JPH03239455A - High-speed numerically controlled conveyor - Google Patents

High-speed numerically controlled conveyor

Info

Publication number
JPH03239455A
JPH03239455A JP3144990A JP3144990A JPH03239455A JP H03239455 A JPH03239455 A JP H03239455A JP 3144990 A JP3144990 A JP 3144990A JP 3144990 A JP3144990 A JP 3144990A JP H03239455 A JPH03239455 A JP H03239455A
Authority
JP
Japan
Prior art keywords
speed
program
control
travel
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3144990A
Other languages
Japanese (ja)
Inventor
Takehiko Nagano
永野 武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3144990A priority Critical patent/JPH03239455A/en
Publication of JPH03239455A publication Critical patent/JPH03239455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feeding Of Workpieces (AREA)
  • Multi-Process Working Machines And Systems (AREA)

Abstract

PURPOSE:To secure the extent of stopping positional accuracy being required in a short time by installing a controller which conveys a starting command to a high-speed control program if the side of a moving target position is larger but if it is smaller, delivers the starting command of a low-speed control program. CONSTITUTION:A servomotor 2 is driven by a rotational command out of a conveying numerical control system 8 while rotational value is secured from a rotation detecting element and the travel and current position of a conveying rod 7 are secured at the NC system 8. The current position is delivered to a controller 9 from the conveying NC system 8. The controller 9 discriminates the magnitude between the value adding both travel values at acceleration and deceleration to the current stopping position and the travel target position. When the side of this travel target position is smaller, there is no room for adjustable speed of an approximate cycloid curve, so that it comes to a high- speed travel prohibiting range, and a low-speed program No. is delivered to the NC system 8, but it is larger, a high-speed program No. is conveyed to the NC system 8.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、トランスファマシンの搬送装置等高速NC搬
送装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high-speed NC transfer device such as a transfer device for a transfer machine.

〈従来の技術とその課題〉 工作機械内では加工物の搬送・位置決めを行なう必要が
あるが、この場合従来よりNC装置による搬送装置が使
用されている。
<Prior art and its problems> It is necessary to transport and position a workpiece in a machine tool, and in this case, a transport device using an NC device has conventionally been used.

このNC搬送装置による搬送・位置決めは、高速で短時
間で行なうのが理想であるが、高速にしようとして加減
速時定数を小さく(急加速・急減速)することは、加工
物へのシ璽ツクは緩和されても加工物のずれや倒れが生
じて現実的でない。このため、加工速時定数を近似サイ
クロイド曲線等とするようNGプログラムを構成して絶
対位置制御を行なっている。
Ideally, conveyance and positioning by this NC conveyance device should be performed at high speed and in a short time, but reducing the acceleration/deceleration time constant (sudden acceleration/deceleration) in an attempt to increase the speed may cause markings on the workpiece. Even if the stress is alleviated, the workpiece may shift or fall, which is impractical. For this reason, absolute position control is performed by configuring the NG program so that the machining speed time constant is set to an approximate cycloid curve or the like.

ところが、途中(起動開始位置を外れた位置)で停止・
再起動を行なった場合でも、要求される目標停止位置精
度を得るため絶対位雪のNCプログラムを使用すること
になる。
However, it stopped midway (at a position outside of the starting starting position).
Even if a restart is performed, the absolute position NC program will be used to obtain the required target stop position accuracy.

しかし、絶対位置のプログラムでは、途中停止位置から
再起動できず、低速である起動開始位置近辺の位置が指
令されているプログラムの最初の位置決め位置へ捩って
再度正規の動作を行なうことになる。
However, in an absolute position program, it is not possible to restart from a mid-stop position, and the program must twist to the first positioning position of the program where a position near the starting start position, which is slow, is commanded, and perform normal operation again. .

したがって、途中の起動ではその度に最初からのプログ
ラムが実行されることになる。
Therefore, the program will be executed from the beginning each time the program is started.

