JPH03238036A - Fuel reforming apparatus - Google Patents

Fuel reforming apparatus

Info

Publication number
JPH03238036A
JPH03238036A JP3142090A JP3142090A JPH03238036A JP H03238036 A JPH03238036 A JP H03238036A JP 3142090 A JP3142090 A JP 3142090A JP 3142090 A JP3142090 A JP 3142090A JP H03238036 A JPH03238036 A JP H03238036A
Authority
JP
Japan
Prior art keywords
reaction chamber
reforming catalyst
reaction
tube
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3142090A
Other languages
Japanese (ja)
Inventor
Seiichi Otsu
大津 清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3142090A priority Critical patent/JPH03238036A/en
Publication of JPH03238036A publication Critical patent/JPH03238036A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:Not to form a space without reforming catalyst owing to thermal expansion during work time in a reaction chamber by dividing the reaction chamber into a plurality of areas so as to retain a predetermined amount of a reforming catalyst in each area in the reaction chamber. CONSTITUTION:A combustion gas is supplied to a container 1 by a burner 17. A raw material gas which is supplied to the container 1 through a raw material gas supplying inlet 9 and reformed by heat-exchange with the combus tion gas while rising in a reaction chamber 3 is turned at the upper end of a reaction tube 2 and the heat preserved in the raw material gas is made to be recovered by the raw material gas rising in the reaction chamber 3 while the former raw material gas descends in an inner tube 2b. A plurality of partitioning parts 20 having many through holes are so installed in the reaction chamber as to divide the reaction chamber 3 into a plurality of areas, so that each area of the reaction chamber contains a predetermined amount of a reforming catalyst. As a result, even if the volume of the reaction chamber is expanded owing to the thermal expansion during the work time, no space without reforming catalyst is formed in the reaction chamber.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は燃料改質装置に係り、特に燃料油、ナフサ、天
然ガス等の炭化水素と水蒸気との混合流体を改質触媒の
存在下で反応させ、水素、−酸化炭素、二酸化炭素、メ
タン、水蒸気等からなる混合気体に改質させる燃料改質
装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel reforming device, and in particular is used to reform a mixed fluid of hydrocarbons such as fuel oil, naphtha, and natural gas and steam. The present invention relates to a fuel reforming device that reacts in the presence of a catalyst to reform a mixed gas consisting of hydrogen, carbon oxide, carbon dioxide, methane, water vapor, etc.

(従来の技術) 第5図は従来の二重管式の燃料改質装置を示している。(Conventional technology) FIG. 5 shows a conventional double pipe type fuel reformer.

