JPH03238321A - Karman vortex flowmeter - Google Patents

Karman vortex flowmeter

Info

Publication number
JPH03238321A
JPH03238321A JP2034473A JP3447390A JPH03238321A JP H03238321 A JPH03238321 A JP H03238321A JP 2034473 A JP2034473 A JP 2034473A JP 3447390 A JP3447390 A JP 3447390A JP H03238321 A JPH03238321 A JP H03238321A
Authority
JP
Japan
Prior art keywords
vortex
vortex generating
columnar body
hollow
hollow part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2034473A
Other languages
Japanese (ja)
Inventor
Wataru Nakagawa
亘 中川
Osamu Kashimura
修 鹿志村
Naohiro Konosu
直広 鴻巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2034473A priority Critical patent/JPH03238321A/en
Publication of JPH03238321A publication Critical patent/JPH03238321A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the effect of external vibration and to improve measuring accuracy by providing a main part having the free end part, a hollow part which is located in the inside of the main part and has the bottom that is opened at the free end part and a communicating hole for communicating the hollow part and the outside. CONSTITUTION:The cross section of a vortex generating part 2a has an equilateral trapezoid. A columnar body 9 having the cross section of an isosceles triangle is provided so that the base is positioned at the upstream side with respect to a flowing direction Q in close proximity to the long base of the part 2a. The vortex generating part 2a and the columnar body 9 constitute a Karman vortex generating body in a broad sense. The vortex generating part 2a corresponds to the main part for generating vortex. The columnar body 9 corresponds to the secondary part for supporting the generation of the vortex. The vortex generating part 2a has the tubular structure having a hollow part 2c in the inside. Therefore, its mass is small, and inertia force when external vibration is received becomes small. Therefore, the SN ratio is increased, and sensitivity and accuracy in measurement are improved. Since the hollow part 2c is filled with fluid to be measured, the vortex generating part 2a receives the same fluid pressure from the inside and the outside. Therefore, mechanical deformation and the decrease in mechanical strength can be prevented. A hole 2b prevents the remaining of bubbles in the hollow part 2c.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、カルマン渦によって渦発生体に作用する交
番力を渦信号として取り出して流体の流速流量を測定す
る流量計であって、とくに外部振動の影響抑制をして測
定精度の向上を図ったカルマン渦流量計に関する。
This invention is a flowmeter that measures the flow velocity of a fluid by extracting the alternating force exerted on a vortex generator by a Karman vortex as a vortex signal, and in particular aims to improve measurement accuracy by suppressing the influence of external vibrations. Regarding Karman vortex flowmeter.

【従来の技術】[Conventional technology]

従来例としての特開昭64−18021号について、そ
の断面図である第9図を参照しながら説明する。 第9図において、52はステンレス鋼からなる一体構造
の渦発生体で、下端部が閉鎖された筒状の渦発生部52
aと、その上端部のフランジ部52bとからなる。渦発
生体52は、フランジ部52bによって管路lにネジ固
定される。そして、中空部の上端部内面の流れ方向に直
角な対向箇所に一対の各圧電素子55が固着されている
。このように、渦発生体52を筒状構造体にした理由は
、筒状構造にすることによってその質量を減少させ、外
部の振動や衝撃による渦発生体52の慣性力を減少させ
るためである。この慣性力は、S/N比を低下させて流
量測定の精度を悪化させるから、できるだけ減少させな
ければならない。 なお、特開昭64−18022号では、渦発生体を板金
構造にする提案がなされているが、その目的とする所と
、基本的構成とは前記と同様である。
JP-A-64-18021 as a conventional example will be described with reference to FIG. 9, which is a sectional view thereof. In FIG. 9, reference numeral 52 denotes a vortex generator with an integral structure made of stainless steel, and is a cylindrical vortex generator 52 whose lower end is closed.
a, and a flange portion 52b at its upper end. The vortex generator 52 is screwed to the pipe line l by means of a flange portion 52b. A pair of piezoelectric elements 55 are fixed to opposing positions perpendicular to the flow direction on the inner surface of the upper end of the hollow portion. The reason why the vortex generator 52 is made into a cylindrical structure is to reduce the mass of the vortex generator 52 and reduce the inertial force of the vortex generator 52 due to external vibrations and impacts. . This inertial force lowers the S/N ratio and deteriorates the accuracy of flow rate measurement, so it must be reduced as much as possible. Incidentally, Japanese Patent Application Laid-open No. 18022/1983 proposes that the vortex generating body be formed into a sheet metal structure, but its purpose and basic structure are the same as those described above.