このため、他の方策として途中の起動にあってCよ、別
のプログラムにより低速で位置決めを行なうことになる
が、乙の低速では当初目的とする短時間の位置決めがで
きない。
Therefore, another measure is to perform positioning at a low speed using another program during startup in the middle, but the initially intended short-time positioning cannot be achieved at the low speed of B.

そこで、本発明は途中からの起動があっても短時間では
要求される停止位置精度を得る高速NC搬送装置の提供
を目的とする。
Therefore, an object of the present invention is to provide a high-speed NC transfer device that can achieve the required stop position accuracy in a short period of time even if it is started midway.

く課題を解決するための手段〉 上述の目的を達成する本発明は、搬送用NC装置と乙の
NC装置を管理する制御装置とを有する高速NC搬送装
置において、現在停止している位置を上記制御装置に送
出し、この制御装置から高速又は低速制御プログラムの
起動指令を受け、高速プログラムの場合相対位置fI4
I!lによる起動についで絶対位置制−による減速停止
を行なうか低速プログラムを行なう上記搬送用NC装置
と、上記現在停止している位置に加速時及び減速時の移
動量を加えた値と移動する目標位置との大小を判別し、
この移動する目標位置の方が大きければ上記高速制御プ
ログラムに起動指令を搬出し小さければ上記低速制御プ
ログラムの起動指令を送出する上記制御装置と、を有す
ることを特徴とする。
Means for Solving the Problems> The present invention, which achieves the above-mentioned object, is a high-speed NC conveyance device that has a conveyance NC device and a control device that manages the NC device. The command is sent to the control device, receives a start command for a high-speed or low-speed control program from this control device, and in the case of a high-speed program, the relative position fI4 is sent to the control device.
I! The above-mentioned conveyance NC device performs deceleration and stop using absolute position control or performs a low-speed program after being started by l, the above-mentioned current stopped position plus the amount of movement during acceleration and deceleration, and the moving target. Distinguish the size from the position,
If the target position to be moved is larger, the control device sends a start command to the high speed control program, and if the target position is smaller, sends a start command to the low speed control program.

く作   用〉 停止している位置を中心として、高速移動が可能か否か
は、現在位置に加減速移動量を加えた値と目標位置との
大小を判定することにより判定し、高速移動可能である
ときは、相対位置指令による起動及び絶対位置指令によ
る停止を行ない、高速移動禁止領域の場合には加減速を
伴わない低速移動を行なうことを起動指令の入力によっ
て実行する。この場合、低速移動Cよ加減速領域弁だけ
となるので、サイクルタイムには影響しない。
Effect> Whether high-speed movement is possible around the stopped position is determined by determining the magnitude of the target position and the value obtained by adding the acceleration/deceleration movement amount to the current position. When this is the case, startup is performed using a relative position command and stopping is performed using an absolute position command, and in the case of a high-speed movement prohibited area, low-speed movement without acceleration or deceleration is executed by inputting a start-up command. In this case, since only the low-speed movement C and the acceleration/deceleration region valve are used, the cycle time is not affected.

く実 施 例〉 ここで、第1図ないし第4図を参照して本発明の詳細な
説明する。第1図は搬送装置の概略を示し、機構的には
、パルジェネレータ又はパルスコーダlを備えたサーボ
モータ2を備え、このサーボモータ2にはトルクリミッ
タ3を介してプーリ4.ベルト5が連結されろ。
EMBODIMENTS> The present invention will now be described in detail with reference to FIGS. 1 to 4. FIG. 1 schematically shows a conveying device, which mechanically includes a servo motor 2 equipped with a pulse generator or a pulse coder 1, which is connected to a pulley 4 through a torque limiter 3. Belt 5 should be connected.

そして、ベルト5によって駆動されろプーリ4はボール
スクリュー6に連結されて搬送環7を駆動する。
The pulley 4 driven by the belt 5 is connected to a ball screw 6 and drives a conveying ring 7.