図において、工は断熱層を備える容器を示し、この容器
1内には反応管2が配置されている。この反応管2は外
管2aと内管2bを同心に配置した二重管であり、これ
ら外管2aと内管2bとの間には環状の反応室3が形成
されている。この反応室3内には改質触媒5が充填され
、この改質触媒5は上部が上部多孔板4aにて、下部が
下部多孔板4bにて覆われている。上部多孔板4aは改
質触媒5が上方に飛散しないように、下部多孔板4bは
改質触媒5が下方に落下しないよう閉じ込めるものであ
る。また、反応管2の頂部には断熱キャップ6が取付け
られ高温の燃焼ガスから該反応管2の頭部を保護してい
る。さらに、外管2aの下端と容器1の内壁とは環状の
上支持板7aで結合される一方、内管2bの下端と容器
1の内壁とは環状の下支持板7bで結合され、これら上
支持板7aと下支持板7bとの間には原料ガス室8が形
成されている。この原料ガス室8は原料ガス供給口9に
連通している。上支持板7aの上方側には燃焼ガス流通
室10が形成され、この燃焼ガス流通室10はその下部
において燃焼ガス排出口11に連通している。また下支
持板7bの下方側には生成ガス流通室12が形成され、
この生成ガス流通室12は生成ガス排出口13に連通し
ている。また、内管2bの内側には上端が閉じたプラグ
管15が同心に配置されこのプラグ管15と内管2bと
の間には環状の再生室16が形成され、この再生室I6
は下部において上記生成ガス流通室12に連通している
。また、容器1の上端にはバーナ17が取付けられ、こ
のバーナ17には燃料供給口18と空気供給口19とが
形成されている。
In the figure, numeral 1 indicates a container provided with a heat insulating layer, and a reaction tube 2 is disposed within this container 1. The reaction tube 2 is a double tube in which an outer tube 2a and an inner tube 2b are arranged concentrically, and an annular reaction chamber 3 is formed between the outer tube 2a and the inner tube 2b. The reaction chamber 3 is filled with a reforming catalyst 5, and the reforming catalyst 5 is covered at its upper part with an upper perforated plate 4a and its lower part with a lower perforated plate 4b. The upper porous plate 4a confines the reforming catalyst 5 so that it does not scatter upward, and the lower porous plate 4b confines the reforming catalyst 5 so that it does not fall downward. Further, a heat insulating cap 6 is attached to the top of the reaction tube 2 to protect the head of the reaction tube 2 from high temperature combustion gas. Further, the lower end of the outer tube 2a and the inner wall of the container 1 are connected by an annular upper support plate 7a, while the lower end of the inner tube 2b and the inner wall of the container 1 are connected by an annular lower support plate 7b. A source gas chamber 8 is formed between the support plate 7a and the lower support plate 7b. This source gas chamber 8 communicates with a source gas supply port 9 . A combustion gas distribution chamber 10 is formed above the upper support plate 7a, and the combustion gas distribution chamber 10 communicates with a combustion gas discharge port 11 at its lower portion. Further, a generated gas distribution chamber 12 is formed on the lower side of the lower support plate 7b,
This generated gas distribution chamber 12 communicates with a generated gas outlet 13 . Further, a plug pipe 15 with a closed upper end is arranged concentrically inside the inner pipe 2b, and an annular regeneration chamber 16 is formed between the plug pipe 15 and the inner pipe 2b.
communicates with the generated gas distribution chamber 12 at its lower part. Further, a burner 17 is attached to the upper end of the container 1, and a fuel supply port 18 and an air supply port 19 are formed in the burner 17.

このように構成された従来の燃料改質装置において、改
質のための原料ガスはガス供給口9から供給される。こ
の原料ガスは原料ガス室8を経て環状の反応室3内に入
り、ここを上昇し、反応管2内の上端部で反転し、再生
室16内を降下し、そして、生成ガス流通室12を経て
、生成ガス排出口13から送出される。
In the conventional fuel reformer configured as described above, raw material gas for reforming is supplied from the gas supply port 9. This raw material gas enters the annular reaction chamber 3 through the raw material gas chamber 8, rises there, turns around at the upper end of the reaction tube 2, descends inside the regeneration chamber 16, and then descends into the produced gas distribution chamber 12. The generated gas is then sent out from the generated gas outlet 13.

ところで、反応室3には改質触媒5が充填されているの
で、原料ガスはここを上昇するうちに改質される。この
改質反応は、 C1(4+H2O=C0+3H2 −49,27Kcaffi/ gmoffiであり、こ
れは吸熱反応である。この反応は右に促進させるために
は外部から熱を供給しなければならない。
By the way, since the reaction chamber 3 is filled with a reforming catalyst 5, the raw material gas is reformed while rising there. This reforming reaction is C1(4+H2O=C0+3H2 -49,27Kcaffi/gmoffi, which is an endothermic reaction. Heat must be supplied from outside to accelerate this reaction.

この熱はバーナ17から燃焼ガス(点線で示す)として
供給される。燃料供給口18から燃料が供給3− 4− され、空気供給口19から空気が供給され、これらはバ
ーナ17で混合燃焼される。そして、この燃焼ガスは燃
焼ガス流通室10に入り、ここを降下する。
This heat is supplied from burner 17 as combustion gas (indicated by dotted lines). Fuel is supplied from the fuel supply port 18 and air is supplied from the air supply port 19, and these are mixed and burned in the burner 17. Then, this combustion gas enters the combustion gas distribution chamber 10 and descends there.

