinc electrode terminal.
JP2036968A 1990-02-17 1990-02-17 Alkaline zinc storage battery Pending JPH03241661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2036968A JPH03241661A (en) 1990-02-17 1990-02-17 Alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2036968A JPH03241661A (en) 1990-02-17 1990-02-17 Alkaline zinc storage battery

Publications (1)

Publication Number Publication Date
JPH03241661A true JPH03241661A (en) 1991-10-28

Family

ID=12484540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2036968A Pending JPH03241661A (en) 1990-02-17 1990-02-17 Alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPH03241661A (en)

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
US5059496A (en) Nickel-hydrogen battery with oxygen and electrolyte management features
FI88439C (en) Method and apparatus for charging a closed secondary electrical power source
US5576116A (en) Sealed storage cell operating at low pressure
GB2023918A (en) Galvanic cell
US3846175A (en) Storage battery
JP3287367B2 (en) Sealed nickel zinc battery
CN107112598B (en) lead-acid battery
EP2728641B1 (en) Low maintenance alkaline electrochemical cell
US3759746A (en) Porous electrode comprising a bonded stack of pieces of corrugated metal foil
US6680140B1 (en) Maintenance-free industrial type vented cell storage battery
JP3383210B2 (en) Open industrial storage battery with maintenance-free alkaline electrolyte
Pavlov et al. Nickel-zinc batteries with long cycle life
JP4507483B2 (en) Control valve type lead acid battery
GB2129192A (en) Manufacturing recombination electric storage cells
JPS60250567A (en) Enclosed type nickel-zinc storage battery
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
JPH04206468A (en) Sealed alkali-zinc storage battery
JPH03241661A (en) Alkaline zinc storage battery
JPH0628169B2 (en) Sealed lead acid battery
US3433671A (en) Storage battery having positive and negative electrode in direct contact
WO1980002472A1 (en) Electric storage batteries
US3457111A (en) Alkaline storage battery with be(oh)2 in the electrolyte
NZ193059A (en) Recombinant lead acid battery: absorbed electrolytic antimony in electrodes
RU2168808C1 (en) Secondary low-gas-emission chemical power supply