JPH03239529A - Manufacture of biaxially oriented multi layered film - Google Patents

Manufacture of biaxially oriented multi layered film

Info

Publication number
JPH03239529A
JPH03239529A JP3586190A JP3586190A JPH03239529A JP H03239529 A JPH03239529 A JP H03239529A JP 3586190 A JP3586190 A JP 3586190A JP 3586190 A JP3586190 A JP 3586190A JP H03239529 A JPH03239529 A JP H03239529A
Authority
JP
Japan
Prior art keywords
film
layer
multilayer film
biaxially stretched
nylon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3586190A
Other languages
Japanese (ja)
Other versions
JPH0773879B2 (en
Inventor
Masao Takashige
真男 高重
Takeo Hayashi
武夫 林
Katsumi Utsuki
克己 宇津木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP3586190A priority Critical patent/JPH0773879B2/en
Priority to DE69021607T priority patent/DE69021607T2/en
Priority to EP90104444A priority patent/EP0386759B1/en
Priority to US07/492,884 priority patent/US5094799A/en
Priority to AU51214/90A priority patent/AU622777B2/en
Priority to KR1019900003201A priority patent/KR0154330B1/en
Publication of JPH03239529A publication Critical patent/JPH03239529A/en
Publication of JPH0773879B2 publication Critical patent/JPH0773879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To improve molding stability when a film is biaxially oriented and to make accuracy of the thickness of an obtd. film good by setting a manufacturing condition based on the max. orientation stress of the film in the machine direction and the max. oriented stress of the film in the transverse direction. CONSTITUTION:When the max. orientation stress in the machine direction (MD) and the max. orientation stress in the transverse direction (TD) of a multilayered film biaxially drawn by means of a tubular process and having a nylon-6 layer, an adhesive resin layer and a polyolefin layer are respectively sigmaMD and sigmaTD, sigmaMD and sigmaTD are set respectively by formulas 400 kg/cm<2=sigmaTD<=700kg/cm<2> and 400kg/cm<2=sigmaMD<=700kg/cm<2>, wherein sigmaMD is expressed by sigmaMD = (FXBMD)/A, F=T/r wherein F is an orientation force (kg); BMD is an orientation ratio in the MD direction; A is a cross sectional area (cm<2>) of a raw film; T is a rota tional torque of a nip roll (kg.cm); r is a radius (cm) of the nip roll. In addition, sigmaTD is expressed by sigmaTD =( PXR)/t wherein P is a pressure (kg/cm<2>) in a valve; R is a radius (cm) of the valve; t is a thickness (cm) of the film.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二軸延伸多層フィルムの製造方法に関し、食
品包装分野、工業材料分野等において利用することがで
きる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a biaxially stretched multilayer film, and can be used in the food packaging field, industrial material field, etc.

[背景技術] チューブラ−法により同時二輪延伸されて製造されたナ
イロンフィルムは、強度、透明性等の機械的及び光学的
特性が良好であるという優れた特徴を有している。
[Background Art] Nylon films manufactured by simultaneous two-wheel stretching using the tubular method have excellent mechanical and optical properties such as strength and transparency.

このようなナイロンフィルムの水分に対するバリヤー性
を向上させた基材として、ナイロン6層/ポリ塩化ビニ
リデン(PVDC)層を有する多層フィルムが従来−殻
内に使用されてきた。しかし、この多層フィルムを焼却
するとポリ塩化ビニリデンに由来する有害な塩素ガスが
発生し、これが延いては酸性雨をもたらして環境破壊に
つながるという問題点があった。
As a base material with improved moisture barrier properties of such a nylon film, a multilayer film having a nylon 6 layer/polyvinylidene chloride (PVDC) layer has conventionally been used in the shell. However, when this multilayer film is incinerated, harmful chlorine gas derived from polyvinylidene chloride is generated, which in turn causes acid rain and leads to environmental destruction.

そこで、このような環境問題を引き起こさず、かつ酸素
バリヤー性にも優れた基材としてポリ塩化ビニリデンを
含まない種々のナイロン系の多層フィルムが提案されて
いる。例えば、ナイロン層、接着剤樹脂層及びポリオレ
フィン層を有する多層フィルムは、バリヤー性と共に熱
収縮性にも優れているため、精肉包装用フィルム等とし
ての需要が期待されており、従来、二軸延伸されたこの
種のナイロン系多層フィルムの安定な製造方法が要望さ
れていた。
Therefore, various nylon-based multilayer films that do not contain polyvinylidene chloride have been proposed as base materials that do not cause such environmental problems and have excellent oxygen barrier properties. For example, a multilayer film having a nylon layer, an adhesive resin layer, and a polyolefin layer has excellent barrier properties and heat shrinkability, and is expected to be in demand as a meat packaging film. There has been a need for a stable method for producing this type of nylon multilayer film.

[発明が解決しようとする課題] 従来のチューブラ−法による二軸延伸ナイロンフィルム
の製造方法によれば、得られたフィルムは、一般に厚さ
精度が低いため、巻き姿が悪化したり、印刷、ラミネー
ト、製袋等の二次加工時における不良が発生したりして
、その包装用、工業用フィルムとしての使用が制限され
ていた。これは、延伸用原反フィルムの作製時に、厚さ
精度を押出ダイで調整しても±2〜6%程度の厚さむら
が発生することに加えて、従来のチューブラ−法によれ
ば、延伸時にその厚さむらが更に2倍以上に悪化するこ
とによるからである。また、従来法によれば、延伸変形
時のバブルが安定しないため、バブルが横揺れを起こし
たり、時には破袋する虞れもあった。
[Problems to be Solved by the Invention] According to the conventional manufacturing method of biaxially stretched nylon film using the tubular method, the thickness accuracy of the obtained film is generally low, resulting in poor winding appearance, printing, Defects occur during secondary processing such as lamination and bag making, which limits its use as a packaging or industrial film. This is because when producing the original film for stretching, even if the thickness accuracy is adjusted using an extrusion die, thickness unevenness of about ±2 to 6% occurs, and according to the conventional tubular method, This is because the thickness unevenness worsens by a factor of two or more during stretching. Furthermore, according to the conventional method, the bubbles are not stable during stretching and deformation, so there is a risk that the bubbles may oscillate laterally and sometimes break the bag.

従来、ポリアミド樹脂フィルムの二軸延伸時の成形安定
性を得るため、延伸倍率を規定する方法(特公昭49−
47269号公報)、延伸温度を規定する方法(特公昭
53−15914号公報)等も提案されているが、いず
れの製造方法によっても、良好なフィルムが得られる製
造条件を必ずしも的確に規定することができなかった。
Conventionally, in order to obtain molding stability during biaxial stretching of a polyamide resin film, a method of specifying the stretching ratio (Japanese Patent Publication No. 49-1973) has been proposed.
47269) and a method of regulating the stretching temperature (Japanese Patent Publication No. 15914/1983), etc. However, with either production method, it is not always necessary to accurately specify the production conditions to obtain a good film. I couldn't do it.

本発明は、ナイロン系の二軸延伸多層フィルムについて
、二軸延伸時の成形安定性を向上させることができると
共に、得られるフィルムの厚さ精度を良好にすることが
できる製造方法を提供することを目的とする。
The present invention provides a manufacturing method for a nylon-based biaxially stretched multilayer film that can improve the molding stability during biaxial stretching and improve the thickness accuracy of the obtained film. With the goal.

[課題を解決するための手段及び作用]本発明者は、チ
ューブラ−法により二軸延伸された各種のナイロン系多
層フィルムの製造方法において、延伸に関与する各種の
パラメータを実験により確認した結果、フィルムの移動
方向(MD)の最大延伸応力σMD及びフィルムの幅方
向(TD)の最大延伸応力σTDに着目し、これらのび
。とσTDに基づき製造条件を設定することにより、良
好な結果が得られることを見出した。
[Means and Effects for Solving the Problems] The present inventor has confirmed through experiments various parameters involved in stretching in methods for producing various nylon multilayer films biaxially stretched by the tubular method. Focusing on the maximum stretching stress σMD in the moving direction (MD) of the film and the maximum stretching stress σTD in the width direction (TD) of the film, these elongations were calculated. It has been found that good results can be obtained by setting manufacturing conditions based on and σTD.

但し、前記σMDとびTDは、それぞれ下式で表される
However, the above-mentioned σMD and TD are respectively expressed by the following formulas.

σMD= (F X B MD) / AF = T 
/ r ここで、Fは延伸力(kg) 、BMDはMD方向の延
伸倍率、Aは原反フィルムの断面積(c[Ir)、Tは
ニップロールの回転トルク(kg−cm)、rはニップ
ロールの半径(cm )である。
σMD= (F x B MD) / AF = T
/ r Here, F is the stretching force (kg), BMD is the stretching ratio in the MD direction, A is the cross-sectional area of the raw film (c [Ir), T is the rotational torque of the nip roll (kg-cm), and r is the nip roll. radius (cm).

σTD=(ΔPxR)/t ここで、ΔPはバブル内圧力(kg/cnr) 、Rは
バブル半径(am)、tはフィルムの厚さ(cm )で
ある。
σTD=(ΔPxR)/t Here, ΔP is the bubble internal pressure (kg/cnr), R is the bubble radius (am), and t is the film thickness (cm 2 ).