一方、サーボモータ2及びパルスジェネレータ1等の回
転検出部は搬送用NC装置8に電気的に接続され、この
搬送用NC装置8は制御装置9に接続され、更に制御装
置9は操作盤10に接続されろ。そして、サーボモータ
2は搬送用MClAl18からの回転指令によって駆動
されろと共に回転検出部からは回転lがNC装置8では
搬送環7の移動量や現在位置が得られることになる。
On the other hand, the rotation detection parts such as the servo motor 2 and the pulse generator 1 are electrically connected to a conveyance NC device 8, and this conveyance NC device 8 is connected to a control device 9, which is further connected to an operation panel 10. Get connected. The servo motor 2 is driven by a rotation command from the transport MClAl 18, and the rotation detecting section obtains the rotation l, and the NC device 8 obtains the movement amount and current position of the transport ring 7.

第2図は第1図中、制御装置9と搬送用NC装置8との
信号伝達状況を示すもので、搬送用NC装置8からは、
現在停止している位置情報、つまり現在位置が#押装置
9へ送出される。また、NC装置8からは、起動生信号
、位置決め完了信号、Mコード等が制御装置9に送出さ
れる。
FIG. 2 shows the signal transmission situation between the control device 9 and the conveyance NC device 8 in FIG. 1, and from the conveyance NC device 8,
Information on the currently stopped position, that is, the current position, is sent to the # press device 9. Further, the NC device 8 sends a starting raw signal, a positioning completion signal, an M code, etc. to the control device 9.

NC装置8内の制御プログラムとしては、高速の場合、
起動時加工物のシ嘗ツクが少ない近似サイクロイド曲線
での相対位置制御、最高速に送り速度が至ったとき切替
えられろ絶対位置111JIII、目標位置近くに至っ
た状態で停止シソツクの少ないサイクロイド曲線等で停
止させる絶対位置制御が行なわれろ。
In the case of high speed, the control program in the NC device 8 is as follows:
Relative position control using an approximate cycloid curve that causes less movement of the workpiece at startup, absolute position 111JIII that can be switched when the feed speed reaches the maximum speed, cycloid curve that causes less movement of the workpiece when it reaches near the target position, etc. Absolute position control should be performed to stop it at .

また、低速の場合は加工速のない絶対位置制御が行なわ
れる。
Furthermore, in the case of low speed, absolute position control without processing speed is performed.

更に、制御装置9は現在停止位置に加速時及び減速時の
移動量を加えた値と移動目標位置との大小を判別する。
Further, the control device 9 determines whether the value obtained by adding the amount of movement during acceleration and deceleration to the current stop position is larger or smaller than the movement target position.

そして、移動目標位置の方が小さい場合には近似サイク
ロイド曲線の加減速の余地がないので高速移動禁止領域
となって、低速プログラム風がNC装置8に送出され、
大きい場合には高速プログラム風がNC装置8に搬送さ
れる。
If the movement target position is smaller, there is no room for acceleration or deceleration of the approximate cycloid curve, so the area becomes a high-speed movement prohibition area, and low-speed program wind is sent to the NC device 8.
If it is large, the high speed program wind is conveyed to the NC device 8.

第3図にて禁止領域信号の作成を示し、第4図にて制御
装置の指令を示す。停止中にあって現在位置の読取が行
なわれ、前進禁止領域か否かの判断を行ないその判断如
何により高速前進禁止領域をONし、又は高速前進領域
をOFFする。次に、後退禁止領域か否かの判断を行な
いその判断如何により高速後退禁止領域をONするか又
は高速後退禁止領域をOFFする。こうして、高速プロ
グラムの禁止領域を作成する。
FIG. 3 shows the creation of the prohibited area signal, and FIG. 4 shows the commands of the control device. While the vehicle is stopped, the current position is read, and it is determined whether or not the forward movement is prohibited. Depending on the judgment, the high speed forward movement prohibited area is turned on or the high speed forward movement prohibited area is turned off. Next, a determination is made as to whether or not the area is a no-reverse area, and depending on the determination, either the high-speed reversal area is turned on or the high-speed reversal area is turned off. In this way, a prohibited area for high-speed programming is created.