この降下の途中で反応室3内を上昇する原料ガス(実線
で示す)と熱交換したあと、燃焼ガス排出口11から排
出される。
During this descent, after exchanging heat with the raw material gas (indicated by a solid line) rising in the reaction chamber 3, it is discharged from the combustion gas outlet 11.

(発明が解決しようとする課題) ところで、上述した従来の反応管2には、遠心鋳造によ
り製造された高ニツケル高クロム鋼の耐熱合金管が用い
られ、改質触媒5にはアルミナ等からなるセラミック基
材にニッケルを付与した粒子状のものが用いられている
。この反応管2の材質は改質触媒5の材質に比較して線
膨張率が大きく、熱が加えられている間、反応管2は径
方向および軸方向に伸びるのに対して、改質触媒5は殆
ど伸びない。
(Problems to be Solved by the Invention) By the way, the conventional reaction tube 2 described above uses a heat-resistant alloy tube made of high nickel high chromium steel manufactured by centrifugal casting, and the reforming catalyst 5 is made of alumina or the like. A particulate material in which nickel is added to a ceramic base material is used. The material of this reaction tube 2 has a higher coefficient of linear expansion than the material of the reforming catalyst 5, and while the reaction tube 2 extends in the radial and axial directions while heat is being applied, the reforming catalyst 5 hardly grows.

したがって、加熱の間、反応管2が伸びて反応室3の体
積が広がった分だけ、改質触媒5は該反応室3の下方領
域に沈下し、反応室3内には改質触媒5の存在しない空
間が生じる。この状態で燃料改質装置を運転すると、反
応室3内を上昇する原料ガスによって改質触媒5の流動
が起こる。この改質触媒5の流動が発生すると、改質触
媒5の粒子が割れ、粉化が進むことがある。この触媒の
破片や粉が、生成ガス流に乗って生成ガス流通室12内
に入り込み、その室壁に付着したり、装置外に排出され
たあと、下流の配管、弁機器等に付着したりして、故障
や異常を引き起こすという問題が生じる。
Therefore, during heating, the reforming catalyst 5 sinks to the lower region of the reaction chamber 3 by the amount that the reaction tube 2 is extended and the volume of the reaction chamber 3 is expanded, and the reforming catalyst 5 is in the reaction chamber 3. A space that does not exist is created. When the fuel reformer is operated in this state, the reforming catalyst 5 flows due to the raw material gas rising in the reaction chamber 3. When this flow of the reforming catalyst 5 occurs, the particles of the reforming catalyst 5 may break and pulverization may proceed. Fragments and powder of the catalyst may enter the produced gas distribution chamber 12 along with the produced gas flow and adhere to the chamber wall, or may adhere to downstream piping, valve equipment, etc. after being discharged outside the device. This causes problems such as failures and abnormalities.

また、このような場合、上述した改質反応の逆反応であ
るメタネーション反応を引き起こす虞れがある。
Moreover, in such a case, there is a possibility that a methanation reaction, which is a reverse reaction of the above-mentioned reforming reaction, will occur.

CO+3H2=CH4+H20 +49.27Kcaj2/gmoQ この反応が起きると、強度の発熱反応であることから温
度の異常上昇を来たすとともに、水素、−酸化炭素を消
費して、燃料改質装置の改質効率を低下させるという問
題が生じる。
CO+3H2=CH4+H20 +49.27Kcaj2/gmoQ When this reaction occurs, it causes an abnormal rise in temperature as it is a strong exothermic reaction, and also consumes hydrogen and carbon oxide, reducing the reforming efficiency of the fuel reformer. The problem arises of

そこで、本発明の目的は、上述した従来の技術が有する
問題点を解消し、運転中の熱膨張により反応室の体積が
広がっても、改質触媒の存在しない空間が該反応室内に
形成されないようにした燃料改質装置を提供することに
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems of the conventional technology, so that even if the volume of the reaction chamber expands due to thermal expansion during operation, a space in which the reforming catalyst does not exist will not be formed in the reaction chamber. An object of the present invention is to provide a fuel reforming device as described above.