以下、前記ナイロン系多層フィルムの構成及び各多層フ
ィルムについてのび。とび、Dの条件を示す。
The structure of the nylon multilayer film and the growth of each multilayer film will be explained below. The conditions for jump and D are shown.

■、ナイロン6層、接着剤樹脂層、ポリオレフィン層を
有する二軸延伸多層フィルム。
(2) A biaxially stretched multilayer film having 6 layers of nylon, an adhesive resin layer, and a polyolefin layer.

この多層フィルムの具体的な構成としては、例えば(i
)ナイロン6層、接着剤樹脂層及びポリオレフィン層が
、この順に積層形成されたもの(ii)ポリオレフィン
層、接着剤樹脂層、ナイロン6層、接着剤樹脂層及びポ
リオレフィン層が、この順に積層形成されたもの、等が
ある。
As a specific structure of this multilayer film, for example (i
) Nylon 6 layer, adhesive resin layer and polyolefin layer are laminated in this order (ii) Polyolefin layer, adhesive resin layer, nylon 6 layer, adhesive resin layer and polyolefin layer are laminated in this order There are things like that.

この多層フィルムを二軸延伸する際、σMDとσ1Dは
、それぞれ次のように条件設定する。
When biaxially stretching this multilayer film, the conditions for σMD and σ1D are set as follows.

400kg/cm2≦(7TD≦700 kg/cII
r400 kg/cm2≦+7MD≦700 kg /
 crlなお、σTDとび。は、いずれも好ましくは上
限を650 kg / cnrとし、下限を450 k
g / cnrとする。
400kg/cm2≦(7TD≦700 kg/cII
r400 kg/cm2≦+7MD≦700 kg /
crl, σTD jump. Preferably, the upper limit is 650 kg/cnr and the lower limit is 450 kg/cnr.
g/cnr.

本発明において、σTDとσMDが、前記条件の上限を
越える場合には、延伸途上のバブルが頻繁に破裂するた
め、連続生産ができなくなる。また、σTDとσMDが
、前記条件の下限より下の場合には、延伸途上のバブル
が不安定になるため、フィルムの厚さ精度が悪くなる。
In the present invention, if σTD and σMD exceed the upper limits of the above conditions, continuous production will not be possible because bubbles will frequently burst during stretching. Furthermore, when σTD and σMD are lower than the lower limit of the above conditions, bubbles during stretching become unstable, resulting in poor film thickness accuracy.

前記ポリオレフィン層を形成する具体的なポリオレフィ
ンとしては、例えばポリエチレン(PE)、ポリプロピ
レン(PP)、エチレン−酢酸ビニル共重合体(EVA
) 、アイオノマー樹脂(IR)、エチレン−アクリル
酸共重合体(FAA)、エチレン−エチルアクリレート
共重合体(EEA)、ポリブテン(PB) 、エチレン
−メタクリル酸共重合体(EMAA)等を使用する。
Specific polyolefins forming the polyolefin layer include, for example, polyethylene (PE), polypropylene (PP), and ethylene-vinyl acetate copolymer (EVA).
), ionomer resin (IR), ethylene-acrylic acid copolymer (FAA), ethylene-ethyl acrylate copolymer (EEA), polybutene (PB), ethylene-methacrylic acid copolymer (EMAA), etc. are used.

好ましくは、ヒートシール適性の点から、PEの中でも
L−LDPE (直鎖状低密度ポリエチレン)、lR,
EvA、EAAを使用するのがよい。
Preferably, from the viewpoint of heat sealability, L-LDPE (linear low density polyethylene), IR,
It is better to use EvA and EAA.

接着剤樹脂層を形成する樹脂としては、任意に選ぶこと
ができるが、例えば変性ポリオレフィン系樹脂、EVA
の酢酸含量の多いもの等を挙げることができる。これら
の中では、低臭性の点から、変性ポリオレフィン系樹脂
の使用が好ましい。
The resin forming the adhesive resin layer can be arbitrarily selected, but for example, modified polyolefin resin, EVA
Examples include those with a high acetic acid content. Among these, it is preferable to use modified polyolefin resins from the viewpoint of low odor.

■、ナイロン6層、エチレン−酢酸ビニル共重合体けん
化物(EVOH)層、接着剤樹脂層及びポリオレフィン
層を有する多層フィルム。
(2) A multilayer film having six nylon layers, a saponified ethylene-vinyl acetate copolymer (EVOH) layer, an adhesive resin layer, and a polyolefin layer.

この多層フィルムの具体的構成としては、例えば(i)
ナイロン6層、EVOH層、接着剤樹脂層及び及びポリ
オレフィン層が、この順に積層形成されたもの、(ii
)ナイロン6層、EVOH層、ナイロン6層、接着剤樹
脂層及びポリオレフィン層が、この順に積層形成された
もの、(iii) EVOH層、ナイロン6層、接着剤
樹脂層及びポリオレフィン層が、この順に積層形成され
たもの、(iv )ポリオレフィン層、接着剤樹脂層、
ナイロン6層、EVOH層、接着剤樹脂層及びポリオレ
フィン層が、この順に積層形成されたもの、(■)ポリ
オレフィン層、接着剤樹脂層、ナイロン6層、EVOH
層、ナイロン6層、接着剤樹脂層及びポリオレフィン層
が、こ順に積層形成されたもの、等がある。
As a specific structure of this multilayer film, for example, (i)
A nylon 6 layer, an EVOH layer, an adhesive resin layer, and a polyolefin layer are laminated in this order, (ii
) Nylon 6 layer, EVOH layer, nylon 6 layer, adhesive resin layer and polyolefin layer are laminated in this order, (iii) EVOH layer, nylon 6 layer, adhesive resin layer and polyolefin layer are laminated in this order. (iv) polyolefin layer, adhesive resin layer,
6 layers of nylon, EVOH layer, adhesive resin layer, and polyolefin layer are laminated in this order, (■) polyolefin layer, adhesive resin layer, 6 layers of nylon, EVOH
6 layers of nylon, an adhesive resin layer, and a polyolefin layer are laminated in this order.

この多層フィルムを二軸延伸する際、σMDとσTDは
、それぞれ次のように条件設定する。
When biaxially stretching this multilayer film, the conditions for σMD and σTD are set as follows.

450 kg / cnf≦σT。≦850 kg /
 ca?450kg/ca?≦(IMD≦850 kg
 / Crlなお、σTDとσMDは、いずれも好まし
くは上限を750 kg / ciとし、下限を550
 kg / cnfとする。
450 kg/cnf≦σT. ≦850 kg /
ca? 450kg/ca? ≦(IMD≦850 kg
/ Crl Note that both σTD and σMD preferably have an upper limit of 750 kg/ci and a lower limit of 550 kg/ci.
kg/cnf.

■、ナイロン6−66層及びEVOH層を有する多層フ
ィルム。
(2) A multilayer film having a nylon 6-66 layer and an EVOH layer.

この多層フィルムの具体的構成としては、例えば(i)
ナイロン6−66層及びEVOH層が、積層形成された
もの、(ii)ナイロン6−66層、EVOH層及びナ
イロン6−66層が、この順に積層形成されたもの、(
ii)EVOH層、ナイロン6−66層及びEVOH層
が、この順に積層形成されたもの、等がある。
As a specific structure of this multilayer film, for example, (i)
(ii) A nylon 6-66 layer, an EVOH layer and a nylon 6-66 layer are laminated in this order;
ii) An EVOH layer, a nylon 6-66 layer, and an EVOH layer are laminated in this order.

この多層フィルムを二軸延伸する際、σMDとσTDは
、それぞれ次のように条件設定する。
When biaxially stretching this multilayer film, the conditions for σMD and σTD are set as follows.

500 kg / ci≦(7TD≦1150kg/c
nr500 kg / crl≦(7MD≦1150k
g / cnfなお、σTDとσMDは、いずれも好ま
しくは上限をloookg / c++fとし、下限を
600 kg / ctlとする。
500 kg/ci≦(7TD≦1150kg/c
nr500 kg/crl≦(7MD≦1150k
g/cnf Note that both σTD and σMD preferably have an upper limit of loookg/c++f and a lower limit of 600 kg/ctl.

■6ナイロン6−66層、EVOH層、接着剤樹脂層及
びポリオレフィン層を有する多層フィルム。
■Multilayer film with 6 nylon 6-66 layer, EVOH layer, adhesive resin layer and polyolefin layer.

この多層フィルムの具体的構成としては、例えば(i)
ナイロン6−66層、EVOH層、接着剤樹脂層及びポ
リオレフィン層が、この順に積層形成されたもの、(i
i)ナイロン6−66層、EVOH層、ナイロン6−6
6層、接着剤樹脂層及びポリオレフィン層が、この順に
積層形成されたもの、(市)EVOH層、ナイロン6−
66層、接着剤樹脂層及びポリオレフィン層が、この順
に積層形成されたもの、(iv )ポリオレフィン層、
接着剤樹脂層、ナイロン6−66層、EVOH層、接着
剤樹脂層及びポリオレフィン層が、この順に積層形成さ
れたもの、(v)ポリオレフィン層、接着剤樹脂層、ナ
イロン6−66層、EVOH層、ナイロン6−66層、
接着剤樹脂層及びポリオレフィン層が、この順に積層形
成されたもの、等がある。
As a specific structure of this multilayer film, for example, (i)
A nylon 6-66 layer, an EVOH layer, an adhesive resin layer, and a polyolefin layer are laminated in this order, (i
i) Nylon 6-66 layer, EVOH layer, nylon 6-6
6 layers, adhesive resin layer and polyolefin layer laminated in this order, EVOH layer, nylon 6-
66 layers, an adhesive resin layer and a polyolefin layer formed in this order, (iv) a polyolefin layer,
An adhesive resin layer, a nylon 6-66 layer, an EVOH layer, an adhesive resin layer, and a polyolefin layer are laminated in this order, (v) a polyolefin layer, an adhesive resin layer, a nylon 6-66 layer, and an EVOH layer. , nylon 6-66 layer,
There is one in which an adhesive resin layer and a polyolefin layer are laminated in this order.

