JPH03239376A - Solar cell module - Google Patents

Solar cell module

Info

Publication number
JPH03239376A
JPH03239376A JP2035273A JP3527390A JPH03239376A JP H03239376 A JPH03239376 A JP H03239376A JP 2035273 A JP2035273 A JP 2035273A JP 3527390 A JP3527390 A JP 3527390A JP H03239376 A JPH03239376 A JP H03239376A
Authority
JP
Japan
Prior art keywords
solar cell
bus bar
stainless steel
electrode
steel substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2035273A
Other languages
Japanese (ja)
Inventor
Soichiro Kawakami
総一郎 川上
Kimitoshi Fukae
公俊 深江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2035273A priority Critical patent/JPH03239376A/en
Publication of JPH03239376A publication Critical patent/JPH03239376A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To simplify the structure and production process and reduce the cost by connecting a plurality of bus bars which connect to finger electrodes and providing a bus bar which collects through the bus bars current from a top electrode to a stainless substrate side without permitting the bus bar to come into contact with the stainless substrate. CONSTITUTION:A plurality of bus bars 108 connected with finger electrodes 104 are connected, and a bus bar 106 which collects through the bus bars current from a top electrode 103 is provided to the peripheries of a stainless substrate 100 without permitting the bus bar 106 to come into contact with the stainless substrate 100. In such a manner, wiring on the back is reduced, ruggedness on the back is lessened and the using quantity of filling material is decreased by providing the bus bar which collects the current from the top electrode 103 at the end on the side of the stainless substrate 100 on which solar cell elements 114 are formed. Thus, the structure and production are simplified and the cost is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ステンレス基板上に形成された太陽電池素子
を並列に接続した太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solar cell in which solar cell elements formed on a stainless steel substrate are connected in parallel.

[従来技術] 最近、CO2の増加による温室効果で地球の温暖化か生
しることが予測され、クリーンなエネルギーの要求かま
すます高まっている。またCO2を排出しない原子力発
電も、安全性を疑問視する声もあり、より安全性の高い
クリーンなエネルギーか望まれている。
[Prior Art] Recently, it has been predicted that the greenhouse effect caused by the increase in CO2 will cause global warming, and the demand for clean energy is increasing. There are also voices questioning the safety of nuclear power generation, which does not emit CO2, and there is a desire for safer, cleaner energy.

将来期待されているクリーンなエネルギーの中でも、特
に太陽電池はそのクリーンさと安全性と取扱い易さから
期待か大きい。
Among the clean energy sources that are expected to grow in the future, solar cells are particularly promising because of their cleanliness, safety, and ease of handling.

各種太陽電池の中て、非晶質シリコンや銅インジュウム
セレナイト等は大面積に製造てき、製造コストも安価で
あることから、熱心に研究されている。
Among various solar cells, amorphous silicon, copper indium selenite, etc. have been manufactured in large areas and are inexpensive to manufacture, and are therefore being actively researched.

更に、太陽電池の中ても、耐候性、耐衝撃性、可どう性
に優れていることから、基板材にステンレス等の金属基
板を用いる場合がある。
Furthermore, among solar cells, metal substrates such as stainless steel are sometimes used as substrate materials because of their excellent weather resistance, impact resistance, and flexibility.

従来、ステンレス基板上に形成された太陽電池素子を並
列配線した太陽電池では、配線部の電流損失をてきるた
け少なくするためにステンレス基板面の両端部に上部電
極のための集電用バスバーか設けられていた。上記集電
用バスバーの材料としては、比抵抗の低いAI。
Conventionally, in solar cells in which solar cell elements formed on a stainless steel substrate are wired in parallel, current collection bus bars for upper electrodes are installed at both ends of the stainless steel substrate surface in order to minimize current loss in the wiring section. It was set up. The material for the current collecting bus bar is AI, which has a low specific resistance.

Cu、Ag等か使用されている。Cu, Ag, etc. are used.