【発明が解決しようとする課題】[Problem to be solved by the invention]

以上説明したように、たとえば特開昭64−18021
号に示された従来の技術では、渦発生体52の筒状構造
体に外部から流体圧力が作用するから、機械約強度の面
から渦発生部52aの質量軽減に限度があり、ひいては
振動影響の抑制が十分にできず、測定精度の向上が十分
に図れない。また、外圧に基づく圧電素子550箇所で
の応力が、さらにS/N比を減少させる原因ともなる。 この発明の課題は、従来の技術がもつ以上の問題点を解
消し、外部振動の影響抑制をして測定精度の向上を図る
カルマン渦流量計を提供することにある。
As explained above, for example, JP-A-64-18021
In the conventional technology disclosed in the above issue, since fluid pressure acts on the cylindrical structure of the vortex generator 52 from the outside, there is a limit to reducing the mass of the vortex generator 52a from the viewpoint of mechanical strength, and as a result, vibration effects are limited. cannot be sufficiently suppressed, and measurement accuracy cannot be sufficiently improved. In addition, stress at 550 locations of the piezoelectric element due to external pressure causes a further decrease in the S/N ratio. An object of the present invention is to provide a Karman vortex flowmeter that solves the problems of the conventional techniques and improves measurement accuracy by suppressing the influence of external vibrations.

【課題を解決するための手段】[Means to solve the problem]

この課題を解決するために、本発明に係るカルマン渦流
量計は、 被測定流体が流れる管路内に挿設された渦発生体を備え
る流量計において、 前記渦発生体は、 前記管路内に位置し自由端部をもつ主部と、この主部の
内部に位置し前記自由端部に開口する有底の中空部と、
この中空部の底近傍に位置しこの中空部と外部とをつな
ぐ連通孔とを備える。
In order to solve this problem, the Karman vortex flowmeter according to the present invention is a flowmeter including a vortex generator inserted in a pipe through which a fluid to be measured flows, wherein the vortex generator is arranged in the pipe. a main part located inside the main part and having a free end; a bottomed hollow part located inside the main part and opening into the free end;
A communication hole is provided near the bottom of the hollow portion and connects the hollow portion with the outside.

【作用】[Effect]

渦発生体は、その内部の中空部に被測定流体が充満する
から、渦発生体自体の質量が減少して外部振動に係る慣
性力が減少するとともに、内外から同じ流体圧力を受け
る。
Since the hollow part inside the vortex generator is filled with the fluid to be measured, the mass of the vortex generator itself is reduced, the inertial force related to external vibration is reduced, and the vortex generator receives the same fluid pressure from inside and outside.