〔発明の構成〕[Structure of the invention]

(W題を解決するための手段) 上記目的を遠戚するために、本発明は中空の容器と、こ
の容器内に燃焼ガスを供給するバーナと、容器内に鉛直
に配設されると共に外管と内管とを同心に配置して二重
管に構成されかつ頂部にキャップを備える反応管と、外
管と内管との間に形成された反応室と、この反応室内に
充填された改質触媒と、この改質触媒が上方に飛散しな
いように反応室の上部を覆う上部多孔板と、改質触媒が
下方に落下しないように反応室の下部を覆う下部多孔板
とを備え、容器内に供給され反応室内を上昇する過程で
上記燃焼ガスとの熱交換により改質される原料ガスを、
反応管内の上端部にて反転させて、内管の内部を降下す
る間にその保有する熱を、反応室内を上昇する原料ガス
へ回収させるようにした燃料改質装置において、反応室
内にて個々の領域が予め決められた量の上記改質触媒を
保有するように反応室内を複数の領域に区分する多数の
透孔を有する区画部材を設けたことを特徴とするもので
ある。
(Means for Solving Problem W) In order to achieve the above object distantly, the present invention provides a hollow container, a burner for supplying combustion gas into the container, and a burner arranged vertically inside the container and externally. A reaction tube configured as a double tube by concentrically arranging a tube and an inner tube and equipped with a cap at the top, a reaction chamber formed between the outer tube and the inner tube, and a reaction chamber filled with the reaction tube. A reforming catalyst, an upper perforated plate that covers the upper part of the reaction chamber to prevent the reforming catalyst from scattering upward, and a lower perforated plate to cover the lower part of the reaction chamber to prevent the reforming catalyst from falling downward, The raw material gas is supplied into the container and reformed by heat exchange with the combustion gas in the process of rising inside the reaction chamber.
In a fuel reformer that is inverted at the upper end of the reaction tube so that the heat retained while descending inside the inner tube is recovered to the raw material gas rising inside the reaction chamber, individual The present invention is characterized in that a partitioning member having a large number of through holes is provided to divide the interior of the reaction chamber into a plurality of regions such that each region holds a predetermined amount of the reforming catalyst.

(作用) 本発明によれば、運転中に熱膨張により反応室が拡がっ
たとしても1反応室が区画部材により複数に区分されて
いるので、その区分された個々の反応室当りの容積の拡
散分が小さいため、改質触媒の存在しない空間は極くわ
ずかしか発生しない。したがって、運転時に改質触媒の
流動が起こりうるような流量のガスが流れても、改質触
媒の流動は起こらず、触媒に割れが発生したり、粉化が
促進されることはない。
(Function) According to the present invention, even if the reaction chamber expands due to thermal expansion during operation, one reaction chamber is divided into a plurality of sections by the partitioning member, so that the volume of each divided reaction chamber is diffused. Since the fraction is small, only a small amount of space is created where the reforming catalyst does not exist. Therefore, even if gas flows at such a flow rate that the reforming catalyst may flow during operation, the reforming catalyst will not flow, and the catalyst will not crack or its pulverization will not be promoted.

(実施例) 以下、本発明による燃料改質装置の一実施例を第5図と
同一部分に同一符号を付して示した第1図を参照して説
明する。
(Embodiment) Hereinafter, an embodiment of a fuel reformer according to the present invention will be described with reference to FIG. 1, in which the same parts as in FIG. 5 are denoted by the same reference numerals.