この多層フィルムを二軸延伸する際、σMf+とσ1D
は、それぞれ次のように条件設定する。
When biaxially stretching this multilayer film, σMf+ and σ1D
The conditions are set as follows.

350kg/ClIr≦σTD≦750kg/Cd35
0 kg/cm2≦(7MD≦750 kg / Cr
lなお、σTDとび。は、いずれも好ましくは上限を6
50 kg/cm2とし、下限を450kg/cnfと
する。
350kg/ClIr≦σTD≦750kg/Cd35
0 kg/cm2≦(7MD≦750 kg/Cr
Note that σTD jumps. Preferably, the upper limit is 6.
50 kg/cm2, and the lower limit is 450 kg/cnf.

■、ナイロン6−66層、接着剤樹脂層及びポリオレフ
ィン層を有する多層フィルム。
(2) A multilayer film having a nylon 6-66 layer, an adhesive resin layer and a polyolefin layer.

この多層フィルムの具体的構成としては、例えば(i)
ナイロン6−66層、接着剤樹脂層及びポリオレフィン
層が、この順に積層形成されたもの、(ii)ポリオレ
フィン層、接着剤樹脂層、ナイロン6−66層、接着剤
樹脂層及びポリオレフィン層が、この順に積層形成され
たもの、等がある。
As a specific structure of this multilayer film, for example, (i)
A nylon 6-66 layer, an adhesive resin layer, and a polyolefin layer are laminated in this order, (ii) a polyolefin layer, an adhesive resin layer, a nylon 6-66 layer, an adhesive resin layer, and a polyolefin layer are formed in this order. There are also those in which layers are formed in sequence.

この多層フィルムを二軸延伸する際、σlとσTDは、
それぞれ次のように条件設定する。
When biaxially stretching this multilayer film, σl and σTD are
Each condition is set as follows.

300kg/cIIr≦(7TD≦600 kg / 
car300 kg / ctl≦(7MD≦600 
kg/Cl1fなお、σTDとび。は、いずれも好まし
くは上限を550 kg / crlとし、下限を35
0kg/cnfとする。
300kg/cIIr≦(7TD≦600 kg/
car300 kg/ctl≦(7MD≦600
kg/Cl1f, σTD jump. Preferably, the upper limit is 550 kg/crl and the lower limit is 35 kg/crl.
It is assumed to be 0 kg/cnf.

[実施例コ 実施例1−18及び比較例1〜7において、二軸延伸多
層フィルムが、ナイロン6層、接着剤樹脂層及びポリオ
レフィン層を有する場合の製造方法について説明する。
[Example] In Examples 1 to 18 and Comparative Examples 1 to 7, a manufacturing method in which the biaxially stretched multilayer film has a nylon 6 layer, an adhesive resin layer, and a polyolefin layer will be described.

X凰亘ユ 押出機より、ナイロン6層(厚さ90μm)/接着剤樹
脂層(厚さ30μm)/L−LDPE層(厚さ30.c
zm)の3層構造を有する多層原反フィルムを共押出し
成形した後、この多層原反フィルムを水温15℃の水冷
リングで冷却して厚さ150μmのチューブ状原反フィ
ルムを作製した。この多層原反フィルムで、ナイロン6
は、UBEナイロン1024Fo (商品名、宇部興産
(掬製、η、(相対粘度)3.7)、接着剤樹脂は、U
BE  BondFIloo(商品名、宇部興産■、変
性ポリエチレン系樹脂)  L−LDPEは、−モアチ
ック 0238CL〔商品名、出光石油化学■製、Ml
 (メルトインデックス) 2.0、d (密度) 0
.925 Fをそれぞれ使用した。
6 layers of nylon (thickness: 90 μm)/adhesive resin layer (thickness: 30 μm)/L-LDPE layer (thickness: 30.c
After coextrusion molding a multilayer raw film having a three-layer structure of zm), this multilayer raw film was cooled with a water cooling ring at a water temperature of 15° C. to produce a tubular raw film with a thickness of 150 μm. With this multilayer raw film, nylon 6
is UBE nylon 1024Fo (trade name, manufactured by Ube Industries, Ltd., η, (relative viscosity) 3.7), adhesive resin is UBE
BE BondFIloo (trade name, Ube Industries ■, modified polyethylene resin) L-LDPE is -MORETIC 0238CL [trade name, manufactured by Idemitsu Petrochemical ■, Ml
(melt index) 2.0, d (density) 0
.. 925 F was used in each case.

次に、第1図に示すように、この原反フィルム1を一対
のニップロール2間に送通した後、中に気体を圧入しな
がら350℃のヒータ3で加熱すると共に、延伸開始点
にエアーリング4より風量15d/分のエアー5を吹き
付けてバブル6に膨張させ、下流側の一対のニップロー
ル7で引き取ることにより、同時二軸延伸を行って二軸
延伸多層フィルム8を得た。この延伸倍率は、フィルム
ノ移動方向(MD)に3.0倍及びフィルムの幅方向(
TD)に3.2倍であった。
Next, as shown in FIG. 1, this raw film 1 is passed between a pair of nip rolls 2, and then heated with a heater 3 at 350° C. while pressurizing gas therein, and air is supplied to the stretching start point. Air 5 was blown at a flow rate of 15 d/min from the ring 4 to expand the bubbles 6, and the bubbles 6 were taken up by a pair of nip rolls 7 on the downstream side, thereby performing simultaneous biaxial stretching to obtain a biaxially stretched multilayer film 8. This stretching ratio is 3.0 times in the film movement direction (MD) and 3.0 times in the film width direction (
TD).

この同時二軸延伸の際、バブル6内の圧力、バブル6の
半径、ニップロール2,7の回転数、駆動モータの負荷
、回転トルク等を特定の値に設定して、得られるフィル
ムの移動方向(MD)の最大延伸応力σMD及びフィル
ムの幅方向(TD)の最大延伸応力σTDを調整した。
During this simultaneous biaxial stretching, the pressure inside the bubble 6, the radius of the bubble 6, the rotational speed of the nip rolls 2 and 7, the load of the drive motor, the rotational torque, etc. are set to specific values, and the direction of movement of the resulting film is The maximum stretching stress σMD in (MD) and the maximum stretching stress σTD in the width direction (TD) of the film were adjusted.

本実施例においては、フィルムのMD方向の最大延伸応
力σMDは560kg/cd、またフィルムのTD方向
の最大延伸応力σTDは550 kg / crlであ
った。
In this example, the maximum stretching stress σMD of the film in the MD direction was 560 kg/cd, and the maximum stretching stress σTD of the film in the TD direction was 550 kg/crl.

なお、これらのび。とびTDは、下式より算出したもの
である。
In addition, these growths. Jump TD is calculated from the following formula.

(7MD= (F x BMD) /A     F 
=T/ rここで、Fは延伸力で76、5kg 、 B
 MDはMD方向の延伸倍率で3.0.Aは原反フィル
ムの断面積で0.41cnr、 Tは回転トルクで38
3 kg−cmlrはニップロールの半径で5 cmで
ある。この延伸力Fは、ニップロールの駆動に要するモ
ータの負荷を読み取り、これから回転トルクTを算出し
て求めた値である。
(7MD= (F x BMD) /A F
=T/r where F is the stretching force of 76.5kg, B
MD is a stretching ratio in the MD direction of 3.0. A is the cross-sectional area of the original film, 0.41 cnr, and T is the rotational torque, 38
3 kg-cmlr is a nip roll radius of 5 cm. This stretching force F is a value obtained by reading the load on the motor required to drive the nip rolls and calculating the rotational torque T from this.

(FTD= (ΔP×R)/t ここで、ΔPはバブル内圧力で596 Xl0−’kg
/cnf、Rはバブル半径で14.4cm、  iはフ
ィルムの厚さで15.6X l O’cmである。この
バブル内圧力ΔPは、デジタルマノメータを使用して測
定した値である。また、フィルムの厚さtは、原反フィ
ルムの厚さ/(MD延伸倍率XTD延伸倍率)より算出
した値である。
(FTD= (ΔP×R)/t where ΔP is the pressure inside the bubble and is 596 Xl0-'kg
/cnf, R is the bubble radius of 14.4 cm, and i is the film thickness of 15.6X l O'cm. This bubble internal pressure ΔP is a value measured using a digital manometer. Moreover, the thickness t of the film is a value calculated from the thickness of the original film/(MD stretching ratio XTD stretching ratio).