第2図は、同・ステンレス基板上に分割された複数の太
陽電池素子を、並列に集積化した従来の太陽電池の該略
図て、光入射側と反対側のステンレス基板面の両端部に
上部電極からの集電用バスバーか、没けられていた。第
2図(a)は光入射側の平面図、(b)は裏面の平面図
、(c)は(a)図C−D間の断面構成図である。第2
図に於て、200はステンレス基板205はf部電極側
集電用バスバー、211は同一ステンレス基板上に分割
された太陽電池素子、204はフィンカー電極、201
は下部電極としての金属屑、202は光電変換部材とし
ての半導体層、203は上部電極としての透明電極層、
209はステンレス基板両端にある下部電極集電用バス
バーを接続するバスバー、208は複数の太陽電池素f
−のフィンカー電極をつなぐバスバー206は複数本の
208をまとめて集電するバスバー、207は209と
200のステンレス基板か導通するのを防ぐための絶縁
性樹脂、210は2()6と205の導通な防ぐための
絶縁材である。上記構造の太陽電池では、205の上に
210,205,208を重ねるためにフィンガー電極
からの集電用バスバーの設置−■二程か複雑であること
、裏面側の凹凸が大きいため充填材の使用量か多いこと
なと、ステンレス基板使用の太陽電池のゴス1〜高の要
因の一つになっていた。
Figure 2 is a schematic diagram of a conventional solar cell in which multiple solar cell elements are integrated in parallel on the same stainless steel substrate. The bus bar for collecting current from the electrodes had been sunk. FIG. 2(a) is a plan view of the light incident side, FIG. 2(b) is a plan view of the back surface, and FIG. 2(c) is a sectional configuration diagram taken along line C-D in FIG. 2(a). Second
In the figure, 200 is a stainless steel substrate 205, which is a current collecting bus bar on the f part electrode side, 211 is a solar cell element divided on the same stainless steel substrate, 204 is a fincar electrode, and 201
202 is a semiconductor layer as a photoelectric conversion member; 203 is a transparent electrode layer as an upper electrode;
209 is a bus bar connecting the lower electrode current collecting bus bars on both ends of the stainless steel substrate, and 208 is a plurality of solar cell elements f.
- The bus bar 206 connecting the fin car electrodes is a bus bar that collects current from multiple 208. 207 is an insulating resin to prevent conduction between the stainless steel substrates 209 and 200. 210 is the bus bar between 2 () 6 and 205. It is an insulating material to prevent conduction. In the solar cell with the above structure, in order to stack 210, 205, and 208 on top of 205, the installation of the current collection bus bar from the finger electrodes is approximately two or so complicated, and the unevenness of the back side is large, so the filling material is The large amount used was one of the reasons why solar cells using stainless steel substrates were ranked 1 to 1.

そのため、より簡単な構成て、製造コス1への安価な太
陽電池が望まれていた。
Therefore, a solar cell with a simpler structure and lower manufacturing cost has been desired.

[発明の目的] 本発明は、■一連の従来の欠点を解決し、簡単な構造で
、かつ製造工程も簡単な、安価な、並列に集積化した太
陽電池モジュールを提供することを目的とする。
[Objective of the Invention] The purpose of the present invention is to (1) solve a series of conventional drawbacks and provide an inexpensive, parallel-integrated solar cell module that has a simple structure and a simple manufacturing process. .

[発明の構成及び作用] 本発明者は、−J二記従来の欠点を解決すべく、鋭意研
究を重ねた結果、並列に集積化したステンレス基板太陽
電池素モジュールに於て、絶縁基体−Lに太陽電池素子
を形成したステンレス基板を配置し、該基板より離れた
側部にL部電極からの電流を最終的に集電するバスバー
を設けることによって、該り都電極用集電バスバーへの
接続配線か太陽電池基板表側てでき、モジュール構造も
筒中になり、製逍丁程か簡略化てきることがわかった。
[Structure and operation of the invention] As a result of extensive research in order to solve the conventional drawbacks mentioned in -J2, the present inventor has discovered that in a stainless steel substrate solar cell module integrated in parallel, an insulating substrate -L By arranging a stainless steel substrate on which a solar cell element is formed on the substrate, and providing a bus bar that ultimately collects the current from the L electrode on the side far from the substrate, it is possible to connect the current to the current collecting bus bar for the capital electrode. It was found that the connection wiring could be made on the front side of the solar cell substrate, and the module structure would be inside the cylinder, simplifying the manufacturing process.