第1図において、王は断熱層を備える容器を示し、この
容器工内には反応管2が配置されている7− この反応管2は外管2aと内管2bを同心に配置した二
重管であり、これら外管2aと内管2bとの間には環状
の反応室3が形成されている。この反応室3には改質触
媒5が充填され、この改質触媒5は上部が上部多孔板4
aにて、下部が下部多孔板4bにて覆われている。上部
多孔板4aは改質触媒5が上方に飛散しないように、ま
た下部多孔板4bは改質触媒5が下方に落下しないよう
に閉じ込めるものである。さらに、反応管2の頂部には
断熱キャップ6が取付けられ、高温の燃焼ガスから該反
応管20頭部を保護している。外管2aの下端と容器1
の内壁とは環状の上支持板7aで結合される一方、内管
2bの下端と容器1の内壁とは環状の下支持板7bで結
合され、これら上支持板7aと下支持板7bとの間には
原料ガス室8が形成されている。この原料ガス室8は原
料ガス供給口9に連通している。
In FIG. 1, the symbol "O" indicates a container equipped with a heat insulating layer, and a reaction tube 2 is placed inside this container structure. An annular reaction chamber 3 is formed between the outer tube 2a and the inner tube 2b. This reaction chamber 3 is filled with a reforming catalyst 5, and the reforming catalyst 5 has an upper porous plate 4 at the top.
At a, the lower part is covered with a lower perforated plate 4b. The upper porous plate 4a confines the reforming catalyst 5 to prevent it from scattering upward, and the lower porous plate 4b confines the reforming catalyst 5 from falling downward. Further, a heat insulating cap 6 is attached to the top of the reaction tube 2 to protect the head of the reaction tube 20 from high temperature combustion gas. The lower end of the outer tube 2a and the container 1
The inner wall of the inner tube 2b is connected to the inner wall of the container 1 by an annular upper support plate 7a, while the lower end of the inner tube 2b and the inner wall of the container 1 are connected by an annular lower support plate 7b. A raw material gas chamber 8 is formed between them. This source gas chamber 8 communicates with a source gas supply port 9 .

上支持板17aの上方側には燃焼ガス流通室10が形成
され、この燃焼ガス流通室10はその下部において燃焼
ガス排出口11に連通している。下支持板7bの下方側
には生成ガス流通室12が形成され、この生成ガス流通
室12は生成ガス排出口13に連通している。以上の構
成は従来のものと同じである。
A combustion gas distribution chamber 10 is formed above the upper support plate 17a, and the combustion gas distribution chamber 10 communicates with a combustion gas discharge port 11 at its lower portion. A generated gas distribution chamber 12 is formed on the lower side of the lower support plate 7b, and this generated gas distribution chamber 12 communicates with a generated gas discharge port 13. The above configuration is the same as the conventional one.

本実施例においては上述の構成と併せ、反応管2の内部
において反応室3内を長手方向に複数の領域に区分する
環状の平板20が設置しである。この平板20には第2
図に示されるように多数の透孔20aが穿設され、原料
ガスの通路を構成している。
In this embodiment, in addition to the above-described configuration, an annular flat plate 20 is installed inside the reaction tube 2 to divide the inside of the reaction chamber 3 into a plurality of regions in the longitudinal direction. This flat plate 20 has a second
As shown in the figure, a large number of through holes 20a are formed to form passages for raw material gas.

この平板20は反応管2の外4v!2a又は内管2bに
固定されており、その位置が変わることはない。なお、
図中21は支持環を示している。上記構成によるところ
の燃料改質装置の動作を説明する。
This flat plate 20 has 4V outside the reaction tube 2! 2a or the inner tube 2b, and its position does not change. In addition,
In the figure, 21 indicates a support ring. The operation of the fuel reformer having the above configuration will be explained.

燃料改質装置の運転時には、反応管2の外管2aと内管
2bとは長手方向及び半径方向に熱膨張して反応室3の
体積は運転停止時に比べて増加する。
During operation of the fuel reformer, the outer tube 2a and inner tube 2b of the reaction tube 2 thermally expand in the longitudinal and radial directions, and the volume of the reaction chamber 3 increases compared to when the operation is stopped.