また、第4図では制御装置の指令を行ない、前進指令が
あった場合、前進禁止領域がONか否かを判断し、ON
の状態では低速プログラム風をセットし、OFFの状態
では高速プログラム風がセットされる。この後いずれか
のプログラム風にてNC起動指令をONし、この後位置
決め完了か否かを判定し、完了後NCリセットして終了
する。
In addition, in Fig. 4, a command is given to the control device, and when there is a forward command, it is determined whether the forward prohibition area is ON or not, and it is turned ON.
In the OFF state, a low speed program wind is set, and in the OFF state, a high speed program wind is set. After that, an NC start command is turned on using one of the programs, and then it is determined whether or not positioning is completed, and after completion, the NC is reset and the process ends.

ここで、実際のNCプログラム例を示す。Here, an example of an actual NC program will be shown.

(1)高速搬送の場合 位置決め量1002 m、最大送り速度50m/■in
の例をとる。
(1) For high-speed conveyance, positioning amount 1002 m, maximum feed speed 50 m/inch
Take the example of

/ // 1 NOIOG91   GOI   xO,3NO20X
o、4 NO30X6.l NO40X11.4 NO50X17.5 NO60X23.9 NO70X30.2 NO80X36.4 NO90X39.3 N100   G90        X835.5N
IIOX874 8 N120               X910 2
N130              X940 3N
140              X964 3N1
50              X981 8N16
0              X993 2N170
              X999 3N180 
            X1001.6N190  
           X1002.0N200   
M2O 1220 F4700 10200 17200 25000 32600 39500 45100 48700 50000 48700 45100 39500 32600 25000 17200 10200 F4740 1220 とこで、01はプログラム&、G91は相対位置制御、
GOIは直線補間×0.3は位置決め位置0.3園、F
1220は送り速度1.22m/組n、G90は絶対位
置制御をそれぞれ示し、N090までは相対位置決め起
動用プログラムN100にて絶対位置決め制御に切替え
、Nll0〜N190が減速停止位置決めプログラム、
M2Oでプログラム終了となる。
/ // 1 NOIOG91 GOI xO, 3NO20X
o, 4 NO30X6. l NO40X11.4 NO50X17.5 NO60X23.9 NO70X30.2 NO80X36.4 NO90X39.3 N100 G90 X835.5N
IIOX874 8 N120 X910 2
N130 X940 3N
140 X964 3N1
50 X981 8N16
0 X993 2N170
X999 3N180
X1001.6N190
X1002.0N200
1220 1 is program &, G91 is relative position control,
GOI is linear interpolation x 0.3 is positioning position 0.3, F
1220 indicates a feed rate of 1.22 m/set n, G90 indicates absolute position control, up to N090, the relative positioning start program N100 switches to absolute positioning control, N110 to N190 indicate a deceleration stop positioning program,
The program ends at M2O.

(2)低速搬送の時 2 NOIOG90  GOI  X1002.OF500
ONO20M2O 02はプログラムNoで、絶対位置としてX1002の
位置へ5m/@inで位置決めする場合を示している。
(2) When transporting at low speed 2 NOIOG90 GOI X1002. OF500
ONO20M2O 02 is the program No. and indicates the case of positioning at the absolute position of X1002 at 5 m/@in.

〈発明の効果〉 以上説明したように本発明によれば、高速制御を行なう
場合、途中の起動であっても加減速移動量以上の移動量
にてNCプログラムを相対位置制御にて起動し停止は絶
対位置制御により位置決めを行なうことができた。
<Effects of the Invention> As explained above, according to the present invention, when high-speed control is performed, the NC program is started and stopped using relative position control at a movement amount that is greater than the acceleration/deceleration movement amount even if it is started midway. was able to perform positioning using absolute position control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の実施例で、第1図は搬送
装置の概略図、第2図は制御装置とNC装置との間の信
号伝達の説明図、第3図は禁止領域信号の作成フローチ
ャート、 第4図は lIIIm装置の指令フローチャ ートである。 中、 8は搬送用NG装置、 9は制御装置である。 三菱重工業株式会社
Figures 1 to 4 show embodiments of the present invention, with Figure 1 being a schematic diagram of the transport device, Figure 2 being an explanatory diagram of signal transmission between the control device and the NC device, and Figure 3 being the prohibited area. Signal Creation Flowchart FIG. 4 is a command flowchart of the IIIm device. Inside, 8 is a transport NG device, and 9 is a control device. Mitsubishi Heavy Industries, Ltd