本発明は、ステンレス基板上に下部電極としての金属電
極層、光電変換部材としての半導体層、上部電極として
の透明電極層、透明電極からの電流を集電するフィンガ
ー状電極か順次形成された太陽電池素子を並列接続した
太陽電池モジュールに於て、該ステンレス基板の周辺に
、複数個のフィンガー電極が接続されたバスバーを複数
本接続して上部電極からの電流を集電するバスバーか、
ステンレス基板と接触することなく設けられたことを特
徴とする太陽電池モジュールである。
The present invention provides a solar cell in which a metal electrode layer as a lower electrode, a semiconductor layer as a photoelectric conversion member, a transparent electrode layer as an upper electrode, and a finger-shaped electrode for collecting current from the transparent electrode are sequentially formed on a stainless steel substrate. In a solar cell module in which battery elements are connected in parallel, a plurality of busbars to which a plurality of finger electrodes are connected are connected around the stainless steel substrate to collect current from the upper electrode;
This solar cell module is characterized in that it is installed without contacting a stainless steel substrate.

第1図(a)は、本発明により作製される並列に集積化
した太陽電池モジュールの表面の平面図の一例゛C1(
b)は(a)図A−B間の断面構成図で、モジュール化
時の表面被覆や出力端子の取り出し等を含んでいる。第
1図に於て、100はステンレス基板、101は1部電
極としての金属層、102は光電変換部材としての半導
体層、103は4二部電極としての透明電極層、104
はフィンガー電極、105ば下部電極からの集電用バス
バー、108は複数の太陽電池素子のフィンガー電極を
つなぐバスバー、106は複数本の108をまとめて集
電する上部電極側バスバ107は108とステンレス基
板100が導通ずるのを防ぐための絶縁性樹脂、109
は太陽電池の凹凸を埋めるための充填材、110は水分
と気体を透過しにくい絶縁性基体、111は透光性表面
保護材、112はリート線、113はシーリンク材、1
14は分割された太陽電池素子である。
FIG. 1(a) is an example of a plan view of the surface of a solar cell module manufactured in accordance with the present invention that is integrated in parallel.
(b) is a cross-sectional configuration diagram taken along the line A-B in (a), and includes surface coating and output terminal extraction during modularization. In FIG. 1, 100 is a stainless steel substrate, 101 is a metal layer as a one-part electrode, 102 is a semiconductor layer as a photoelectric conversion member, 103 is a transparent electrode layer as a two-part electrode, 104
105 is a finger electrode, 105 is a bus bar for collecting current from the lower electrode, 108 is a bus bar that connects the finger electrodes of multiple solar cell elements, 106 is a bus bar on the upper electrode side that collects current from multiple 108s together, and 107 is made of stainless steel. Insulating resin for preventing conduction of the substrate 100, 109
1 is a filler for filling the unevenness of the solar cell, 110 is an insulating substrate that is difficult for moisture and gas to pass through, 111 is a transparent surface protection material, 112 is a Riet wire, 113 is a sealing material, 1
14 is a divided solar cell element.

本発明による第1図の太陽電池の作製方法を以下に説明
する。ステンレス基板100に、金属層101、半導体
層102、透明電極層103を順次形成した太陽電池の
透明電極層の一部を除去して、複数の太陽電池素子11
4に分割する。次に、各太陽電池素子の透明電極Hにフ
ィンカー電極1(J4を形成した後、裏面のステンレス
基板面に、テープ状良導体から成るバスバー105を接
続し、ソート線引き出し用開口部を設けた絶縁性基体1
10と充填材の上に配置する。ついて、−1一部電極か
らの電流を最終的にまとめて集電するバスバー1()6
を、ステンレス基板100と接触しないように配置した
後、絶縁樹脂107でステンレス基板端部を被覆する。
A method for manufacturing the solar cell shown in FIG. 1 according to the present invention will be described below. A plurality of solar cell elements 11 are obtained by removing a part of the transparent electrode layer of a solar cell in which a metal layer 101, a semiconductor layer 102, and a transparent electrode layer 103 are sequentially formed on a stainless steel substrate 100.
Divide into 4. Next, after forming the finker electrode 1 (J4) on the transparent electrode H of each solar cell element, a bus bar 105 made of a tape-shaped good conductor is connected to the back surface of the stainless steel substrate, and an insulator with an opening for drawing out the sorting lines is connected. sexual substrate 1
10 and placed on top of the filler. Then, there is a bus bar 1 ( ) 6 that ultimately collects the current from the -1 partial electrodes.
are arranged so as not to come into contact with the stainless steel substrate 100, and then the ends of the stainless steel substrate are covered with an insulating resin 107.