一方、改質触媒5は熱膨張率が改質管2に比べ非常に小
さく、運転時の触媒層の体積増加が殆どないため、反応
室3内での触媒層の位置が大きく変化してしまう。反応
管2からみてこの変化は触媒層が沈み込んだ状態であり
、本実施例ではこの沈み込みを微小にするために反応室
3に区分された領域を平板20により形威している。
On the other hand, the reforming catalyst 5 has a much smaller coefficient of thermal expansion than the reforming tube 2, and the volume of the catalyst layer hardly increases during operation, so the position of the catalyst layer within the reaction chamber 3 changes significantly. . When viewed from the reaction tube 2, this change is a state in which the catalyst layer sinks, and in this embodiment, in order to minimize this sinking, the area divided into the reaction chambers 3 is defined by a flat plate 20.

すなわち、触媒層の沈み込みは、区分された領域の範囲
で各々発生し、沈み込みが反応室3全体にわたり累積さ
れることがない。ここで、区分した反応室3内の個々の
領域で発生する触媒層の沈み込み量をΔ■とし、区分数
をnとすると、反応室3全体での触媒層の沈み込み量V
は Vξn×ΔV となる。つまり、反応管2の1本当りの触媒層の沈み込
み量Vとしては変わらないが、反応室3内利用するもの
である。これにより改質触媒5の流動化の発生のもとに
なる改質触媒5の充填されない空間の発生を防止するこ
とができる。
That is, the sinking of the catalyst layer occurs in each divided region, and the sinking does not accumulate over the entire reaction chamber 3. Here, if the amount of sinking of the catalyst layer that occurs in each region in the divided reaction chamber 3 is Δ■, and the number of sections is n, then the amount of sinking of the catalyst layer in the entire reaction chamber 3 is V
is Vξn×ΔV. In other words, although the sinking amount V of the catalyst layer per reaction tube 2 remains the same, it is used within the reaction chamber 3. This can prevent the occurrence of spaces that are not filled with the reforming catalyst 5, which would cause fluidization of the reforming catalyst 5.

上記と異なる実施例として、第3図に示されるものは、
帯状の板にねじれを与えてスパイラル状のねじれ板21
を形威し、反応室3内に挿入して上記実施例同様効果を
得るものである。
As an embodiment different from the above, the one shown in FIG.
Spiral-shaped twisted plate 21 by giving twist to a belt-shaped plate
is inserted into the reaction chamber 3 to obtain the same effect as in the above embodiment.

第4図に示されるようにこのスパイラル状のねじれ板2
2にも原料ガスの通路となる多数の透孔22aが穿たれ
るのはいうまでもない。原料ガスの流れ方向はこの透孔
22aにより、垂直方向すこ保たれる。本実施例は燃料
ガスの流れ方向に対しては実質に反応室3を区分して多
数の領域に細分化したのと同様の効果が生じる。
As shown in Fig. 4, this spiral twisted plate 2
Needless to say, a large number of through holes 22a are formed in the tube 2 as well, which serve as passages for the raw material gas. The flow direction of the raw material gas is maintained almost vertically by the through holes 22a. In this embodiment, in the flow direction of the fuel gas, the same effect as that obtained by dividing the reaction chamber 3 into a large number of sub-regions is produced.

したがって、上記実施例と同様反応室3内での触媒層の
沈み込みが反応室3全体にわたって累積されるのを防止
でき、触媒の流動化をもたらす触媒の充填されない空間
の発生をなくすことができる。
Therefore, as in the above embodiment, it is possible to prevent the sinking of the catalyst layer within the reaction chamber 3 from accumulating throughout the reaction chamber 3, and to eliminate the occurrence of spaces in which the catalyst is not filled, which would lead to fluidization of the catalyst. .