Claims (1)

【特許請求の範囲】 搬送用NC装置とこのNC装置を管理する制御装置とを
有する高速NC搬送装置において、現在停止している位
置を上記制御装置に送出し、この制御装置から高速又は
低速制御プログラムの起動指令を受け、高速プログラム
の場合相対位置制御による起動についで絶対位置制御に
よる減速停止を行なうか低速プログラムを行なう上記搬
送用NC装置と、 上記現在停止している位置に加速時及び減速時の移動量
を加えた値と移動する目標位置との大小を判別し、この
移動する目標位置の方が大きければ上記高速制御プログ
ラムに起動指令を搬出し小さければ上記低速制御プログ
ラムの起動指令を送出する上記制御装置と、を有するこ
とを特徴とする高速NC搬送装置。
[Claims] In a high-speed NC conveyance device that has a conveyance NC device and a control device that manages the NC device, the currently stopped position is sent to the control device, and the control device performs high-speed or low-speed control. Upon receiving a program start command, the above-mentioned conveying NC device performs a start-up using relative position control in the case of a high-speed program, followed by deceleration and stopping using absolute position control, or performs a low-speed program; It determines whether the value obtained by adding the amount of movement in time and the target position to be moved is large or small, and if the target position to be moved is larger, a start command is sent to the above-mentioned high-speed control program, and if it is smaller, a start command is sent to the above-mentioned low-speed control program. A high-speed NC conveyance device comprising the above-mentioned control device for sending out.
JP3144990A 1990-02-14 1990-02-14 High-speed numerically controlled conveyor Pending JPH03239455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3144990A JPH03239455A (en) 1990-02-14 1990-02-14 High-speed numerically controlled conveyor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3144990A JPH03239455A (en) 1990-02-14 1990-02-14 High-speed numerically controlled conveyor

Publications (1)

Publication Number Publication Date
JPH03239455A true JPH03239455A (en) 1991-10-25

Family

ID=12331564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3144990A Pending JPH03239455A (en) 1990-02-14 1990-02-14 High-speed numerically controlled conveyor

Country Status (1)

Country Link
JP (1) JPH03239455A (en)

Similar Documents

Publication Publication Date Title
JPH01252340A (en) Machining control device employing force sensor
EP0224589B1 (en) Drive control unit for injection molding machine driven by servo motors
EP0292574A4 (en) Numerical controller
JPH06285701A (en) Nc lathe turning device
US5093972A (en) Tapping control unit
US5144550A (en) Test run control method
US4988937A (en) Synchronous control system and method therefor
EP0146633A4 (en) Numerical control system.
JPH03239455A (en) High-speed numerically controlled conveyor
EP0447561B1 (en) Method of controlling rotations of main shafts
JPH08339212A (en) Method for return to absolute origin in industrial controller
WO1994009421A1 (en) Acceleration constant switching system
JPH0869326A (en) Positioning controller
EP0383947B1 (en) Numerical controller
US5319288A (en) Main spindle rotation control method
JP2997270B2 (en) Interpolation method
JP2001071235A (en) Numerical control device
JPH03204703A (en) Numerical controller
JP2647986B2 (en) Home position return method
JPH08211918A (en) Position control system of cnc
JP2001134321A (en) Numerical controller
US4092887A (en) Method for automatically varying the feed rate of a workpiece carriage in a machine tool
JPH0863212A (en) Origin return system for cnc
JPH08211916A (en) System for return to origin of cnc
JPH08276473A (en) Method and apparatus for controlling metering of injection molding machine