σMD及びσTDをこのように条件設定した本実施例に
係る二軸延伸多層フィルムの製造において、24時間の
連続製造を行ったところ、延伸変形時のバブル6は横揺
れなどがなく、成形安定性が非常に良好であった。また
、得られた多層フィルム8は、厚さのばらつきが±4.
5%と厚さ精度が良好であった。
In the production of the biaxially stretched multilayer film according to this example with σMD and σTD set as described above, continuous production was performed for 24 hours, and the bubble 6 during stretching deformation did not exhibit any lateral vibration, and the forming stability was confirmed. was very good. Moreover, the obtained multilayer film 8 had a thickness variation of ±4.
The thickness accuracy was good at 5%.

実施例2〜18 上記実施例1と同様にして、実施例2〜18に係る二輪
延伸多層フィルム8の製造を行った。但し、多層フィル
ム8の層の構成、各層の厚さの比、MD延伸倍率とTD
延伸倍率、エアーリング4の風量、ヒータ3の温度、冷
却水の温度については、下記の表−1に示すように条件
をそれぞれ異ならせた。なお、表中の層の構成で、Ni
2はナイロン6層、ADは接着剤樹脂層、PEは直鎖状
低密度ポリエチレン(L−LDPE)層、EVAはエチ
レン−酢酸ビニル共重合体層、IRはアイオノマー樹脂
層、FAAはエチレン−アクリル酸共重合体層、EEA
はエチレン−エチルアクリレート共重合体層、PB−1
はポリブテン−1層、PPはポリプロピレン層、LDP
Eは低密度ポリエチレン層の略である。
Examples 2 to 18 Two-wheel stretched multilayer films 8 according to Examples 2 to 18 were produced in the same manner as in Example 1 above. However, the layer structure of the multilayer film 8, the thickness ratio of each layer, MD stretching ratio and TD
Regarding the stretching ratio, the air volume of the air ring 4, the temperature of the heater 3, and the temperature of the cooling water, the conditions were varied as shown in Table 1 below. In addition, in the layer structure in the table, Ni
2 is nylon 6 layer, AD is adhesive resin layer, PE is linear low density polyethylene (L-LDPE) layer, EVA is ethylene-vinyl acetate copolymer layer, IR is ionomer resin layer, FAA is ethylene-acrylic layer Acid copolymer layer, EEA
is an ethylene-ethyl acrylate copolymer layer, PB-1
is polybutene-1 layer, PP is polypropylene layer, LDP
E stands for low density polyethylene layer.

また、同時二軸延伸の際、各実施例毎に、フィルムのM
D方向の最大延伸応力σMDとフィルムのTD方向の最
大延伸応力σTDとが略等しい適当な値となるように、
バブル6内の圧力、バブル6の半径、ニップロール2,
7の回転数、駆動モータの負荷、回転トルク等を特定の
値に設定した。
In addition, during simultaneous biaxial stretching, the M of the film was determined for each example.
So that the maximum stretching stress σMD in the D direction and the maximum stretching stress σTD in the TD direction of the film are approximately equal to appropriate values,
pressure inside bubble 6, radius of bubble 6, nip roll 2,
7, the load of the drive motor, the rotational torque, etc. were set to specific values.

σMD及びσTDをそれぞれ適当な値に条件設定した各
実施例に係る二軸延伸多層フィルム8の製造において、
24時間の連続製造を行った。この延伸変形時のバブル
6の成形安定性を観察、評価し、また得られた二軸延伸
多層フィルム8の厚さのばらつき、即ち厚さ精度の測定
と評価及び総合評価を行った結果を下記の表−lに示す
In manufacturing the biaxially stretched multilayer film 8 according to each example in which σMD and σTD were set to appropriate values,
Continuous production was carried out for 24 hours. The molding stability of the bubble 6 during stretching and deformation was observed and evaluated, and the thickness variation of the obtained biaxially stretched multilayer film 8, that is, the thickness accuracy was measured and evaluated, and the results of the overall evaluation are shown below. It is shown in Table-1.

なお、本発明の実施例及び比較例で使用した各層の具体
的な樹脂は、下記の通りである。
The specific resins of each layer used in the examples and comparative examples of the present invention are as follows.

EVA・・・ウルトラセン UE540F C商品名、
東ソー(即製、M 13.0 、dO1927、Tm 
(融点)96℃〕 IR・・・ハイミラン1650  (商品名、三井・デ
ュポンポリケミカル(即製、Zn系、MI5.0)EA
A・・・プリマコール1410  (商品名、ダウケミ
カル日本(即製〕 EEA・・・エバレックス−EEA A701 [:商
品名、三井・デュポンポリケミカル掬製、MI5.0)
PB−1・・・ポリブチレン0200〔商品名、シェル
掬製、MI2.0] PP・・・出光ポリプロ F74[+−N [出光石油
化学(ti)、M I 7.0  、dO,9) LDPE・・・UBEポリエチレンF222宇部興産■
製、MI2.0、do、922〕表−l及び以下の表で
、成形安定性の欄の◎はバブルの折径変動が±1%で、
バブルの破袋、不安定現象(上下動、横揺れ等)が発生
しない、○はバブルの折径変動が±3%で、バブルの破
袋、不安定現象が発生しない、×はバブルの破袋又は不
安定現象が生じるため、連続成形が困難、をそれぞれ示
す。また、厚さ精度の欄のO1△及び×は、それぞれ偏
肉が±6%以下、±7〜10%及び±11%以上を示す
。総合評価の欄の◎は工業生産に最適、○は工業生産に
適、×は工業生産不可能をそれぞれ示す。
EVA...Ultrasen UE540F C product name,
Tosoh (ready made, M 13.0, dO1927, Tm
(Melting point) 96°C] IR...Himilan 1650 (Product name, Mitsui DuPont Polychemical (ready-made, Zn-based, MI5.0) EA
A... Primacol 1410 (Product name, Dow Chemical Japan (immediately manufactured) EEA... Everex-EEA A701 [: Product name, manufactured by Mitsui DuPont Polychemical Kikki, MI5.0)
PB-1... Polybutylene 0200 [trade name, manufactured by Shell Kiki, MI2.0] PP... Idemitsu Polypro F74 [+-N [Idemitsu Petrochemical (TI), MI 7.0, dO, 9) LDPE ... UBE Polyethylene F222 Ube Industries ■
In Table 1 and the following tables, ◎ in the molding stability column means that the bubble diameter fluctuation is ±1%,
Bubble bag breakage and unstable phenomena (vertical movement, lateral shaking, etc.) do not occur. ○ indicates that the bubble diameter fluctuation is ±3%, and bubble bag breakage and unstable phenomena do not occur. × indicates that bubble breakage does not occur. Continuous molding is difficult because bags or instability phenomena occur, respectively. Further, O1Δ and × in the column of thickness accuracy indicate thickness deviations of ±6% or less, ±7 to 10%, and ±11% or more, respectively. In the overall evaluation column, ◎ indicates that it is suitable for industrial production, ○ indicates that it is suitable for industrial production, and × indicates that industrial production is impossible.

(商品名、 里七ヱしE二重 上記実施例と同様にして、比較例1〜7に係る二軸延伸
多層フィルムの製造を行った。但し、多層フィルム8の
層の構成、各層の厚さの比、MD延伸倍率とTD延伸倍
率、エアーリング4の風量、ヒータ3の温度、冷却水の
温度については、下記の表−1に示すように条件をそれ
ぞれ異ならせた。
(Product name: Satoshi Eshi E Double) Biaxially stretched multilayer films according to Comparative Examples 1 to 7 were produced in the same manner as in the above examples. However, the structure of the layers of multilayer film 8, the thickness of each layer The conditions were varied as shown in Table 1 below for the ratio of the length of the film, the MD draw ratio and the TD draw ratio, the air volume of the air ring 4, the temperature of the heater 3, and the temperature of the cooling water.

また、同時二軸延伸の際、上記実施例と同様に、各比較
例毎に、σMDとσTDとが略等しい適当な値となるよ
うに、バブル6内の圧力、バブル6の半径等を特定の値
に設定した。
In addition, during simultaneous biaxial stretching, the pressure inside the bubble 6, the radius of the bubble 6, etc. are specified for each comparative example so that σMD and σTD are approximately equal and appropriate values. was set to the value of

σMD及びσTDをそれぞれ適当な値に条件設定した各
比較例に係る二軸延伸多層フィルム8の製造において、
24時間の連続製造を行った。この延伸変形時のバブル
の成形安定性を観察、評価し、また得られた二軸延伸多
層フィルムの厚さ精度の測定と評価及び総合評価を行っ
た結果を下記の表2に示す。
In manufacturing the biaxially stretched multilayer film 8 according to each comparative example in which σMD and σTD were set to appropriate values,
Continuous production was carried out for 24 hours. The molding stability of the bubble during stretching and deformation was observed and evaluated, and the thickness accuracy of the obtained biaxially stretched multilayer film was measured and evaluated, as well as a comprehensive evaluation. The results are shown in Table 2 below.