【実施例】【Example】

本発明に係るカルマン渦流量計の実施例について、以下
に図面を参照しながら説明する。 第1図は一実施例の要部の断面図、第2図は同じくその
A−A断面図である。第2図に示すように、渦発生部2
aは、その断面が等迫台形で、その長底辺に近接対向し
て流れ方向Qに関して上流側に、はぼ同じ長さの底辺が
位置するように、等辺三角形の断面をもつ柱状体9が設
置される。これらの渦発生部2aおよび柱状体9は、広
義のカルマン渦発生体を構成し、渦発生部2aが渦発生
の主部に、柱状体9が渦発生を支援する副部にそれぞれ
相当する。 第1図において、渦発生体2のフランジ部2bは、管路
1の側壁に0リング14を介して密閉的に嵌挿され、表
面側の端部に、その軸線と、管路1の軸線とを含む平面
に関して対称に配置されて一対の各圧電素子5が封着剤
6によって埋設される。 各圧電素子5は、圧電物質を挟んで互いに対向する各電
極5a、5bが前記の対称面に平行になるように位置決
めされる。渦発生部2aの内部には、圧電素子5の下方
位置に底部をもち、管路工の内部に開口する中空部2C
が形成される。言いかえれば、渦発生部2aは筒状構造
になっている。しかも、中空部2Cの底部近傍には、内
外を連通ずる孔2dがあけられる。 一対の各圧電素子5からの信号を差動処理することによ
って、第2図において横方向に交番的に作用する渦力は
2倍される形になり、同じくその縦方向に作用する抗力
は相殺される形になる。さらに、渦発生部2aは中空部
2Cを内部にもつ筒状構造であるから、その質量が小さ
く、外部振動を受けたときの慣性力も小さくなる。した
がって、慣性力の渦力に対する影響が抑制され、S/N
比が増して測定の感度、精度の向上が図れる。 また、渦発生部2aは、その内部の中空部2Cに被測定
流体が充満するから、内外から同じ流体圧力を受け、そ
の結果、機械的変形と機械的強度低下が防げる。言いか
えれば渦発生部2aは、機械的変形と機械的強度低下の
おそれなく、その質量を減少させて外部振動の影響を抑
制することができる。なお、孔2dは、中空部2cに気
泡が残留することを防ぎ、そこに被測定流体が完全に充
満することを支援する。 本発明に係るカルマン渦流量計の別の実施例について、
その要部の断面図である第3図を参照しながら説明する
。この別の実施例は、同じ発明者が先に提案した、外部
振動の影響補償のために渦発生体に対するバランスウェ
イトを備えるカルマン渦流量針に、本発明を適用したも
のである。 第3図において、別の実施例の要部は、概略的に言えば
、管路1の側壁にネジ固定される基台12と、この基台
12にネジ固定される検出体13とからなる。 基台12は主として、管路1の側壁外周への固定部とし
ての基板12aと、基板12aの中心にある突8部で側
壁に嵌挿される支承部12bと、この支承部12bから
管路1の内部に突出するカルマン渦発生支援用の柱状体
12cと、この柱状体12cの先端に位置し管路1の側
壁の対向箇所に嵌挿される支承部12dとからなる。各
支承部12b、 12dの、管路1の側壁への嵌挿は、
柱状体12cに対する防振のために各々Oリング15.
16を介してなされる。 検出体13は主として、基板12aの表面にネジ固定さ
れるフランジ部13aと、このフランジ部13aから管
路1の内部側に伸びる支柱部13bと、これに続くカル
マン渦発生体としての柱状体13cと、フランジ部13
aから管路1の外方に伸びる支柱部13eと、支柱部1
3eの先端部に位置可調整に固定されるウェイト13f
とからなる。検出体3を構成する前記の各部分は全て同
軸である。なお、柱状体13cは一1部分破断図に示す
ように、その内部に有底で下端部に開口する中空部をも
つ筒状構造になっていて、底部近傍に内外連通用の孔1
3dを備える。 さて、第4図は第3図におけるB−B断面図であり、第
4図に示すように、基台12の柱状体12cは、その断
面が等辺三角形をなし、検出体13の柱状体13cは、
その断面が等辺台形をなす。柱状体12cの断面の等辺
三角形の底辺と、柱状体13cの断面の等辺台形の長底
辺とは、はぼ同じ長さで近接対向している。これら各柱
状体12c、 13cは、実施例において述べたと同様
に広義のカルマン渦発生体を構成し、柱状体13cが渦
発生の主部、柱状体12cが渦発生を支援する副部に相
当する。 ここで重要なことは、主な渦発生体としての柱状体13
cが、外部振動を受けたときの慣性力によるフランジ部
13aの箇所に関する曲げモーメント(以下、慣性曲げ
モーメントという)と、支柱部13eとウェイト13f
とが、外部振動を受けたときのフランジ部13aの箇所
に関する慣性曲げモーメントとが互いに同じ大きさで逆
方向になるように構成されている。言いかえれば、この
条件が成り立つように、予め概略的に決められた寸法9
重さのウェイト3が微細に位置調整される。 したがって、支柱部13bおよび主な渦発生体としての
柱状体13cが外部振動を受けたときのフランジ部13
aの箇所に関する慣性曲げモーメントは、バランスウェ
イトとしての支柱部13eとウェイト13fとが同じ外
部振動を受けたときのフランジ部13aの箇所に関する
慣性曲げモーメントによって相殺される。 第8図は以上のことを示す模式図で、同図において、フ
ランジ部13aの箇所に関する慣性曲げモーメン)Ml
は、支柱部13b、柱状部13cに係る矢印表示した各
部の慣性力によるもの、同じくその慣性モーメントM2
は、支柱部13e、ウェイト13fに係る矢印表示した
各部の慣性力によるもので、各慣性モーメン)Ml、M
2は大きさが同じで方向が逆になる。なお、第7図は柱
状部13cの各部に作用する矢印表示したカルマン渦に
よる力(渦力)の、フランジ部13aの箇所に関する曲
げモーメントMの模式図である。その結果、フランジ部
13aに固着された後述の圧電素子14(第3図参照)
の出力は、外部振動の影響が除去されてカルマン渦の振
動数だけに対応した周波数になる。 再び第3図に戻り、14は圧電素子で、フランジ部13
aの上面に支柱部13eを貫通させる形で固着される。 圧電素子14は、その表面図である第5図と、その裏面
図である第6図に示すように、圧電物質を中間に挟む形
で構成されハツチング表示の各電極14a、 14b、
 14c、 14dからなる。なお、各電極14a、 
14bは、フランジ部13aの中心を通り流体の流れ方
向Qに平行な直線、X−Xに関して対称に配置された二
つの分電極で、外方の表面に固着される。また電極14
dは、分電極である各電極14a。 14bに対応する一つの共通電極で、内側の表面に固着
される。なお、外方の表面に固着される電極14cは、
共通電極である電極14dと一体化され出力取出し部の
役目をする。これは、出力取出しが電極14dの部分か
らは困難なので、電気的に等価な電極14cからおこな
うわけである。このようにして出力信号は、各電極14
a、 14bと、電極14cを介して電極14dとの間
から各々取り出される。 しかも、圧電素子14からは、第4図に示した柱状体1
3cに作用する流れ方向Qに直角なY−Y方陶(揚力方
向)の交番力だけ、言いかえれば、流体の流速流量だけ
に対応する出力信号が、周知の電子回路によって差動的
に処理され、2倍された形で取り出され、流れ方向Qの
抗力に応じる出力信号は相殺されることになる。このこ
とは、測定の感度、精度の向上に役立つ。 その結果、フランジ部13aに固着された圧電素子14
の出力は、外部振動の影響が除去されてカルマン渦の振
動数だけに対応した周波数として取り出される。しかも
、柱状体13cが筒状構造で質量が小さいから、これ対
応するバランスウェイトとしての、支柱部13eおよび
ウェイト13fの質量も小さくてよく、そのために同時
にウェイト13fの位置調整も容易になる。その結果、
検出体13の質量も小さくなって流量計の軽量化に役立
つ。
Examples of the Karman vortex flowmeter according to the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a main part of one embodiment, and FIG. 2 is a cross-sectional view taken along the line A-A. As shown in Fig. 2, the vortex generating part 2
a has an equilateral trapezoid cross section, and a columnar body 9 with an equilateral triangular cross section is arranged so that the bases of approximately the same length are located close to and opposite to the long bases on the upstream side in the flow direction Q. will be installed. The vortex generating portion 2a and the columnar body 9 constitute a Karman vortex generator in a broad sense, with the vortex generating portion 2a corresponding to a main portion for generating a vortex, and the columnar body 9 corresponding to a sub portion for supporting vortex generation. In FIG. 1, the flange part 2b of the vortex generator 2 is hermetically fitted into the side wall of the pipe line 1 via an O-ring 14, and the axis line and the axis line of the pipe line 1 are connected to the end part on the surface side. A pair of piezoelectric elements 5 are embedded in a sealing agent 6 while being arranged symmetrically with respect to a plane including. Each piezoelectric element 5 is positioned such that electrodes 5a and 5b facing each other with the piezoelectric material in between are parallel to the plane of symmetry. Inside the vortex generating part 2a, there is a hollow part 2C having a bottom at a position below the piezoelectric element 5 and opening into the inside of the pipework.