その後、基板トて同し列に位置する太陽電池素子を並列
接続するバスバー108をフィンカー電極104とバス
バー106に接続する。次に、充填材と表面保護材で表
面保護材で表面を被覆する。最後に、出力端子となるバ
スバー105と106にリード線を接続し、リート縁取
り出し箇所をシーリング材てシールして、本発明の太陽
電池モジュールを得る。
Thereafter, a bus bar 108 that connects solar cell elements located in the same row on the substrate in parallel is connected to the fin car electrode 104 and the bus bar 106. Next, the surface is coated with a filler and a surface protectant. Finally, lead wires are connected to bus bars 105 and 106, which serve as output terminals, and the lead edge extraction portion is sealed with a sealant to obtain the solar cell module of the present invention.

本発明により、上部電極からの電流を最終的に集電する
ためのバスバーを、複数の太陽電池素子が形成されたス
テンレス基板の側部に設&−することによって、従来の
太陽電池モジュールにお番プる裏面ての配線を減らし、
裏面部の凹凸を減少させることができる。あわせて、充
填材の使用量を減らし、モジュール化工程の簡略化と自
動化も容易になる。
According to the present invention, a bus bar for ultimately collecting current from the upper electrode is installed on the side of a stainless steel substrate on which a plurality of solar cell elements are formed, thereby adding to the conventional solar cell module. Reduce wiring on the back side of the
It is possible to reduce unevenness on the back surface. At the same time, the amount of filler used can be reduced, and the modularization process can be simplified and automated.

本発明に用いられる上部電極からの集電用バスバー10
6は、比抵抗の低い良導体材料から成り、良導体材料と
しては、銅、銀、ニッケル等の金属箔か用いられる。−
1−、部金属箔は他の金属やハンダか積層されていても
よい。他のバスバー105 、108のいずれも、上記
本発明に用いられるバスバー106と同様の良導体材料
から戒っている。
Bus bar 10 for collecting current from the upper electrode used in the present invention
6 is made of a good conductor material with low specific resistance, and as the good conductor material, metal foil such as copper, silver, nickel, etc. is used. −
1-, the metal foil may be laminated with other metals or solder. Both of the other bus bars 105 and 108 are made of the same good conductive material as the bus bar 106 used in the present invention.

下部電極からの集電用バスバー106とステンレス基板
100の接続は、レーザーによる重ね溶接、ハンダ付け
、導電性接着剤による接着等の方法かある。ハンダ付け
の場合には、ステンレス基板の接合部表面を荒らすこと
、ステンレス用ハンタフラツクスを用いることなとが必
要である。上記導電性接着剤は金属粉末、導電性カーボ
ンフラッフ、炭素m維等の導電性フィラーを高分子化合
物に添加したものである。
The current collecting bus bar 106 from the lower electrode and the stainless steel substrate 100 can be connected by lap welding using a laser, soldering, adhesion using a conductive adhesive, or the like. In the case of soldering, it is necessary to roughen the joint surface of the stainless steel substrate and to use hunter flux for stainless steel. The above-mentioned conductive adhesive is made by adding a conductive filler such as metal powder, conductive carbon fluff, carbon fiber, etc. to a polymer compound.

107の絶縁樹脂には、ポリエステル、ポリエステルイ
ミド、ポリイミド、ポリウレタン、シリコーン、エポキ
シ、アクリル樹脂、カラスクロス等がある。107の絶
縁樹脂の形成力法は、樹脂溶液のスプレーやティップ法
による塗布、粘着剤イ・1フイルムを貼伺ける等の方法
がある。
Examples of the insulating resin No. 107 include polyester, polyesterimide, polyimide, polyurethane, silicone, epoxy, acrylic resin, and crow cloth. Methods for forming the insulating resin No. 107 include methods such as spraying a resin solution, coating with a tip method, and pasting an adhesive film.

本発明て用いられる太陽電池素子の金属電極層10]の
材質としては、Ti、Cr、Mo。
The materials of the metal electrode layer 10 of the solar cell element used in the present invention include Ti, Cr, and Mo.

W、AI、Ag、Ni等か用いられ、形成力法としては
抵抗加熱蒸着、電子ビーム蒸着、スパッタリンク法等か
ある。
W, AI, Ag, Ni, etc. are used, and forming force methods include resistance heating evaporation, electron beam evaporation, sputter link method, etc.