表−1より、実施例1〜18によれば、チューブラ−法
により二軸延伸された、ナイロン6層、接着剤樹脂層及
びポリオレフィン層を有する多層フィルム8の製造方法
において、フィルムのMD方向の最大延伸応力σMD及
びフィルムのTD方向の最大延伸応力σTDが、いずれ
も400〜700 kg / carの範囲内にあるた
め、延伸変形時のバブル6の良好な成形安定性と共に、
二軸延伸多層フィルム8の良好な厚さ精度が得られるこ
とがわかる。また、σMDとσTDをそれぞれ450〜
650 kg / crlの範囲内に設定した実施例1
. 2. 5. 6. 9. to、12〜15、18
によれば、成形安定性と厚さ精度がより良好になる。
From Table 1, according to Examples 1 to 18, in the method for producing the multilayer film 8 biaxially stretched by the tubular method and having 6 layers of nylon, an adhesive resin layer, and a polyolefin layer, the MD direction of the film was Since the maximum stretching stress σMD and the maximum stretching stress σTD in the TD direction of the film are both within the range of 400 to 700 kg/car, the bubble 6 has good molding stability during stretching deformation.
It can be seen that good thickness accuracy of the biaxially stretched multilayer film 8 can be obtained. Also, σMD and σTD are each 450~
Example 1 set within the range of 650 kg/crl
.. 2. 5. 6. 9. to, 12-15, 18
According to this method, molding stability and thickness accuracy are improved.

これに対して、表−2より、比較例2,3,6゜7によ
れば、σMDとσTDが700 kg / carを越
え、また比較例1,4.5によれば、σMDとσTDが
400kg / cr1未満であるため、成形安定性と
厚さ精度の少なくとも一つが不良であることがわかる。
On the other hand, according to Table 2, according to Comparative Examples 2, 3, and 6°7, σMD and σTD exceed 700 kg/car, and according to Comparative Examples 1 and 4.5, σMD and σTD exceeded 700 kg/car. Since it is less than 400 kg/cr1, it can be seen that at least one of molding stability and thickness accuracy is poor.

次に、実施例19〜38及び比較例8〜15において、
二軸延伸多層フィルムが、ナイロン6層、EVOH層、
接着剤樹脂層及びポリオレフィン層を有する場合の製造
方法を説明する。
Next, in Examples 19 to 38 and Comparative Examples 8 to 15,
The biaxially stretched multilayer film includes 6 layers of nylon, an EVOH layer,
The manufacturing method in the case of having an adhesive resin layer and a polyolefin layer will be explained.

X東園測二」 上記実施例と同様にして、実施例19〜38に係る二軸
延伸多層フィルム8の製造を行った。但し、多層フィル
ム8の層の構成、各層の厚さの比等については、下記の
表−3に示すように条件をそれぞれ異ならせた。なお、
表中の層の構成で、EVOHは、エチレン−酢酸ビニル
共重合体けん化物層の略であり、次の括弧はEVOHの
エチレン含有率(モル%)を示す。
X Souji Higashizono” Biaxially stretched multilayer films 8 according to Examples 19 to 38 were produced in the same manner as in the above examples. However, the conditions for the structure of the layers of the multilayer film 8, the ratio of the thickness of each layer, etc. were varied as shown in Table 3 below. In addition,
In the layer composition in the table, EVOH is an abbreviation for saponified ethylene-vinyl acetate copolymer layer, and the next parenthesis indicates the ethylene content (mol %) of EVOH.

なお、これらの実施例及び比較例で使用したEVOHは
、下記の通りである。
The EVOH used in these Examples and Comparative Examples are as follows.

EvOH(27モル%)−cバール EP−L(クラレ
■製、以下同様) EVOH(32モル%)・・・エバール EP−FEV
OH(38モル%)・・・エバール EP−HEVOH
(44モル%)・・・エバール EP−EE V OH
(48モル%)Q−xバー/1zEP−G同時二軸延伸
の際、上記実施例と同様に、各比較例毎に、σMDとσ
TDとが略等しい適当な値となるように、バブル6内の
圧力、バブル6の半径等を特定の値に設定した。
EvOH (27 mol%)-cvar EP-L (manufactured by Kuraray ■, same hereinafter) EVOH (32 mol%)...Eval EP-FEV
OH (38 mol%)... EVAL EP-HEVOH
(44 mol%)... EVAL EP-EE V OH
(48 mol%) During simultaneous biaxial stretching of Q-x bar/1zEP-G, σMD and σ
The pressure inside the bubble 6, the radius of the bubble 6, etc. were set to specific values so that TD was approximately equal to an appropriate value.

σMD及びσTDをそれぞれ適当な値に条件設定した各
比較例に係る二軸延伸多層フィルム8の製造において、
24時間の連続製造を行い、延伸変形時のバブル6の成
形安定性を観察、評価し、また得られた二軸延伸多層フ
ィルム8の厚さ精度の測定と評価及び総合評価を行った
結果を下記の表−3に併せて示す。
In manufacturing the biaxially stretched multilayer film 8 according to each comparative example in which σMD and σTD were set to appropriate values,
We performed continuous production for 24 hours, observed and evaluated the molding stability of the bubble 6 during stretching and deformation, and also measured and evaluated the thickness accuracy of the obtained biaxially stretched multilayer film 8 and performed a comprehensive evaluation. It is also shown in Table 3 below.

里覚土ししニ抄 上記実施例19〜38と同様にして、比較例8〜15に
係る二軸延伸多層フィルム8の製造を行った。
Biaxially stretched multilayer films 8 according to Comparative Examples 8 to 15 were produced in the same manner as in Examples 19 to 38 above.

但し、多層フィルム8の層の構成、各層の厚さの比等に
ついては、下記の表−4に示すように条件をそれぞれ異
ならせた。
However, the conditions for the structure of the layers of the multilayer film 8, the ratio of the thickness of each layer, etc. were varied as shown in Table 4 below.

また、同時二輪延伸の際、上記実施例と同様に、σ1及
びσTDをそれぞれ適当な値に条件設定して二軸延伸多
層フィルム8の連続製造を行った。この延伸変形時のバ
ブル6の成形安定性を観察、評価し、また得られた二軸
延伸多層フィルム8の厚さ精度の測定と評価及び総合評
価を行った結果を下記の表−4に併せて示す。
Further, during the simultaneous two-wheel stretching, the biaxially stretched multilayer film 8 was continuously manufactured by setting σ1 and σTD to appropriate values, respectively, in the same manner as in the above example. The molding stability of the bubble 6 during stretching and deformation was observed and evaluated, and the thickness accuracy of the obtained biaxially stretched multilayer film 8 was measured and evaluated, as well as the overall evaluation. The results are summarized in Table 4 below. Shown.

201− 表−3より、実施例19〜38によれば、チューブラ−
法により二輪延伸された、ナイロン6層、EVOH層、
接着剤樹脂層及びポリオレフィン層を有する多層フィル
ム8の製造方法において、フィルムのMD方向の最大延
伸応力σMD及びフィルムのTD方向の最大延伸応力σ
TDが、いずれも450〜850 kg / crjの
範囲内にあるため、延伸変形時のバブル6の良好な成形
安定性と共に、二軸延伸多層フィルム8の良好な厚さ精
度が得られることがわかる。また、びわとσTDをそれ
ぞれ550〜750kg / ctlの範囲内に設定し
た実施例19.21.23.24.27゜28、30〜
35.38によれば、成形安定性と厚さ精度がより良好
になる。
201- From Table 3, according to Examples 19 to 38, tubular
6 layers of nylon, EVOH layer, two-wheel stretched by the method
In the method for producing a multilayer film 8 having an adhesive resin layer and a polyolefin layer, the maximum stretching stress σMD in the MD direction of the film and the maximum stretching stress σ in the TD direction of the film
It can be seen that since both TDs are within the range of 450 to 850 kg/crj, good forming stability of the bubble 6 during stretching deformation and good thickness accuracy of the biaxially stretched multilayer film 8 can be obtained. . In addition, Examples 19, 21, 23, 24, 27° 28, 30 - where loquat and σTD were set within the range of 550 to 750 kg/ctl, respectively.
According to 35.38, molding stability and thickness accuracy become better.

これに対して、比較例9.11,12.14によれば、
びわとσ1Dが850 kg / crlを越え、また
比較例10゜10、13.15によれば、びわとびTD
が450 kg / cIIr未満であるため、成形安
定性と厚さ精度の少なくとも一つが不良であることがわ
かる。
On the other hand, according to Comparative Examples 9.11 and 12.14,
Loquat σ1D exceeds 850 kg/crl, and according to Comparative Examples 10°10 and 13.15, Loquat TD
is less than 450 kg/cIIr, which indicates that at least one of molding stability and thickness accuracy is poor.

次に、実施例39〜50及び比較例16〜23において
、二軸延伸多層フィルムが、ナイロン6−66層及びE
VOH層を有する場合の製造方法を説明する。
Next, in Examples 39 to 50 and Comparative Examples 16 to 23, the biaxially stretched multilayer film had a nylon 6-66 layer and an E
A manufacturing method in the case of having a VOH layer will be explained.

及凰葺皿二並 上記実施例と同様にして、実施例39〜50に係る二軸
延伸多層フィルム8の製造を行った。これらの多層フィ
ルム8は、ナイロン6−66層、EVOH層及びナイロ
ン6−66層の3層構造を有する。
Biaxially stretched multilayer films 8 according to Examples 39 to 50 were produced in the same manner as in the above examples. These multilayer films 8 have a three-layer structure of a nylon 6-66 layer, an EVOH layer, and a nylon 6-66 layer.