is formed. In other words, the vortex generating section 2a has a cylindrical structure. In addition, a hole 2d is provided near the bottom of the hollow portion 2C to communicate between the inside and outside. By differentially processing the signals from each of the pair of piezoelectric elements 5, the vortex force that alternately acts in the horizontal direction in Fig. 2 is doubled, and the drag force that acts in the vertical direction is canceled out. It becomes the form that is done. Furthermore, since the vortex generating part 2a has a cylindrical structure with the hollow part 2C inside, its mass is small and the inertial force when subjected to external vibration is also small. Therefore, the influence of inertial force on vortex force is suppressed, and the S/N
As the ratio increases, measurement sensitivity and accuracy can be improved. Further, since the hollow part 2C inside the vortex generating part 2a is filled with the fluid to be measured, the same fluid pressure is applied from inside and outside, and as a result, mechanical deformation and decrease in mechanical strength can be prevented. In other words, the vortex generating portion 2a can reduce its mass and suppress the influence of external vibrations without fear of mechanical deformation and reduction in mechanical strength. Note that the holes 2d prevent air bubbles from remaining in the hollow portion 2c, and help ensure that the fluid to be measured completely fills the hollow portion 2c. Regarding another embodiment of the Karman vortex flowmeter according to the present invention,
This will be explained with reference to FIG. 3, which is a sectional view of the main part. This alternative embodiment is an application of the present invention to the Karman vortex flow needle previously proposed by the same inventor, which includes a balance weight for the vortex generator to compensate for the effects of external vibrations. In FIG. 3, the main parts of another embodiment, roughly speaking, consist of a base 12 screwed to the side wall of the conduit 1, and a detection body 13 screwed to the base 12. . The base 12 mainly includes a base plate 12a that is fixed to the outer periphery of the side wall of the conduit 1, a support part 12b that is fitted into the side wall at a protrusion 8 at the center of the base plate 12a, and a support part 12b that serves as a part for fixing the conduit 1 to the outer periphery of the side wall. It consists of a columnar body 12c for supporting Karman vortex generation that protrudes inside the columnar body 12c, and a support portion 12d that is located at the tip of the columnar body 12c and is fitted into an opposing portion of the side wall of the conduit 1. The fitting of each support portion 12b, 12d into the side wall of the conduit 1 is as follows:
Each O-ring 15. is provided for vibration isolation against the columnar body 12c.
16. The detection body 13 mainly includes a flange portion 13a screwed to the surface of the substrate 12a, a support portion 13b extending from the flange portion 13a toward the inside of the conduit 1, and a columnar body 13c as a Karman vortex generating body following the flange portion 13a. and flange part 13
a strut portion 13e extending outward from the conduit 1, and a strut portion 1
Weight 13f fixed to the tip of 3e in an adjustable manner
It consists of All of the above-mentioned parts constituting the detection body 3 are coaxial. The columnar body 13c has a cylindrical structure with a bottomed hollow part opening at the lower end, and has a hole 1 near the bottom for communication between the inside and outside, as shown in the partially cutaway view.
Equipped with 3d. Now, FIG. 4 is a BB sectional view in FIG. 3, and as shown in FIG. teeth,
Its cross section forms an equilateral trapezoid. The base of the equilateral triangle in the cross-section of the columnar body 12c and the long base of the equilateral trapezoid in the cross-section of the columnar body 13c are approximately the same length and are closely opposed to each other. Each of these columnar bodies 12c and 13c constitutes a Karman vortex generator in a broad sense as described in the embodiment, with the columnar body 13c corresponding to the main part that generates a vortex, and the columnar body 12c corresponding to a sub-part that supports vortex generation. . What is important here is that the columnar body 13 is the main vortex generator.