かくして、再生室16内に流入する原料ガス中に改質触
媒5の破片や粉が混入する可能性がなくなり、改質触媒
5の破片や粉が下流に流れ出て、これらが生成ガス流通
室12の室壁に付着し、あるいは装置外の下流の配管、
弁、機器類等に付着して燃料改質プロセスに支障が生じ
るのを防止することができる。
In this way, there is no possibility that fragments and powder of the reforming catalyst 5 will be mixed into the raw material gas flowing into the regeneration chamber 16, and the fragments and powder of the reforming catalyst 5 will flow downstream and be transferred to the product gas distribution chamber 12. adhering to the chamber wall or downstream piping outside the equipment,
It is possible to prevent the fuel from adhering to valves, equipment, etc. and causing problems in the fuel reforming process.

〔発明の効果〕〔Effect of the invention〕

J1″つ 以上の説明から明らかな戸に、本発明は運転1l− =12− 中に熱膨張により反応室の体積が広がったとしても、反
応室が複数の領域に区画されているので、触媒層の沈み
込みが個々の領域で発生するのみであり、分散効果によ
り反応室内で改質触媒の流、動を生じるような改質触媒
の充填されない空間ができることはない。したがって、
本発明によれば改質触媒に割れが生じ、粉化が進む等の
不都合を引き起こすことがなく、燃料改質装置を長期に
わたり安定した性能を保つことができるという効果を奏
する。
It is clear from the above description that even if the volume of the reaction chamber expands due to thermal expansion during operation, the reaction chamber is divided into a plurality of regions, so the catalyst The sinking of the layer only occurs in individual regions, and there is no space unfilled with the reforming catalyst that would cause the flow or movement of the reforming catalyst in the reaction chamber due to the dispersion effect.
According to the present invention, problems such as cracking of the reforming catalyst and progress of pulverization do not occur, and stable performance of the fuel reformer can be maintained over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による燃料改質装置の一実施例を示す断
面図、第2図はより詳細に示した第1図に示される装置
の断面図、第3図は本発明の他の実施例を示す断面図、
第4図はより詳細に示した第3図に示される装置の断面
図、第5図は従来の燃料改質装置を示す断面図である。 1・・・容器       2・・・反応管2a・・・
外管       2b・・・内管3・・・反応室  
    4a・・・上部多孔板4b・・・下部多孔板 6・・・断熱ギャップ 20a、 22a・・・透孔 5・・・改質触媒 20・・・平板 22・・・ねじれ板
FIG. 1 is a cross-sectional view showing one embodiment of a fuel reformer according to the present invention, FIG. 2 is a cross-sectional view of the device shown in FIG. 1 in more detail, and FIG. A cross-sectional view showing an example,
FIG. 4 is a sectional view of the apparatus shown in FIG. 3 in more detail, and FIG. 5 is a sectional view of a conventional fuel reformer. 1... Container 2... Reaction tube 2a...
Outer tube 2b...Inner tube 3...Reaction chamber
4a... Upper porous plate 4b... Lower porous plate 6... Insulating gap 20a, 22a... Through hole 5... Reforming catalyst 20... Flat plate 22... Twisted plate

Claims (1)

【特許請求の範囲】[Claims] (1)中空の容器と、この容器内に燃焼ガスを供給する
バーナと、上記容器内に鉛直に配設されると共に外管と
内管とを同心に配置して二重管に構成されかつ頂部にキ
ャップを備える反応管と、上記外管と上記内管との間に
形成された反応室と、この反応室内に充填された改質触
媒と、この改質触媒が上方に飛散しないように該反応室
の上部を覆う上部多孔板と、上記改質触媒が下方に落下
しないように該反応室の下部を覆う下部多孔板とを備え
、上記容器内に供給され上記反応室内を上昇する過程で
上記燃焼ガスとの熱交換により改質される原料ガスを、
上記反応管内の上端部にて反転させて、上記内管の内部
を降下する間にその保有する熱を、上記反応室内を上昇
する原料ガスへ回収させるようにした燃料改質装置にお
いて、上記反応室内にて個々の領域が予め決められた量
の上記改質触媒を保有するように該反応室内を複数の領
域に区分する多数の透孔を有する区画部材を設けたこと
を特徴とする燃料改質装置。
(1) A hollow container, a burner for supplying combustion gas into the container, arranged vertically in the container, and configured into a double pipe with an outer tube and an inner tube arranged concentrically; A reaction tube provided with a cap at the top, a reaction chamber formed between the outer tube and the inner tube, a reforming catalyst filled in the reaction chamber, and a method to prevent the reforming catalyst from scattering upward. A process in which the reforming catalyst is supplied into the container and ascends within the reaction chamber, comprising an upper perforated plate that covers the upper part of the reaction chamber and a lower perforated plate that covers the lower part of the reaction chamber to prevent the reforming catalyst from falling downward. The raw material gas that is reformed by heat exchange with the above combustion gas is
In the fuel reformer, the reaction tube is inverted at the upper end of the inner tube so that the heat retained while descending inside the inner tube is recovered to the raw material gas rising in the reaction chamber. A fuel reformer characterized in that a partitioning member having a large number of through holes is provided to divide the inside of the reaction chamber into a plurality of regions so that each region within the room holds a predetermined amount of the reforming catalyst. quality equipment.
JP3142090A 1990-02-14 1990-02-14 Fuel reforming apparatus Pending JPH03238036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3142090A JPH03238036A (en) 1990-02-14 1990-02-14 Fuel reforming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3142090A JPH03238036A (en) 1990-02-14 1990-02-14 Fuel reforming apparatus

Publications (1)

Publication Number Publication Date
JPH03238036A true JPH03238036A (en) 1991-10-23

Family

ID=12330769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3142090A Pending JPH03238036A (en) 1990-02-14 1990-02-14 Fuel reforming apparatus

Country Status (1)

Country Link
JP (1) JPH03238036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015850A1 (en) * 1994-11-17 1996-05-30 International Fuel Cells Corporation Catalytic reactor designed to reduce catalyst slumping and crushing
CN100435926C (en) * 2006-11-03 2008-11-26 厦门大学 Multiple molecule contacting catalytic reaction apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015850A1 (en) * 1994-11-17 1996-05-30 International Fuel Cells Corporation Catalytic reactor designed to reduce catalyst slumping and crushing
CN100435926C (en) * 2006-11-03 2008-11-26 厦门大学 Multiple molecule contacting catalytic reaction apparatus and method

Similar Documents

Publication Publication Date Title
RU2673527C2 (en) Steam reforming
US3531263A (en) Integrated reformer unit
CN100563810C (en) Steam reformation
AU655395B2 (en) Lined reformer tubes for high pressure reformer reactors
KR20160130789A (en) Catalyst arrangement
JP2006514909A (en) Fuel conversion reactor
CA2774566C (en) Tubular reactor with jet impingement heat transfer
US20110194991A1 (en) Tubular Reactor With Jet Impingement Heat Transfer
CA2582457A1 (en) Apparatus and method for preferential oxidation of carbon monoxide
JPH03238036A (en) Fuel reforming apparatus
RU2286308C2 (en) Radial type device for production of the synthesis gas
JPH03238037A (en) Fuel reforming apparatus
KR101831507B1 (en) Self heat supply dehydrogenation reactor for inducing isothermal reaction
JP4147521B2 (en) Self-oxidation internal heating type reforming method and apparatus
JPH06219704A (en) Reformer
JPH08301602A (en) Fuel reformer
JP2567055B2 (en) Fuel reformer
JPH03106434A (en) Fuel reforming apparatus
US6667014B1 (en) Catalytic reactor and catalyst configuration designed to reduce catalyst slumping and crushing
JPH07223801A (en) Fuel-reforming device
JPH05305229A (en) Reformer
KR102623247B1 (en) Steam reforming catalyst reactor
JP4574243B2 (en) Catalyst packing structure
BR112018068641B1 (en) REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS
JPS59102804A (en) Device for modifying fuel