但し、各層の厚さの比等については、下記の表5に示す
ように条件をそれぞれ異ならせた。
However, the conditions such as the ratio of the thickness of each layer were varied as shown in Table 5 below.

なお、これらの実施例及び比較例で使用したナイロン6
−66は、UBEナイロン5023FD  (商品名、
宇部興産■製、η、3.6)である。
In addition, the nylon 6 used in these examples and comparative examples
-66 is UBE nylon 5023FD (product name,
Manufactured by Ube Industries, η, 3.6).

同時二軸延伸の際、上記実施例と同様に、各比較例毎に
、σMDとσMD、とが略等しい適当な値となるように
、バブル6内の圧力、バブル6の半径等を特定の値に設
定した。
During simultaneous biaxial stretching, the pressure inside the bubble 6, the radius of the bubble 6, etc. were adjusted to specific values for each comparative example, in the same way as in the above examples, so that σMD and σMD are approximately equal to appropriate values. set to the value.

σMD及びσTDをそれぞれ適当な値に条件設定した各
比較例に係る二軸延伸多層フィルム8の製造において、
24時間の連続製造を行い、延伸変形時のバブル6の成
形安定性を観察、評価し、また得られた二軸延伸多層フ
ィルム8の厚さ精度の測定と評価及び総合評価を行った
結果を下記の表−5に併せて示す。
In manufacturing the biaxially stretched multilayer film 8 according to each comparative example in which σMD and σTD were set to appropriate values,
We performed continuous production for 24 hours, observed and evaluated the molding stability of the bubble 6 during stretching and deformation, and also measured and evaluated the thickness accuracy of the obtained biaxially stretched multilayer film 8 and performed a comprehensive evaluation. It is also shown in Table 5 below.

よ蚊園旦二堕 上記実施例39〜50と同様にして、比較例16〜23
に係る二軸延伸多層フィルム8の製造を行った。
Comparative Examples 16 to 23 were carried out in the same manner as in Examples 39 to 50 above.
A biaxially stretched multilayer film 8 was produced.

多層フィルム8の層の構成は 上記実施例39〜50と
同様である。但し、各層の厚さの比等については、下記
の表−5に示すように条件をそれぞれ異ならせた。
The structure of the layers of the multilayer film 8 is the same as in Examples 39 to 50 above. However, the conditions such as the ratio of the thickness of each layer were varied as shown in Table 5 below.

また、同時二軸延伸の際、上記実施例と同様に、σMD
及びσTDをそれぞれ適当な値に条件設定して二軸延伸
多層フィルム8の連続製造を行った。
In addition, during simultaneous biaxial stretching, σMD
The biaxially stretched multilayer film 8 was continuously produced by setting the conditions of σTD and σTD to appropriate values.

この延伸変形時のバブル6の成形安定性を観察、評価し
、また得られた二軸延伸多層フィルム8の厚さ精度の測
定と評価及び総合評価を行った結果を下記の表−5に併
せて示す。
The molding stability of the bubble 6 during stretching and deformation was observed and evaluated, and the thickness accuracy of the obtained biaxially stretched multilayer film 8 was measured and evaluated as well as the overall evaluation. The results are summarized in Table 5 below. Shown.

表−5より、実施例39〜50によれば、チューブラ−
法により二軸延伸された、ナイロン6−66層及びEV
OH層を有する多層フィルム8の製造方法において、フ
ィルムのMD方向の最大延伸応力σMD及びフィルムの
TD方向の最大延伸応力σア、が、いずれも500〜1
150kg / cr!の範囲内にあるため、延伸変形
時のバブル6の良好な成形安定性と共に、二軸延伸多層
フィルム8の良好な厚さ精度が得られることがわかる。
From Table 5, according to Examples 39 to 50, tubular
Biaxially oriented nylon 6-66 layer and EV
In the method for manufacturing the multilayer film 8 having an OH layer, the maximum stretching stress σMD in the MD direction of the film and the maximum stretching stress σA in the TD direction of the film are both 500 to 1.
150kg/cr! Since it is within the range of , it can be seen that not only good molding stability of the bubble 6 during stretching deformation but also good thickness accuracy of the biaxially stretched multilayer film 8 can be obtained.

また、σMDとσTDをそれぞれ600〜1000kg
 / cr!の範囲内に設定した実施例39.41.4
2.44〜47.50によれば、成形安定性と厚さ精度
がより良好になる。
In addition, σMD and σTD are each 600 to 1000 kg.
/cr! Example 39.41.4 set within the range of
According to 2.44 to 47.50, molding stability and thickness accuracy become better.

これに対して、比較例16.17.19.21〜23に
よれば、びわとσTDが1150kg/cnfを越え、
また比較例18、20によれば、(7MDとびTDが5
00 kg / cr!未満であるため、成形安定性と
厚さ精度の少なくとも一つが不良であることがわかる。
On the other hand, according to Comparative Examples 16.17.19.21 to 23, loquat and σTD exceeded 1150 kg/cnf,
Also, according to Comparative Examples 18 and 20, (7MD and TD are 5
00 kg/cr! It can be seen that at least one of molding stability and thickness accuracy is poor.

次に、実施例51〜70及び比較例24〜31において
、二軸延伸多層フィルムが、ナイロン6−66層、EV
OH層、接着剤樹脂層及びポリオレフィン層を有する場
合の製造方法を説明する。
Next, in Examples 51 to 70 and Comparative Examples 24 to 31, the biaxially stretched multilayer film had a nylon 6-66 layer, an EV
A manufacturing method in the case of having an OH layer, an adhesive resin layer, and a polyolefin layer will be explained.

X喜園旦ニュ 上記実施例と同様にして、実施例51〜70に係る二軸
延伸多層フィルム8の製造を行った。但し、多層フィル
ム8の層の構成、各層の厚さの比等については、下記の
表−6に示すように条件をそれぞれ異ならせた。
X Kisono Dannu Biaxially stretched multilayer films 8 according to Examples 51 to 70 were produced in the same manner as in the above examples. However, the conditions for the structure of the layers of the multilayer film 8, the ratio of the thickness of each layer, etc. were varied as shown in Table 6 below.

同時二軸延伸の際、上記実施例と同様に、各比較例毎に
、びわとσTDとが略等しい適当な値となるように、バ
ブル6内の圧力、バブル6の半径等を特定の値に設定し
た。
During simultaneous biaxial stretching, the pressure inside the bubble 6, the radius of the bubble 6, etc. were adjusted to specific values for each comparative example, so that the loquat and σTD were approximately equal and appropriate values, similar to the above examples. It was set to

σMD及びσTDをそれぞれ適当な値に条件設定した各
比較例に係る二軸延伸多層フィルム8の製造において、
24時間の連続製造を行い、延伸変形時のバブル6の成
形安定性を観察、評価し、また得られた二軸延伸多層フ
ィルム8の厚さ精度の測定と評価及び総合評価を行った
結果を下記の表−6に併せて示す。
In manufacturing the biaxially stretched multilayer film 8 according to each comparative example in which σMD and σTD were set to appropriate values,
We performed continuous production for 24 hours, observed and evaluated the molding stability of the bubble 6 during stretching and deformation, and also measured and evaluated the thickness accuracy of the obtained biaxially stretched multilayer film 8 and performed a comprehensive evaluation. It is also shown in Table 6 below.

牝(U狐にヒ5■ 上記実施例51〜70と同様にして、比較例8〜15に
係る二軸延伸多層フィルム8の製造を行った。
Biaxially stretched multilayer films 8 according to Comparative Examples 8 to 15 were produced in the same manner as in Examples 51 to 70 above.

但し、多層フィルム8の層の構成、各層の厚さの比等に
ついては、下記の表−7に示すように条件をそれぞれ異
ならせた。
However, the conditions for the structure of the layers of the multilayer film 8, the ratio of the thickness of each layer, etc. were varied as shown in Table 7 below.

また、同時二軸延伸の際、上記実施例と同様に、σMD
及びσTDをそれぞれ適当な値に条件設定して二軸延伸
多層フィルム8の連続製造を行った。
In addition, during simultaneous biaxial stretching, σMD
The biaxially stretched multilayer film 8 was continuously produced by setting the conditions of σTD and σTD to appropriate values.

この延伸変形時のバブル6の成形安定性を観察、評価し
、また得られた二軸延伸多層フィルム8の厚さ精度の測
定と評価及び総合評価を行った結果を下記の表−7に併
せて示す。
The molding stability of the bubble 6 during stretching and deformation was observed and evaluated, and the thickness accuracy of the obtained biaxially stretched multilayer film 8 was measured and evaluated as well as the overall evaluation. The results are summarized in Table 7 below. Shown.