c is the bending moment (hereinafter referred to as inertia bending moment) of the flange portion 13a due to inertia force when external vibration is applied, and the support portion 13e and weight 13f.
and the bending moment of inertia regarding the portion of the flange portion 13a when external vibration is applied are the same magnitude and in opposite directions. In other words, the dimensions 9 are roughly determined in advance so that this condition holds true.
The position of the weight 3 is finely adjusted. Therefore, when the support portion 13b and the columnar body 13c as the main vortex generator receive external vibration, the flange portion 13
The bending moment of inertia regarding the location a is offset by the bending moment of inertia regarding the location of the flange portion 13a when the support column 13e as a balance weight and the weight 13f are subjected to the same external vibration. FIG. 8 is a schematic diagram showing the above, in which the bending moment of inertia regarding the flange portion 13a) Ml
is due to the inertial force of each part indicated by the arrow related to the columnar part 13b and the columnar part 13c, and the moment of inertia M2
is due to the inertial force of each part indicated by the arrow related to the support 13e and the weight 13f, and each moment of inertia) Ml, M
2 have the same size but opposite directions. Note that FIG. 7 is a schematic diagram of the bending moment M at the flange portion 13a of the force (vortex force) due to the Karman vortex indicated by arrows acting on each portion of the columnar portion 13c. As a result, a piezoelectric element 14 (see FIG. 3), which will be described later, is fixed to the flange portion 13a.
The output has a frequency corresponding only to the frequency of the Karman vortex, with the influence of external vibrations removed. Returning to FIG. 3 again, 14 is a piezoelectric element, and the flange portion 13
The supporting column 13e is fixed to the upper surface of the column a by penetrating it. As shown in FIG. 5, which is a front view of the piezoelectric element 14, and FIG. 6, which is a back view of the piezoelectric element 14, the piezoelectric element 14 is constructed in such a manner that a piezoelectric material is sandwiched between the electrodes 14a, 14b, which are indicated by hatching.
Consists of 14c and 14d. Note that each electrode 14a,
Reference numeral 14b denotes two dividing electrodes which are arranged symmetrically with respect to X-X, a straight line passing through the center of the flange portion 13a and parallel to the fluid flow direction Q, and are fixed to the outer surface. Also, the electrode 14
d is each electrode 14a which is a dividing electrode. One common electrode corresponding to 14b is fixed to the inner surface. Note that the electrode 14c fixed to the outer surface is
It is integrated with the electrode 14d, which is a common electrode, and serves as an output extraction section. This is because it is difficult to extract the output from the electrode 14d, so it is performed from the electrically equivalent electrode 14c. In this way, the output signal is
a, 14b and the electrode 14d via the electrode 14c. Moreover, from the piezoelectric element 14, the columnar body 1 shown in FIG.
Only the alternating force in the Y-Y direction (lift direction) perpendicular to the flow direction Q acting on 3c, in other words, the output signal corresponding only to the flow rate of the fluid is processed differentially by well-known electronic circuits. The output signal corresponding to the drag force in the flow direction Q will be canceled out. This helps improve measurement sensitivity and accuracy. As a result, the piezoelectric element 14 fixed to the flange portion 13a
The output is extracted as a frequency corresponding only to the frequency of the Karman vortex, with the influence of external vibrations removed. Moreover, since the columnar body 13c has a cylindrical structure and has a small mass, the mass of the columnar part 13e and the weight 13f as corresponding balance weights can also be small, and therefore the position of the weight 13f can be easily adjusted. the result,
The mass of the detection body 13 is also reduced, which helps to reduce the weight of the flowmeter.