本発明で用いられる太陽電池素子の光電変換部材として
の半導体層102には、pin接合非晶質シリコン、P
n接合多結晶シリコン、Cu1nse2/Cds等の化
合物半導体か挙げられる。
The semiconductor layer 102 as a photoelectric conversion member of the solar cell element used in the present invention includes pin junction amorphous silicon, P
Examples include n-junction polycrystalline silicon and compound semiconductors such as Cu1nse2/Cds.

上記半導体層は、非晶質シリコンの場合、シランカス等
のプラズマCVDにより、多結晶シリコンの場合、溶融
シリコンのシート化によりCu 1nse2/Cdsの
場合には、電子ビーム蒸着、スパッタリング、電析(電
解液の電気分解による析出)等の方法で、形成される。
In the case of amorphous silicon, the above-mentioned semiconductor layer is formed by plasma CVD such as Silancus, in the case of polycrystalline silicon, formed into a sheet of molten silicon, and in the case of Cu 1nse2/Cds, electron beam evaporation, sputtering, electrodeposition (electrodeposition). It is formed by a method such as deposition by electrolysis of a liquid.

本発明て用いられる太陽電池素子の透明電極103に用
いる材料としては、1n20s、 Sno□。
Materials used for the transparent electrode 103 of the solar cell element used in the present invention include 1n20s and Sno□.

In2O3−8no2.ZnO,Tio2.Cd2.S
no、+高濃度不純物トープした結晶性半導体層等があ
り、形成力法としては抵抗加熱蒸着、電子ビーム蒸着、
スパッタリンク法、スプレー法、CVD法、不純物拡散
等がある。透明電極ll113の−・部を除去して太陽
電池素子に分離する方法には、FcC1,、llClを
含むエツチングペーストのスクリーン印刷等てパターン
ニンクする方法などがある。
In2O3-8no2. ZnO, Tio2. Cd2. S
There are crystalline semiconductor layers doped with high-concentration impurities, etc. Formation methods include resistance heating evaporation, electron beam evaporation,
Examples include a sputter link method, a spray method, a CVD method, and an impurity diffusion method. A method of removing the - part of the transparent electrode 113 and separating it into solar cell elements includes a patterning method such as screen printing of an etching paste containing FcC1, 11Cl.

フィンガー電極104は導電性樹脂やハンダペーストで
形成され、導電性樹脂は、微粉末状の銀、金、銅、ニッ
ケル、カーボン等をバインターポリマーと分散させたも
のか使用される。
The finger electrode 104 is formed of a conductive resin or solder paste, and the conductive resin used is one in which finely powdered silver, gold, copper, nickel, carbon, etc. are dispersed with a binder polymer.

上記バインダーポリマーとしては、ボリエステル、エポ
キシ、アクリル、アルキド、ポリビニルアセデート、ゴ
ム、ウレタン、フェノール等の樹脂かある。フィンカー
電極1()4は、−に記導電性樹脂のスクリーン印刷算
の方法で作製される。同列に()7置する複数個のフィ
ンガー電極をつなぐバスパー108は、導電性接着剤な
とて接続される。
Examples of the binder polymer include resins such as polyester, epoxy, acrylic, alkyd, polyvinyl acedate, rubber, urethane, and phenol. The finker electrode 1 ( ) 4 is manufactured by the screen printing method of conductive resin described in -. A busper 108 connecting a plurality of finger electrodes arranged in the same row is connected using a conductive adhesive.

バスバー106と 108は導電性接着剤、ハンター、
レーザー溶接などで、接続される。
Busbars 106 and 108 are made of conductive adhesive, Hunter,
They are connected by laser welding, etc.

充填材109としてはエチレン−酢酸ビニル共重合体、
ポリビニルアセデート、シリコーン樹脂等が挙げられる
As the filler 109, ethylene-vinyl acetate copolymer,
Examples include polyvinyl acedate, silicone resin, and the like.

水分と気体と透過性の少ない絶縁性基体110には、フ
チルゴム、絶縁樹脂被覆したアルミニウム基等の金属板
、またはポリフッ化ヒニリテン等のフッ素樹脂フィルム
やポリエステル、ポリエチレン、ポリプロピレンの樹脂
フィルムてうくネー1−されたアルミ箔等がある。
The insulating substrate 110, which has low permeability to moisture and gas, may include phtyl rubber, a metal plate such as an aluminum base coated with an insulating resin, a fluororesin film such as polyfluorinated polyethylene, or a resin film made of polyester, polyethylene, or polypropylene. - There are aluminum foils etc.

表面保護層I11は、透光性かあり紫外線やオソンに安
定な耐候性かあることか必要てあり、フッ素樹脂フィル
ム/エチレン−酢酸ビニル共重合体の二層構造のもの(
光入射側はフッ素樹脂フィルム)、シリコーン樹脂、フ
ッ素樹脂塗料等か挙げられる。
The surface protective layer I11 needs to be transparent, stable against ultraviolet rays and ozone, and has a two-layer structure of fluororesin film/ethylene-vinyl acetate copolymer (
On the light incident side, examples include fluororesin film), silicone resin, and fluororesin paint.

本発明に用いられるシーリンク材には、水分等を透過し
ないシリコーン樹脂やツチルゴム等かある。
Sealink materials used in the present invention include silicone resins and tutyl rubber that do not allow moisture to pass through.

なお、本発明は第1図に示した太陽電池モジュールの構
成のみに限定されるものてはない。
Note that the present invention is not limited to the configuration of the solar cell module shown in FIG. 1.

[実施例] 以下、実施例に基づき本発明の詳細な説明する。なお、
本発明はこれらの実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be described in detail based on Examples. In addition,
The present invention is not limited to these examples.

第1図の構成の本発明の太陽電池に於て、半導体層10
2か非晶質シリコンである場合の、作製方法を順次説明
する。
In the solar cell of the present invention having the structure shown in FIG.
The manufacturing method in the case of using amorphous silicon will be sequentially explained.

ます、洗浄したロール状ステンレス基板」二に、ロール
ツーロール法て、Siを1%含有するA I 101を
スパッタ法により膜厚5000蒸着し、S i 1+ 
、+ 、 P H:l 、 B 21+ 6 、 H□
防ガスのプラズマ1 CVDにより、膜厚1000〜4000のp/i/nの
非晶質シリコン層を2層積み正ねてp/i/n / p
 / i / nの光電変換部としての半導体層102
を形成した後、膜厚800のIT○103を抵抗加熱基
若て形成した。更に、IT○のエツチンク剤(FeCl
2 、 tlcL )含有ペーストのスクリーン印刷に
より070層の一部を除太し、各太陽電池素子に分離し
た6 (ト記構成の太陽電池素子のA I 101と非
晶質シリコン層102との間にシャント防止層としてZ
nOを形成してもよい。) 次に、フィンガー幅0,2■のフィンガー電極+04な
銀ペーストのスクリーン印刷て形成した。その後、非発
電領域の光入射と反対側のステンレス基板両端部に幅1
9mm、厚みQ、2mmの銅箔テープ105にレーサー
光を照射し接合し、上部電極からの電流を最終的に集電
するバスバー106とともに、絶縁性基体110Lに配
置した。該絶縁性基体は、アルミニウム基板をポリフッ
化ヒニリテン樹脂フィルムてラミネート 2 したものて、その上に充填材シートとしてエチレン−酢
酸ビニル共重合体が重ねられ、リード線か取り出される
位置に、開口部が設けられである。
First, on the cleaned rolled stainless steel substrate, a 5,000-thick film of A I 101 containing 1% Si was deposited by sputtering using a roll-to-roll method to form a Si 1+
, + , PH:l , B 21+ 6 , H□
Gas-proof plasma 1 Two layers of p/i/n amorphous silicon layers with a film thickness of 1000 to 4000 are stacked together by CVD to form p/i/n/p.
/i/n semiconductor layer 102 as a photoelectric conversion unit
After forming, a resistance heating base was formed using IT○103 having a film thickness of 800 mm. Furthermore, IT○ etching agent (FeCl
A part of the 070 layer was thinned by screen printing of a paste containing 2, tlcL) and separated into each solar cell element. Z as a shunt prevention layer
nO may also be formed. ) Next, finger electrodes with a finger width of 0.2 mm were formed by screen printing +04 silver paste. After that, a width of 1 cm was applied to both ends of the stainless steel substrate on the opposite side of the light incidence in the non-power generation area.
A copper foil tape 105 of 9 mm, thickness Q, and 2 mm was irradiated with a laser beam and bonded, and placed on an insulating substrate 110L together with a bus bar 106 that ultimately collects current from the upper electrode. The insulating substrate is made by laminating an aluminum substrate with a polyhynyritene fluoride resin film, on which an ethylene-vinyl acetate copolymer is layered as a filler sheet, and an opening is formed at the position where the lead wire is taken out. It is provided.

ついて、ステンレス基板両端部の端面な覆うようにポリ
イミドテープ107を接着し1幅2.51、厚ミ0.1
mmのニッケルメッキを施した銅箔108を導電性接着
剤てフィンガー電極に接続した後、銅箔108の両末端
部をバスパー106にレーザーで接合した。
Then, polyimide tape 107 was glued so as to cover both ends of the stainless steel substrate, and the width was 2.51 mm and the thickness was 0.1 mm.
After connecting a copper foil 108 plated with nickel to the finger electrode with a conductive adhesive, both ends of the copper foil 108 were bonded to the busper 106 using a laser.

最後に、エチレン−酢酸ビニル共重合体シート109と
紫外線吸収剤入りのポリフッ化ビニリデン樹脂フィルム
111てラミネートした後、105と106の出力端子
部よりり−l−線】12を取り出し、シリコーン樹脂1
13で封止して、太陽電池素子を複数個並列接続した太
陽電池を得た。また、上記作製方法で17cm+2のサ
フセルのフィンガー電極104を8×10個、計80並
列列接続した場合、A M 1 、510On+W/c
m2の光照射時の開放端電圧Vocと短絡電流Tscは
、それそれVoc =]、63V、 Isc =4.8
Aであった。
Finally, after laminating the ethylene-vinyl acetate copolymer sheet 109 and the polyvinylidene fluoride resin film 111 containing an ultraviolet absorber, the -l- wire] 12 is taken out from the output terminals of 105 and 106, and the silicone resin 1
13 to obtain a solar cell in which a plurality of solar cell elements were connected in parallel. Furthermore, when 8×10 17 cm+2 Safcell finger electrodes 104 are connected in parallel in a total of 80 parallel rows using the above manufacturing method, A M 1 , 510 On+W/c
The open circuit voltage Voc and short circuit current Tsc during light irradiation of m2 are as follows: Voc = ], 63V, Isc = 4.8
It was A.

上記太陽電池モジュールの作製方法ては従来に比へて1
丁程少なくなった。
The manufacturing method of the solar cell module described above is 1 compared to the conventional method.
It has become slightly less.

なお、上記実施例ては半導体層に非晶質シリコンを用い
た場合に付いて説明したか、これに限定されるものては
なく、他の多結晶シリコンや化合物半導体においても、
本発明は有効である。
It should be noted that although the above embodiments have been described with reference to the case where amorphous silicon is used for the semiconductor layer, the present invention is not limited to this, and may also be applied to other polycrystalline silicon or compound semiconductors.
The present invention is effective.

[発明の効果] 本発明によれば、従来のステンレス基板];の太陽電池
素子を並列接続した太陽電池モジュールの欠点を解決し
、上部電極側の集電バスバーを太陽電池基板周辺部に設
けることによって、モジュールの構造と製造工程を簡略
化でき、製造コストも低減てきる。
[Effects of the Invention] According to the present invention, the drawbacks of a solar cell module in which solar cell elements of the conventional stainless steel substrate are connected in parallel can be solved, and a current collecting bus bar on the upper electrode side can be provided around the solar cell substrate. This simplifies the module structure and manufacturing process, and reduces manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は本発明による太陽電池モジュー
ルの一例を示す平面図と断面図、第2図(a)、(b)
、(C)は従来のステンレス基板を用いた太陽電池モジ
ュールの正面図、裏面図及び断面図である。 100.200・・・ステンレス基板 101.201・・・金属層 102.202・・・半導体層、 103.203・・・透明電極層、 104.204・・・フィンガー電極、105.205
,209・・・下部電極側バスバー105.206・・
・」二部電極側バスバー107.207・・・絶縁性樹
脂、 108.208・・・フィンガー電極をつなぐバスバー 210・・・絶縁材、 109・・・充填材、 110・・・絶縁性基体、 IH・・・表面保護材 +12・・・ソート線 113・・・シーリンク材 114.211・・・太陽電池素子。  5 6
FIGS. 1(a) and (b) are a plan view and a sectional view showing an example of a solar cell module according to the present invention, and FIGS. 2(a) and (b) are
, (C) are a front view, a back view, and a sectional view of a solar cell module using a conventional stainless steel substrate. 100.200... Stainless steel substrate 101.201... Metal layer 102.202... Semiconductor layer, 103.203... Transparent electrode layer, 104.204... Finger electrode, 105.205
, 209...lower electrode side bus bar 105.206...
・"Two-part electrode side bus bar 107.207...Insulating resin, 108.208...Bus bar 210 connecting finger electrodes...Insulating material, 109...Filling material, 110...Insulating base, IH...Surface protection material +12...Sort line 113...Seal link material 114.211...Solar cell element. 5 6

Claims (1)

【特許請求の範囲】[Claims]  ステンレス基板上に下部電極としての金属電極層、光
電変換部材としての半導体層、上部電極としての透明電
極層、透明電極からの電流を集電するフィンガー状電極
が順次形成された太陽電池素子を並列接続した太陽電池
モジュールに於て、該ステンレス基板の側部に、複数個
のフィンガー電極か接続されたバスバーを複数本接続し
て上部電極からの電流を集電するバスバーが、ステンレ
ス基板と接触することなく設けられたことを特徴とする
太陽電池モジュール。
Solar cell elements in which a metal electrode layer as a lower electrode, a semiconductor layer as a photoelectric conversion member, a transparent electrode layer as an upper electrode, and a finger-shaped electrode to collect current from the transparent electrode are sequentially formed on a stainless steel substrate are arranged in parallel. In the connected solar cell module, a bus bar that collects current from the upper electrode by connecting a plurality of finger electrodes or a plurality of connected bus bars to the side of the stainless steel substrate contacts the stainless steel substrate. A solar cell module characterized in that it is installed without any problems.
JP2035273A 1990-02-16 1990-02-16 Solar cell module Pending JPH03239376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2035273A JPH03239376A (en) 1990-02-16 1990-02-16 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2035273A JPH03239376A (en) 1990-02-16 1990-02-16 Solar cell module

Publications (1)

Publication Number Publication Date
JPH03239376A true JPH03239376A (en) 1991-10-24

Family

ID=12437182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2035273A Pending JPH03239376A (en) 1990-02-16 1990-02-16 Solar cell module

Country Status (1)

Country Link
JP (1) JPH03239376A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275857A (en) * 1993-03-17 1994-09-30 Nec Corp Solar battery power supply
WO2005038934A1 (en) * 2003-10-17 2005-04-28 Canon Kabushiki Kaisha Photovoltaic element and method of producing photovoltaic element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275857A (en) * 1993-03-17 1994-09-30 Nec Corp Solar battery power supply
WO2005038934A1 (en) * 2003-10-17 2005-04-28 Canon Kabushiki Kaisha Photovoltaic element and method of producing photovoltaic element

Similar Documents

Publication Publication Date Title
US10056504B2 (en) Photovoltaic module
JP3323573B2 (en) Solar cell module and method of manufacturing the same
US6803513B2 (en) Series connected photovoltaic module and method for its manufacture
US9024174B2 (en) Solar cell module
JP4429306B2 (en) Solar cell and solar cell module
US5707459A (en) Solar cell module provided with a heat-fused portion
US5391235A (en) Solar cell module and method of manufacturing the same
US5296043A (en) Multi-cells integrated solar cell module and process for producing the same
US20060260673A1 (en) Photovoltaic element and method of producing photovoltaic element
KR100334595B1 (en) Manufacturing method of photovoltaic device
JPH03239377A (en) Solar cell module
JPH06196743A (en) Solar battery module
JPH0744287B2 (en) Photovoltaic module
AU9726198A (en) Photovoltaic device module
WO1989004062A1 (en) Solar cell fabrication method and solar cell made thereby
JPH07302923A (en) Photovoltaic device
JPS6146993B2 (en)
JPH06140651A (en) Solar cell module
JP2510281B2 (en) Method of manufacturing thin film solar cell
JP3006711B2 (en) Solar cell module
JP2855299B2 (en) Solar cell module
JP2000150929A (en) Photovoltaic element and manufacture thereof
JPH03239376A (en) Solar cell module
JP3548379B2 (en) Photovoltaic device and manufacturing method thereof
JP2001345465A (en) Photovoltaic element and method of manufacturing the element