表−6より、実施例51〜70によれば、チューブラ−
法により二軸延伸された、ナイロン6−66層、EVO
H層、接着剤樹脂層及びポリオレフィン層を有する多層
フィルム8の製造方法において、フィルムのMD方向の
最大延伸応力σ1及びフィルムのTD方向の最大延伸応
力σTDが、いずれも350〜750 kg/cnfの
範囲内にあるため、延伸変形時のバブル6の良好な成形
安定性と共に、二軸延伸多層フィルム8の良好な厚さ精
度が得られることがわかる。また、びわとσTDをそれ
ぞれ450〜650 kg / cnfの範囲内に設定
した実施例51.53.55.59、60.62〜67
、70によれば、成形安定性と厚さ精度がより良好にな
る。
From Table 6, according to Examples 51 to 70, tubular
Biaxially oriented nylon 6-66 layer, EVO
In the method for producing a multilayer film 8 having an H layer, an adhesive resin layer, and a polyolefin layer, the maximum stretching stress σ1 in the MD direction of the film and the maximum stretching stress σTD in the TD direction of the film are both 350 to 750 kg/cnf. Since it is within this range, it can be seen that not only good molding stability of the bubble 6 during stretching deformation but also good thickness accuracy of the biaxially stretched multilayer film 8 can be obtained. In addition, Examples 51, 53, 55, 59, 60, 62, and 67 in which loquat and σTD were set within the range of 450 to 650 kg/cnf, respectively.
, 70, molding stability and thickness accuracy are improved.

これに対して、表−7より、比較例24.27.28゜
30によれば、σMDとσTDが750 kg / c
nrを越え、また比較例26.27.29.31によれ
ば、びわとσTDが350kg/cnr未満であるため
、成形安定性と厚さ精度の少なくとも一つが不良である
ことがわかる。
On the other hand, from Table 7, according to Comparative Example 24.27.28°30, σMD and σTD are 750 kg/c.
nr, and according to Comparative Examples 26, 27, 29, and 31, loquat and σTD are less than 350 kg/cnr, so it can be seen that at least one of molding stability and thickness accuracy is poor.

次に、実施例71〜89及び比較例32〜38において
、二軸延伸多層フィルムが、ナイロン6−66層、接着
剤樹脂層及びポリオレフィン層を有する場合の製造方法
を説明する。
Next, in Examples 71 to 89 and Comparative Examples 32 to 38, a manufacturing method will be described in which the biaxially stretched multilayer film has a nylon 6-66 layer, an adhesive resin layer, and a polyolefin layer.

X及艶ユニ財 上記実施例と同様にして、実施例71〜89に係る二軸
延伸多層フィルム8の製造を行った。但し、多層フィル
ム8の層の構成、各層の厚さの比等については、下記の
表−8に示すように条件をそれぞれ異ならせた。
Biaxially stretched multilayer films 8 according to Examples 71 to 89 were produced in the same manner as in the above examples. However, the conditions for the structure of the layers of the multilayer film 8, the ratio of the thickness of each layer, etc. were varied as shown in Table 8 below.

同時二軸延伸の際、上記実施例と同様に、各比較例毎に
、σMDとσTDとが略等しい適当な値となるように、
バブル6内の圧力、バブル6の半径等を特定の値に設定
した。
During simultaneous biaxial stretching, as in the above examples, for each comparative example, σMD and σTD were set to approximately equal appropriate values.
The pressure inside the bubble 6, the radius of the bubble 6, etc. were set to specific values.

σMD及びσTDをそれぞれ適当な値に条件設定した各
比較例に係る二軸延伸多層フィルム8の製造において、
24時間の連続製造を行い、延伸変形時のバブル6の成
形安定性を観察、評価し、また得られた二軸延伸多層フ
ィルム8の厚さ精度の測定と評価及び総合評価を行った
結果を下記の表−8に併せて示す。
In manufacturing the biaxially stretched multilayer film 8 according to each comparative example in which σMD and σTD were set to appropriate values,
We performed continuous production for 24 hours, observed and evaluated the molding stability of the bubble 6 during stretching and deformation, and also measured and evaluated the thickness accuracy of the obtained biaxially stretched multilayer film 8 and performed a comprehensive evaluation. It is also shown in Table 8 below.

比較例32〜38 上記実施例71〜89と同様にして、比較例32〜38
に係る二軸延伸多層フィルム8の製造を行った。
Comparative Examples 32 to 38 Comparative Examples 32 to 38 were prepared in the same manner as Examples 71 to 89 above.
A biaxially stretched multilayer film 8 was produced.

但し、多層フィルム8の層の構成、各層の厚さの比等に
ついては、下記の表−9に示すように条件をそれぞれ異
ならせた。
However, the conditions for the structure of the layers of the multilayer film 8, the ratio of the thickness of each layer, etc. were varied as shown in Table 9 below.

また、同時二軸延伸の際、上記実施例と同様に、σMD
及びσTDをそれぞれ適当な値に条件設定して二軸延伸
多層フィルム8の連続製造を行った。
In addition, during simultaneous biaxial stretching, σMD
The biaxially stretched multilayer film 8 was continuously produced by setting the conditions of σTD and σTD to appropriate values.

この延伸変形時のバブル6の成形安定性を観察、評価し
、また得られた二軸延伸多層フィルム8の厚さ精度の測
定と評価及び総合評価を行った結果を下記の表−9に併
せて示す。
The molding stability of the bubble 6 during stretching and deformation was observed and evaluated, and the thickness accuracy of the obtained biaxially stretched multilayer film 8 was measured and evaluated, as well as the overall evaluation. The results are summarized in Table 9 below. Shown.

表−8より、実施例72〜89によれば、チューブラ−
法により二軸延伸された、ナイロン6−66層、接着剤
樹脂層及びポリオレフィン層を有する多層フィルム8の
製造方法において、フィルムのMD方向の最大延伸応力
σMD及びフィルムのTD方向の最大延伸応力σTDが
、いずれも300〜600kg / ciの範囲内にあ
るため、延伸変形時のバブル6の良好な成形安定性と共
に、二軸延伸多層フィルム8の良好な厚さ精度が得られ
ることがわかる。
From Table 8, according to Examples 72 to 89, tubular
In the method for producing a multilayer film 8 having a nylon 6-66 layer, an adhesive resin layer, and a polyolefin layer biaxially stretched by a method, the maximum stretching stress σMD in the MD direction of the film and the maximum stretching stress σTD in the TD direction of the film is within the range of 300 to 600 kg/ci, so it can be seen that not only good molding stability of the bubble 6 during stretching deformation but also good thickness accuracy of the biaxially stretched multilayer film 8 can be obtained.

また、びわとσTDをそれぞれ450〜650 kg/
cJの範囲内に設定した実施例71.72.74〜77
.81〜86,89によれば、成形安定性と厚さ精度が
より良好になる。
In addition, loquat and σTD are each 450 to 650 kg/
Examples 71, 72, 74 to 77 set within the range of cJ
.. According to Nos. 81 to 86 and 89, molding stability and thickness accuracy are improved.

これに対して、表−9より、比較例34.35.37゜
38によれば、σMDとσTDが600kg/cm2を
越え、また比較例32.35.36によれば、σMDと
σTDが300 kg/ cif未満であるため、成形
安定性と厚さ精度の少なくとも一つが不良であることが
わかる。
On the other hand, according to Table 9, according to Comparative Example 34.35.37°38, σMD and σTD exceed 600 kg/cm2, and according to Comparative Example 32.35.36, σMD and σTD exceed 300 kg/cm2. Since it is less than kg/cif, it can be seen that at least one of molding stability and thickness accuracy is poor.

[発明の効果コ 本発明によれば、ナイロン系多層フィルムの二軸延伸時
における良好な成形安定性が得られるため、連続生産を
支障なく行うことが可能になる。
[Effects of the Invention] According to the present invention, good forming stability can be obtained during biaxial stretching of a nylon multilayer film, so that continuous production can be carried out without any problems.

また、得られる二軸延伸多層フィルムの厚さ精度が向上
するため、品質の良好な製品を提供することができる。
Furthermore, since the thickness accuracy of the obtained biaxially stretched multilayer film is improved, a product with good quality can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る製造方法で使用する装置
の概略図である。 1・・・原反フィルム、3・・・ヒータ、4・・・エア
ーリング、6・・・バブル、8・・・二軸延伸多層フィ
ルム。
FIG. 1 is a schematic diagram of an apparatus used in a manufacturing method according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Raw film, 3... Heater, 4... Air ring, 6... Bubble, 8... Biaxially stretched multilayer film.

Claims (5)