【発明の効果】【Effect of the invention】

以上説明したように、この発明においては、渦発生体は
、その内部の中空部に被測定流体が充満するから、渦発
生体自体の質量が減少して外部振動に係る慣性力が減少
するとともに、内外から同じ流体圧力を受ける。 したがって、この発明によれば、従来の技術に比べ次の
ようなすぐれた効果がある。 (1)外部振動に係る慣性力の減少によって、その分だ
け外部振動の影響が抑制され、測定精度の向上が図れる
。 (2)渦発生体は内外から同じ流体圧力を受けるから、
その機械的変形と機械的強度の低下とが防止され、流量
計の信顧性向上につながる。
As explained above, in this invention, since the hollow part inside the vortex generator is filled with the fluid to be measured, the mass of the vortex generator itself is reduced, and the inertial force related to external vibration is reduced. , subjected to the same fluid pressure from inside and outside. Therefore, the present invention has the following superior effects compared to the conventional technology. (1) By reducing the inertial force related to external vibration, the influence of external vibration is suppressed to that extent, and measurement accuracy can be improved. (2) Since the vortex generator receives the same fluid pressure from inside and outside,
Mechanical deformation and reduction in mechanical strength are prevented, leading to improved reliability of the flowmeter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る一実施例の要部の断面図、第2図
は第1図におけるA−A断面図、第3図は同じくその別
の実施例の要部の断面図、第4図は第3図におけるB−
B断面図、第5図は別の実施例における圧電素子の表面
図、第6図は同じくその裏面図、 第7図は別の実施例における渦力による曲げモーメント
の模式図、 第8図は同じくその外部振動による慣性曲げモーメント
の模式図、 第9図は従来例の断面図である。 符号説明 1:管路、2:渦発生体、2a :渦発生部、2b、1
3a  :フランジ部、2C:中空部、2d、13d 
 :孔、5.14:圧電素子、12:基台、12a:基
板、12b、12d  :支承部、12c、13c  
:柱状体、13:検出体、13b、13e :支柱部、
13f:ウェイト。
FIG. 1 is a sectional view of a main part of an embodiment according to the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIG. Figure 4 shows B- in Figure 3.
B sectional view, FIG. 5 is a front view of a piezoelectric element in another embodiment, FIG. 6 is a back view thereof, FIG. 7 is a schematic diagram of bending moment due to vortex force in another embodiment, and FIG. Similarly, FIG. 9 is a schematic diagram of the bending moment of inertia due to external vibration, and is a sectional view of the conventional example. Symbol explanation 1: Pipeline, 2: Vortex generator, 2a: Vortex generator, 2b, 1
3a: Flange part, 2C: Hollow part, 2d, 13d
: hole, 5.14: piezoelectric element, 12: base, 12a: substrate, 12b, 12d: support part, 12c, 13c
: columnar body, 13: detection body, 13b, 13e: pillar part,
13f: Weight.

Claims (1)

【特許請求の範囲】[Claims] 1)被測定流体が流れる管路内に挿設された渦発生体を
備える流量計において、前記渦発生体は、前記管路内に
位置し自由端部をもつ主部と、この主部の内部に位置し
前記自由端部に開口する有底の中空部と、この中空部の
底近傍に位置しこの中空部と外部とをつなぐ連通孔とを
備えることを特徴とするカルマン渦流量計。
1) In a flowmeter including a vortex generator inserted into a pipe through which a fluid to be measured flows, the vortex generator includes a main part located in the pipe and having a free end, and a main part of the main part. A Karman vortex flowmeter comprising: a hollow part with a bottom located inside and opening to the free end; and a communication hole located near the bottom of this hollow part and connecting this hollow part to the outside.
JP2034473A 1990-02-15 1990-02-15 Karman vortex flowmeter Pending JPH03238321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2034473A JPH03238321A (en) 1990-02-15 1990-02-15 Karman vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2034473A JPH03238321A (en) 1990-02-15 1990-02-15 Karman vortex flowmeter

Publications (1)

Publication Number Publication Date
JPH03238321A true JPH03238321A (en) 1991-10-24

Family

ID=12415223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2034473A Pending JPH03238321A (en) 1990-02-15 1990-02-15 Karman vortex flowmeter

Country Status (1)

Country Link
JP (1) JPH03238321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869772A (en) * 1996-11-27 1999-02-09 Storer; William James A. Vortex flowmeter including cantilevered vortex and vibration sensing beams

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046155A (en) * 1973-08-28 1975-04-24
JPS5173465A (en) * 1974-12-23 1976-06-25 Yokogawa Electric Works Ltd RYUSOKUSOKUTEISOCHI
JPS56120917A (en) * 1980-02-28 1981-09-22 Yokogawa Hokushin Electric Corp Vortex flowmeter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046155A (en) * 1973-08-28 1975-04-24
JPS5173465A (en) * 1974-12-23 1976-06-25 Yokogawa Electric Works Ltd RYUSOKUSOKUTEISOCHI
JPS56120917A (en) * 1980-02-28 1981-09-22 Yokogawa Hokushin Electric Corp Vortex flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869772A (en) * 1996-11-27 1999-02-09 Storer; William James A. Vortex flowmeter including cantilevered vortex and vibration sensing beams

Similar Documents

Publication Publication Date Title
US6003384A (en) Vortex flow sensor with a capacitive sensing element
US4811606A (en) Mass flowmeter
JP3947111B2 (en) Vibrating transducer
EP0303621A1 (en) Coriolis-type mass flowmeter
US20090249891A1 (en) Balancing structure for a single curved tube coriolis flow meter
JP2010533837A (en) Microfluidic device and microtube for it
JP3233405B2 (en) Vortex flow meter
CN100429489C (en) Coriolis flowmeter
JP3744913B2 (en) Vortex flow meter sensor and vortex flow meter
JPH03238321A (en) Karman vortex flowmeter
US4984471A (en) Force transmitting mechanism for a vortex flowmeter
Svedin et al. A lift-force flow sensor designed for acceleration insensitivity
US4976156A (en) Impulse sensor with balanced mass-stiffness distribution
CN100451565C (en) Coriolis flow rate meter
JPH03238322A (en) Karman vortex flowmeter
JP3049176B2 (en) Vortex flowmeter and vortex sensor
JPH06102070A (en) Vortex type flowmeter
EP2201387B1 (en) Flexural pivot for micro-sensors
US20040173032A1 (en) Mass flowmeter
JP3123307B2 (en) Karman vortex flowmeter
JP2929731B2 (en) Karman vortex flowmeter and method of manufacturing the same
JPH0979882A (en) Vibration type measuring device
CN101163948A (en) Coriolis flow rate meter with flow tube of double loop structure
JP2522427C (en)
JP2863169B2 (en) Vortex flow meter