【特許請求の範囲】[Claims] (1)チューブラー法により二軸延伸された、ナイロン
6層、接着剤樹脂層及びポリオレフィン層を有する多層
フィルムの製造方法において、前記多層フィルムの移動
方向(MD)の最大延伸応力をσ_M_D、フィルムの
幅方向(TD)の最大延伸応力をσ_T_Dとしたとき
、σ_M_D及びσ_T_Dをそれぞれ 400kg/cm^2≦σ_T_D≦700kg/cm
^2400kg/cm^2≦σ_M_D≦700kg/
cm^2に設定したことを特徴とする二軸延伸多層フィ
ルムの製造方法。 但し、前記σ_M_Dとσ_T_Dは、それぞれ下式で
表される。 σ_M_D=(F×B_M_D)/A F=T/r ここで、Fは延伸力(kg)、B_M_DはMD方向の
延伸倍率、Aは原反フィルムの断面積(cm^2)、T
はニップロールの回転トルク(kg・cm)、rはニッ
プロールの半径(cm)である。 σ_T_D=(ΔP×R)/t ここで、ΔPはバブル内圧力(kg/cm^2)、Rは
バブル半径(cm)、tはフィルムの厚さ(cm)であ
る。
(1) In a method for producing a multilayer film biaxially stretched by the tubular method and having 6 layers of nylon, an adhesive resin layer, and a polyolefin layer, the maximum stretching stress in the moving direction (MD) of the multilayer film is defined as σ_M_D, film When the maximum stretching stress in the width direction (TD) is σ_T_D, σ_M_D and σ_T_D are each 400 kg/cm^2≦σ_T_D≦700 kg/cm
^2400kg/cm^2≦σ_M_D≦700kg/
A method for producing a biaxially stretched multilayer film, characterized in that the film is set to cm^2. However, σ_M_D and σ_T_D are each expressed by the following formulas. σ_M_D=(F×B_M_D)/A F=T/r Here, F is the stretching force (kg), B_M_D is the stretching ratio in the MD direction, A is the cross-sectional area of the original film (cm^2), and T
is the rotational torque of the nip roll (kg·cm), and r is the radius of the nip roll (cm). σ_T_D=(ΔP×R)/t Here, ΔP is the bubble internal pressure (kg/cm^2), R is the bubble radius (cm), and t is the film thickness (cm).
(2)チューブラー法により二軸延伸された、ナイロン
6層、エチレン−酢酸ビニル共重合体けん化物(EVO
H)層、接着剤樹脂層及びポリオレフィン層を有する多
層フィルムの製造方法において、 前記多層フィルムの移動方向(MD)の最大延伸応力を
σ_M_D、フィルムの幅方向(TD)の最大延伸応力
をσ_T_Dとしたとき、σ_M_D及びσ_T_Dを
それぞれ 450kg/cm^2≦σ_T_D≦850kg/cm
^2450kg/cm^2≦σ_M_D≦850kg/
cm^2に設定したことを特徴とする二軸延伸多層フィ
ルムの製造方法。
(2) Six layers of nylon, saponified ethylene-vinyl acetate copolymer (EVO
H) layer, an adhesive resin layer, and a polyolefin layer, wherein the maximum stretching stress in the moving direction (MD) of the multilayer film is σ_M_D, and the maximum stretching stress in the width direction (TD) of the film is σ_T_D. When σ_M_D and σ_T_D are each 450 kg/cm^2≦σ_T_D≦850 kg/cm
^2450kg/cm^2≦σ_M_D≦850kg/
A method for producing a biaxially stretched multilayer film, characterized in that the film is set to cm^2.
(3)チューブラー法により二軸延伸された、ナイロン
6−66層及びEVOH層を有する多層フィルムの製造
方法において、 前記多層フィルムの移動方向(MD)の最大延伸応力を
σ_M_D、フィルムの幅方向(TD)の最大延伸応力
をσ_T_Dとしたとき、σ_M_D及びσ_T_Dを
それぞれ 500kg/cm^2≦σ_T_D≦1150kg/c
m^2500kg/cm^2≦σ_M_D≦1150k
g/cm^2に設定したことを特徴とする二軸延伸多層
フィルムの製造方法。
(3) In a method for producing a multilayer film having a nylon 6-66 layer and an EVOH layer, which is biaxially stretched by the tubular method, the maximum stretching stress in the moving direction (MD) of the multilayer film is σ_M_D, and the width direction of the film is When the maximum stretching stress of (TD) is σ_T_D, σ_M_D and σ_T_D are each 500 kg/cm^2≦σ_T_D≦1150 kg/c
m^2500kg/cm^2≦σ_M_D≦1150k
A method for producing a biaxially stretched multilayer film, characterized in that the film is set at g/cm^2.
(4)チューブラー法により二軸延伸された、ナイロン
6−66層、EVOH層、接着剤樹脂層及びポリオレフ
ィン層を有する多層フィルムの製造方法において、 前記多層フィルムの移動方向(MD)の最大延伸応力を
σ_M_D、フィルムの幅方向(TD)の最大延伸応力
をσ_T_Dとしたとき、σ_M_D及びσ_T_Dを
それぞれ 350kg/cm^2≦σ_T_D≦750kg/cm
^2350kg/cm^2≦σ_M_D≦750kg/
cm^2に設定したことを特徴とする二軸延伸多層フィ
ルムの製造方法。
(4) A method for producing a multilayer film having a nylon 6-66 layer, an EVOH layer, an adhesive resin layer, and a polyolefin layer biaxially stretched by a tubular method, including maximum stretching in the moving direction (MD) of the multilayer film. When the stress is σ_M_D and the maximum stretching stress in the width direction (TD) of the film is σ_T_D, σ_M_D and σ_T_D are each 350 kg/cm^2≦σ_T_D≦750 kg/cm
^2350kg/cm^2≦σ_M_D≦750kg/
A method for producing a biaxially stretched multilayer film, characterized in that the film is set to cm^2.
(5)チューブラー法により二軸延伸された、ナイロン
6−66層、接着剤樹脂層及びポリオレフィン層を有す
る多層フィルムの製造方法において、前記多層フィルム
の移動方向(MD)の最大延伸応力をσ_M_D、フィ
ルムの幅方向(TD)の最大延伸応力をσ_T_Dとし
たとき、σ_M_D及びσ_T_Dをそれぞれ 300kg/cm^2≦σ_T_D≦600kg/cm
^2300kg/cm^2≦σ_M_D≦600kg/
cm^2に設定したことを特徴とする二軸延伸多層フィ
ルムの製造方法。
(5) In a method for producing a multilayer film having a nylon 6-66 layer, an adhesive resin layer, and a polyolefin layer, which is biaxially stretched by the tubular method, the maximum stretching stress in the moving direction (MD) of the multilayer film is σ_M_D , When the maximum stretching stress in the width direction (TD) of the film is σ_T_D, σ_M_D and σ_T_D are each 300 kg/cm^2≦σ_T_D≦600 kg/cm
^2300kg/cm^2≦σ_M_D≦600kg/
A method for producing a biaxially stretched multilayer film, characterized in that the film is set to cm^2.
JP3586190A 1989-03-10 1990-02-16 Method for producing biaxially stretched multilayer film Expired - Fee Related JPH0773879B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3586190A JPH0773879B2 (en) 1990-02-16 1990-02-16 Method for producing biaxially stretched multilayer film
DE69021607T DE69021607T2 (en) 1989-03-10 1990-03-08 Process for the production of biaxially oriented nylon films.
EP90104444A EP0386759B1 (en) 1989-03-10 1990-03-08 Process for producing biaxially oriented nylon film
US07/492,884 US5094799A (en) 1989-03-10 1990-03-09 Process for producing biaxially oriented nylon film
AU51214/90A AU622777B2 (en) 1989-03-10 1990-03-09 Process for producing biaxially oriented nylon film
KR1019900003201A KR0154330B1 (en) 1989-03-10 1990-03-10 Process of preparing biaxially oriented nylon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3586190A JPH0773879B2 (en) 1990-02-16 1990-02-16 Method for producing biaxially stretched multilayer film

Publications (2)

Publication Number Publication Date
JPH03239529A true JPH03239529A (en) 1991-10-25
JPH0773879B2 JPH0773879B2 (en) 1995-08-09

Family

ID=12453768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3586190A Expired - Fee Related JPH0773879B2 (en) 1989-03-10 1990-02-16 Method for producing biaxially stretched multilayer film

Country Status (1)

Country Link
JP (1) JPH0773879B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540156A (en) * 2005-05-04 2008-11-20 ブリュックナー マシーネンバウ ゲーエムベーハー High-strength polypropylene-based protective film for packaging, its production and use
WO2014148279A1 (en) * 2013-03-19 2014-09-25 出光ユニテック株式会社 Method for manufacturing multilayer stretched film, and multilayer stretched film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540156A (en) * 2005-05-04 2008-11-20 ブリュックナー マシーネンバウ ゲーエムベーハー High-strength polypropylene-based protective film for packaging, its production and use
WO2014148279A1 (en) * 2013-03-19 2014-09-25 出光ユニテック株式会社 Method for manufacturing multilayer stretched film, and multilayer stretched film

Also Published As

Publication number Publication date
JPH0773879B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
KR0154330B1 (en) Process of preparing biaxially oriented nylon film
US5547765A (en) Retortable polymeric films
JP2552946B2 (en) Biaxially stretched laminated film
EP0310290B1 (en) Hdpe films with differential biaxial orientation
AU2001268665B2 (en) High moisture barrier films
EP0457598B1 (en) Use of a breathable abuse resistant film for packaging cheese
CA2191587C (en) Retortable, high oxygen barrier polymeric films
JPH0521743B2 (en)
JPH0588674B2 (en)
JPS6412226B2 (en)
JPH11106592A (en) Resin composition and its laminate
JP6283358B2 (en) Curl-resistant barrier film
JP4889478B2 (en) Method for heat treatment of vinylidene chloride-methyl acrylate copolymer biaxially stretched film
JPH03239529A (en) Manufacture of biaxially oriented multi layered film
JPH0557855A (en) Heat-shrinkable laminated film for heat-seal
JPH09187901A (en) Multi-layer drawing polyamide film
JP2000079669A (en) Biaxially stretched multilayered film
JPS6122613B2 (en)
JP2004134391A (en) Battery separator
JPH03158226A (en) Manufacture of biaxially stretched multilayered film
JPH02235722A (en) Manufacture of biaxially orientated nylon 6 film
JPH08230035A (en) Production of co-extrusion multilayered stretched film
TWI766627B (en) Polyamide 6 resin film
JPH03222719A (en) Manufacture of laminated biaxially oriented film
JPH04142256A (en) Packaging bag

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees