JPH03237088A - Method for growing single crystal - Google Patents

Method for growing single crystal

Info

Publication number
JPH03237088A
JPH03237088A JP3193290A JP3193290A JPH03237088A JP H03237088 A JPH03237088 A JP H03237088A JP 3193290 A JP3193290 A JP 3193290A JP 3193290 A JP3193290 A JP 3193290A JP H03237088 A JPH03237088 A JP H03237088A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
crucible
semi
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3193290A
Other languages
Japanese (ja)
Other versions
JP2719673B2 (en
Inventor
Kenji Kohiro
健司 小廣
Osamu Oda
修 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12344747&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03237088(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP3193290A priority Critical patent/JP2719673B2/en
Publication of JPH03237088A publication Critical patent/JPH03237088A/en
Application granted granted Critical
Publication of JP2719673B2 publication Critical patent/JP2719673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a single crystal contg. S or Zn, low in dislocation density and high in single crystal conversion ratio when a phosphorus vapor pressure is exerted in a semi-closed vessel covering a crucible to grow an InP single crystal by the liquid encapsulation Czochralski method (LEC method) by specify ing the phosphorus vapor pressure, temp. gradient in an encapsulating medium and temp. of a volatile element feed part. CONSTITUTION:A specified amt. of an InP polycrystal and In2S3 as the additive are charged into a crucible 2, an encapsulating medium is placed thereon, and a heater 7 is controlled so that the vertical temp. gradient of the medium is adjusted to 5 to 50 deg.C/cm. A high-pressure vessel 1 is filled with high-pressure gaseous N2, the vapor feed part is held at 300-700 deg.C by an auxiliary heater 10, and the phosphorus vapor pressure in the closed vessels 6 and 8 supplied by the feed part is controlled to 0.01-4atm. An InP single crystal is grown by LEC method using a lifting shaft 5. The desired InP single crystal contg. S or Zn is obtained by this method with the relatively simple device.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はInP単結晶の育成技術に関し、特にイオウも
しくは亜鉛をドープしたInP単結晶を液体封止チョク
ラルスキー法(以下、LEC法と称する)により製造す
る場合に利用して効果のある技術に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a technique for growing an InP single crystal, and in particular, a technique for growing an InP single crystal doped with sulfur or zinc using the liquid-enclosed Czochralski method (hereinafter referred to as LEC method). ) relates to techniques that are effective when used in manufacturing.

[従来の技術] InP単結晶の育成法の一つにLEC法がある。[Conventional technology] One of the methods for growing InP single crystals is the LEC method.

LEC法によりInP単結晶を育成する場合、温度勾配
が小さいと、液体封止剤の表面温度が高くなりすぎて結
晶引上げ中に封止剤上にさらされた単結晶の表面が分解
し、はなはだしくは溶解が始まり引上げができなくなる
。そのため、LEC法によるInP単結晶の育成では結
晶軸方向の温度勾配を大きくしなくてはならなかった。
When growing InP single crystals by the LEC method, if the temperature gradient is small, the surface temperature of the liquid encapsulant becomes too high, causing the surface of the single crystal exposed to the encapsulant during crystal pulling to decompose, causing significant damage. begins to melt and cannot be pulled up. Therefore, when growing an InP single crystal using the LEC method, it is necessary to increase the temperature gradient in the direction of the crystal axis.

しかし、逆に温度勾配が大きすぎると、結晶内の熱応力
が大きくなり、EPD (転位密度)が増加するという
問題が生じる。
However, if the temperature gradient is too large, on the other hand, the problem arises that thermal stress within the crystal becomes large and EPD (dislocation density) increases.

このように、従来のLEC法によるInP単結晶の育成
においては、温度勾配の制御で単結晶化と低EPD化の
両方の要求を同時に遠戚することができなかった。
As described above, in growing InP single crystals by the conventional LEC method, it has not been possible to simultaneously meet the demands for single crystallization and low EPD by controlling the temperature gradient.

このような問題点を解決する方法として最近では、蒸気
圧制御法が注目され、蒸気圧制御で単結晶化率を高くし
かつEPDを低くするため様々な技術が提案されている
(例えば■特開昭60−11278号、■特開昭6C)
−11299号、■特開昭63−274690号等)。
Recently, vapor pressure control methods have been attracting attention as a method to solve these problems, and various techniques have been proposed to increase the single crystallization rate and lower the EPD by controlling the vapor pressure (for example, Publication No. 60-11278, ■Japanese Patent Publication No. 6C)
-11299, JP-A No. 63-274690, etc.).

[発明が解決しようとする問題点] 上記従来技術のうちのや■の発明では、容器内を高圧に
するため引上げ軸やるつぼ回転軸を封止剤で封止するな
どして容器を密閉構造にしているので、装置および作業
が複雑になり、はなはだしくは育成ごとに密閉容器の一
部を破壊しなければならなくなるという欠点がある。
[Problems to be Solved by the Invention] Of the above-mentioned conventional techniques, the invention of No. This has the disadvantage that the equipment and work become complicated, and that a part of the closed container must be destroyed each time the plant is grown.

また■の発明では内側容器内の最低温度を700℃を超
えるように保持しているが、これでは赤リンの蒸気圧が
100気圧を超えてしまう。それでは、容器内に仕込ん
だ赤リンの量でリン圧を制御したらどうかという考えが
ある。しかし、その方法では昇温中に容器内外の圧力差
が非常に大きくなって、封止剤を通してリンが容器外に
抜けることは避けられず、リン圧の制御は困難である。
Furthermore, in the invention (2), the minimum temperature inside the inner container is maintained at over 700°C, but this causes the vapor pressure of red phosphorus to exceed 100 atm. Then, the idea is to control the phosphorus pressure by the amount of red phosphorus charged in the container. However, with this method, the pressure difference between the inside and outside of the container becomes extremely large during temperature rise, and phosphorus inevitably escapes from the container through the sealant, making it difficult to control the phosphorus pressure.

一方、■の発明では上記のようなことは起らないが、液
体封止剤中の温度勾配が]、 OO℃/ cm以下では
低転位化の効果が得られない。特にアンドープやFeド
ープ、SnドープInPでは殆ど効果はなく、不純物硬
化作用を持つSドープやZnドープInPでも温度勾配
が90℃/ cm以下でなければ効果がない。
On the other hand, in the invention (2), although the above does not occur, the effect of lowering dislocations cannot be obtained if the temperature gradient in the liquid sealant is below OO°C/cm. In particular, undoped, Fe-doped, or Sn-doped InP has almost no effect, and even S-doped or Zn-doped InP, which has an impurity hardening effect, is not effective unless the temperature gradient is 90° C./cm or less.

ところで、上記したように、イオウや亜鉛を含むInP
単結晶では、不純物硬化作用を利用して、転位密度を低
くすることが可能である。しかし、直径2インチのIn
P単結晶において平均EPDを500cm−”以下とす
るには、キャリア濃度が(6〜7) X 10”cm−
’以上になるまでドーパント(不純物)を注入しなけれ
ばならない。このようにキャリア濃度の高い単結晶にあ
っては、デバ− イスを製造する際に基板上にエピタキシャル成長を行な
うと、結晶中のドーパントがエピタキシャル層中に拡散
して抵抗率が変化してしまうという問題を生じる。
By the way, as mentioned above, InP containing sulfur and zinc
In single crystals, it is possible to lower the dislocation density by utilizing the hardening effect of impurities. However, the 2-inch diameter In
In order to make the average EPD 500 cm-" or less in a P single crystal, the carrier concentration should be (6 to 7) x 10" cm-
Dopants (impurities) must be implanted until the In a single crystal with such a high carrier concentration, when epitaxial growth is performed on a substrate during device manufacturing, the dopant in the crystal diffuses into the epitaxial layer, causing a change in resistivity. cause problems.

この発明は、上記のような問題点を解決すべくなされた
もので、その目的とするところは、比較的簡単な装置を
用いて、しかも装置の一部を破壊したり、ドーパント量
を増加させることなく、転位密度が低くかつ単結晶化率
の高いSまたはZn含有InP単結晶を工業的に製造で
きるような結晶製造技術を提供することにある。
This invention was made to solve the above-mentioned problems, and its purpose is to destroy a part of the device or increase the amount of dopant using a relatively simple device. It is an object of the present invention to provide a crystal manufacturing technique that can industrially manufacture an S- or Zn-containing InP single crystal with a low dislocation density and a high single crystallization rate.

[問題点を解決するための手段] 本出願人は、先に上記と同一の目的を遠戚するため、L
EC法によりイオウもしくは亜鉛を含むInP単結晶を
育成するにあたり、上記るつぼの周囲を、少なくとも結
晶引上げ軸が貫通する部位に上記引上げ軸と嵌合する円
筒部が形成されてなる半密閉型容器で覆うとともに、上
記半密閉型容器には、引上げ軸の隙間から流出する揮発
性元素の蒸気の減少分を補給する蒸気補給手段を接続し
、該蒸気補給手段によって上記半密閉型容器内に0゜0
1atm以上4atm以下のリン蒸気圧を加え、かつ液
体封止剤の鉛直方向温度勾配を50℃/cm以上90℃
/ cm以下に制御して結晶の引上げを行なうことを特
徴とする発明を提案したく特願平1−54000号)。
[Means for solving the problem] The applicant previously proposed that L.
When growing an InP single crystal containing sulfur or zinc by the EC method, the crucible is surrounded by a semi-closed container in which a cylindrical part that fits the crystal pulling shaft is formed at least in a portion where the crystal pulling shaft passes through. At the same time, the semi-closed container is connected to a steam replenishing means for replenishing the reduced amount of volatile element vapor flowing out from the gap between the pulling shafts, and the vapor replenishing means causes the semi-closed container to reach 0°. 0
Apply a phosphorus vapor pressure of 1 atm or more and 4 atm or less, and increase the vertical temperature gradient of the liquid sealant to 50°C/cm or more and 90°C
(Japanese Patent Application No. 1-54000).

この先願発明で液体封止剤の鉛直方向温度勾配を50℃
/ am以上90℃/ cm以下に制御しているのは、
温度勾配が50℃/ cm未満になると双晶の発生する
確率が高くなるからである。本発明者は、双晶の発生原
因について考察した結果、固液界面における温度の揺ら
ぎが原因ではないかと考えた。
This prior invention reduces the vertical temperature gradient of the liquid sealant to 50°C.
/ am or more and 90°C/cm or less.
This is because when the temperature gradient is less than 50° C./cm, the probability of twin crystals occurring increases. As a result of considering the cause of twin crystal formation, the inventors of the present invention considered that temperature fluctuations at the solid-liquid interface may be the cause.

従って、この温度揺らぎを非常に小さく抑えることがで
きれば、温度勾配を50℃/ cm未満にしても双晶の
発生を抑制することができると考えられる。例えば特願
平1−199203号の発明において開示されているよ
うに熱遮蔽板を内側容器内に設置することで双晶の発生
を抑えることができるのは、その証左である。すなわち
、熱遮蔽板がガス対流を抑えているため、温度の揺らぎ
を減少でき、その結果、双晶の発生を抑えることができ
ると考えられる。
Therefore, if this temperature fluctuation can be suppressed to a very low level, it is considered possible to suppress the generation of twins even if the temperature gradient is less than 50° C./cm. For example, the fact that the generation of twins can be suppressed by installing a heat shielding plate in the inner container as disclosed in the invention of Japanese Patent Application No. 1-199203 is proof of this. That is, since the heat shield plate suppresses gas convection, it is possible to reduce temperature fluctuations, and as a result, it is considered that the generation of twins can be suppressed.

また、内側容器の下部の温度が低い方がガス対流による
温度揺らぎが小さくなり、特に内側容器内の最低温度部
である蒸気補給部の温度が700℃以下では双晶を誘発
するほどではないことが分かってきた。このような考え
をもとに我々はつぎの発明に至った。
Additionally, the lower the temperature in the lower part of the inner container, the smaller the temperature fluctuations due to gas convection, and especially if the temperature in the steam replenishment section, which is the lowest temperature part in the inner container, is below 700 degrees Celsius, it will not be enough to induce twins. I've come to understand. Based on this idea, we came up with the following invention.

すなわち、LEC法によりイオウもしくは亜鉛を含むI
nP単結晶を育成するにあたり、上記るつぼの周囲を、
少なくとも結晶引上げ軸が貫通ずる部位に上記引上げ軸
と嵌合する円筒部が形成されてなる半密閉容器で覆うと
ともに、上記半密閉型容器には、引上げ軸の隙間から流
出する蒸気補給手段を接続し、該蒸気補給手段によって
上記半密閉型容器内に0.01atm以上4aum以下
のリン蒸気圧を加え、かつ液体封止剤の鉛直方向温度勾
配を5℃/ cm以上50℃/ cm未満に、また上記
蒸気補給部の温度を300℃以上700℃以下に制御し
て結晶の引上げを行なうようにする。
That is, I containing sulfur or zinc by the LEC method
When growing an nP single crystal, the area around the crucible is
At least the part through which the crystal pulling shaft passes is covered with a semi-closed container formed with a cylindrical part that fits into the pulling shaft, and the semi-closed container is connected to a steam replenishing means that flows out from the gap between the pulling shafts. and applying a phosphorus vapor pressure of 0.01 atm or more and 4 aum or less into the semi-closed container by the vapor replenishing means, and setting the vertical temperature gradient of the liquid sealant to 5°C/cm or more and less than 50°C/cm, Further, the temperature of the steam replenishing section is controlled to be 300° C. or more and 700° C. or less to pull the crystals.

なお、ここで、温度勾配とは融液界面と封止剤表面の温
度差を封止剤の厚さで除した値である。
Note that here, the temperature gradient is a value obtained by dividing the temperature difference between the melt interface and the surface of the sealant by the thickness of the sealant.

[作用] 上記した手段によれば、半密閉容器内に印加されたリン
蒸気圧によって封止剤上にさらされた単結晶の表面から
蒸気圧の高いリンが蒸発するのを防止できるとともに、
温度勾配が高すぎないため転位の増殖を抑えることがで
き、また温度勾配が小さくかつ蒸気補給部の温度を70
0℃以下としているのでガス対流による温度の揺らぎを
抑え、双晶の発生を防止できる。
[Function] According to the above means, it is possible to prevent phosphorus having a high vapor pressure from evaporating from the surface of the single crystal exposed on the sealant due to the phosphorus vapor pressure applied in the semi-closed container, and
Since the temperature gradient is not too high, it is possible to suppress the proliferation of dislocations.
Since the temperature is 0° C. or lower, fluctuations in temperature due to gas convection can be suppressed and generation of twins can be prevented.

なお、液体封止剤の鉛直方向温度勾配が5℃/cm未満
では封止剤上に晒された単結晶の表面からのリンの蒸発
を防止できなくなり、蒸気補給部の温度が300℃未満
では所定のリン蒸気圧が確保できなくなる。
Note that if the vertical temperature gradient of the liquid sealant is less than 5°C/cm, evaporation of phosphorus from the surface of the single crystal exposed to the sealant cannot be prevented, and if the temperature of the vapor supply section is less than 300°C, A predetermined phosphorus vapor pressure cannot be maintained.

しかも、リン蒸気圧を4 atm以下としたので弓上げ
軸が貫通する部位に引上げ軸と嵌合する円筒部を有する
構造簡単でかつ破壊せずに取外し可能な半密閉型容器を
用いてInP単結晶を育成でき一 =8= るようになる。
In addition, since the phosphorus vapor pressure is 4 atm or less, InP can be manufactured by using a semi-closed container with a simple structure and a cylindrical part that fits into the pulling shaft in the part through which the bow lifting shaft penetrates, and which can be removed without breaking. You will be able to grow crystals.

以下、図面を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using the drawings.

[実施例] 第1図は本発明方法を実施する際に使用される単結晶成
長装置の一実施例を示す。
[Example] FIG. 1 shows an example of a single crystal growth apparatus used in carrying out the method of the present invention.

第1図において、lは不活性ガスもしくは窒素ガスによ
って加圧される高圧容器、2は高圧容器1の中央に配置
され、回転軸3によって支持されたるつぼで、このるつ
ぼ2内に原料(InP多結晶塊)とB、O,のような封
止剤4が収納される。
In FIG. 1, 1 is a high-pressure container pressurized with an inert gas or nitrogen gas, 2 is a crucible placed in the center of the high-pressure container 1 and supported by a rotating shaft 3, and a raw material (InP) is placed in the crucible 2. A polycrystalline mass) and a sealant 4 such as B, O, etc. are stored.

また、高圧容器1の上方からは、るつぼ2内に向かって
引上げ軸5が回転可能かつ上下動可能に垂下されている
Further, a pulling shaft 5 is suspended from above the high-pressure container 1 toward the inside of the crucible 2 so as to be rotatable and movable up and down.

この実施例では、上記るつぼ2の周囲にカバー部材6が
設けられ、その外側に加熱用ヒータ7が配置されている
。カバ一部材6の底壁には、るつぼを支持する回転軸3
と嵌合する円筒部6aが形成されている。また、カバ一
部材6の上部には、覆い部材8が取り付けられ、カバ一
部材6と覆い部材8とにより半密閉型容器が構成されて
いる。
In this embodiment, a cover member 6 is provided around the crucible 2, and a heating heater 7 is arranged outside the cover member 6. A rotary shaft 3 supporting the crucible is attached to the bottom wall of the cover member 6.
A cylindrical portion 6a is formed which fits into the cylindrical portion 6a. Further, a cover member 8 is attached to the upper part of the cover member 6, and the cover member 6 and the cover member 8 constitute a semi-closed container.

そして、上記覆い部材8の周囲には保温用ヒータが配置
され、覆い部材8の上端には、上記引上げ軸5と嵌合す
る円筒部8aが形成されている。
A heat-retaining heater is arranged around the cover member 8, and a cylindrical portion 8a that fits with the pulling shaft 5 is formed at the upper end of the cover member 8.

この実施例では、上記円筒部8aと引上げ軸5との隙間
および回転軸3と円筒部6aとの隙間が、その隙間の断
面積Aと円筒1116a、8aの長さLとの比A/Lが
各々0.06cm以下となるように設計しである。
In this embodiment, the gap between the cylindrical portion 8a and the pulling shaft 5 and the gap between the rotating shaft 3 and the cylindrical portion 6a are determined by a ratio A/L of the cross-sectional area A of the gap and the length L of the cylinders 1116a and 8a. It is designed so that each is 0.06 cm or less.

さらに、この実施例の装置では、カバ一部材6の底壁の
一部から下方に向かって下端が閉塞された導管6bが延
設されており、導管6bの下部周囲には補助ヒータ10
が配置されている。この導管6b内にリンのような揮発
性元素を入れ、補助ヒータ10により加熱することによ
って、その蒸気を適宜量だけカバ一部材6と覆い部材8
とで囲まれた結晶成長雰囲気となる空間内に供給できる
ようにされている。つまり、導管6bの一部と補助ヒー
タ10とにより、蒸気補給手段としてのリザーバが構成
されている。
Further, in the device of this embodiment, a conduit 6b whose lower end is closed extends downward from a part of the bottom wall of the cover member 6, and an auxiliary heater 10 is provided around the lower part of the conduit 6b.
is located. By putting a volatile element such as phosphorus into the conduit 6b and heating it with the auxiliary heater 10, an appropriate amount of the vapor is transferred to the cover member 6 and the cover member 8.
It can be supplied into a space surrounded by a crystal growth atmosphere. In other words, a portion of the conduit 6b and the auxiliary heater 10 constitute a reservoir as a steam replenishing means.

このリザーバを構成するヒータ10の温度を調節するこ
とにより、引上げ軸5と回転軸3の隙間から流出するリ
ンの蒸気量に見合った量の蒸気を発生させて補うことが
できる。これにより、るつぼ2の周囲のリン蒸気圧を、
長時間(十数時間)の結晶育成中ずっと一定に保つこと
ができる。
By adjusting the temperature of the heater 10 constituting this reservoir, it is possible to generate and compensate for the amount of phosphorus vapor commensurate with the amount of phosphorus vapor flowing out from the gap between the pulling shaft 5 and the rotating shaft 3. As a result, the phosphorus vapor pressure around crucible 2 is
It can be kept constant throughout the long period of crystal growth (more than 10 hours).

このように、リンの蒸気圧が一定に保たれると、るつぼ
内の原料融液16および成長結晶体17の表面からのリ
ンの揮散を極力防止することができる。また、本実施例
の装置は構造が簡単であるとともに、2重融液シール法
で問題となっていた軸と容器との密着が回避され、装置
を繰り返し使用できるようになり、生産性が飛躍的に向
上するとともに、融液シール部からのシール利料の滴下
による汚染が防止され、高品質の単結晶を再現性良く製
造することができる。
In this way, when the vapor pressure of phosphorus is kept constant, volatilization of phosphorus from the surfaces of the raw material melt 16 and the growing crystal 17 in the crucible can be prevented as much as possible. In addition, the device of this example has a simple structure, and avoids the problem of close contact between the shaft and container, which was a problem with the double melt seal method, making it possible to use the device repeatedly and dramatically increasing productivity. At the same time, contamination due to dripping of sealing material from the melt sealing part is prevented, and high-quality single crystals can be produced with good reproducibility.

一例として、第1図に示す単結晶引上げ装置を用いて、
SドープInP単結晶の成長を行なった。
As an example, using the single crystal pulling apparatus shown in Fig. 1,
An S-doped InP single crystal was grown.

先ず、原料としてHB法によって合成した1nP多結晶
3000gを、また添加剤としてIn。
First, 3000 g of 1nP polycrystal synthesized by the HB method was used as a raw material, and In was used as an additive.

S、0.9gをるつぼ2内に仕込み、その−ヒに封止剤
としてB2O3を700g入れた。使用したるつぼはp
BN製で、内径が6インチの大きさである。また、B2
0.中の温度勾配が44℃/ cmとなるようにヒータ
7を制御するとともに、高圧容器1内は40atmのN
2ガスで満たした。補助ヒータ10により導管6b内を
容器内で最も低い470℃とし、リザーバにより補給す
るリンの蒸気圧は2.8atmとした。そして、引上げ
軸5を1Orpmの速度で、また、るつぼ2の回転軸3
を3Orpmの速度で引」二げ軸と逆方向に回転させな
がら、10mm/hrの速さで引上げ軸5を上昇させ、
およそ14時間かけて結晶の成長を行なった。
0.9 g of S was placed in crucible 2, and 700 g of B2O3 as a sealant was placed in crucible 2. The crucible used is p
It is made of BN and has an inner diameter of 6 inches. Also, B2
0. The heater 7 is controlled so that the temperature gradient inside is 44°C/cm, and the inside of the high pressure vessel 1 is kept at 40 atm of N.
Filled with 2 gases. The inside of the conduit 6b was set at 470° C., the lowest temperature in the container, by the auxiliary heater 10, and the vapor pressure of phosphorus supplied from the reservoir was set to 2.8 atm. Then, the pulling shaft 5 is rotated at a speed of 1 Orpm, and the rotating shaft 3 of the crucible 2 is
The pulling shaft 5 is raised at a speed of 10 mm/hr while rotating in the opposite direction to the pulling shaft 5 at a speed of 3 Orpm,
Crystal growth took about 14 hours.

その結果、直胴部の直径80mm、長さ140mm。As a result, the diameter of the straight body is 80mm and the length is 140mm.

重量的2.4kgのInP単結晶が得られた。結晶の表
面は金属光沢を呈し、リンの分解のないことを示してい
た。比較のため容器を半密閉とせず開放系と(71、蒸
気圧を制御しないで結晶の育成を試みたが、種結晶が分
解細化し結晶成長中に重量に耐えられずに落下した。
An InP single crystal weighing 2.4 kg was obtained. The surface of the crystal had a metallic luster, indicating that there was no decomposition of phosphorus. For comparison, we tried to grow crystals in an open system (71) without controlling the vapor pressure, but the seed crystals broke down and became finer, and during crystal growth they could not withstand the weight and fell.

上記のようにして得られたSドープInP結晶]1.− 2 を引JZげ軸と直交する方向に切断し、キャリア濃度と
転位密度(EPD)を測定した。
S-doped InP crystal obtained as above]1. -2 was pulled and cut in a direction perpendicular to the JZ drawing axis, and the carrier concentration and dislocation density (EPD) were measured.

第2図はそのEPDとキャリア濃度の関係を示し、比較
のために従来のLEC法や実施例の条件の一部(温度勾
配)のみ変えて引き上げた結晶の結果も併記した。同図
において、◆印は温度勾配を120〜b EC法により育成した1−n P単結晶について測定さ
れたEPD値をプロットしたもの、また口開は温度勾配
のみ85℃/cmとし、他の条件は実施例と同一にした
方法により得られた結晶のEPD値をプロットしたもの
、さらに○印は本実施例の方法を適用して得られたIn
P単結晶について測定されたEPD値をプロットしたも
のである。第2図かられかるように本実施例を適用する
と従来よりも低いキャリア濃度でも低EPD化されてい
ることがわかる。
FIG. 2 shows the relationship between the EPD and the carrier concentration, and for comparison, the results of crystals pulled using the conventional LEC method and by changing only some of the conditions (temperature gradient) of the examples are also shown. In the same figure, the ◆ mark is a plot of the EPD value measured for a 1-n P single crystal grown by the EC method with a temperature gradient of 120~b, and the opening is set at 85°C/cm only for the temperature gradient, and the other The EPD values of the crystals obtained by the same method as in the example are plotted, and the ○ mark indicates the In obtained by applying the method of this example.
It is a plot of EPD values measured for a P single crystal. As can be seen from FIG. 2, it can be seen that when this example is applied, the EPD can be reduced even at a carrier concentration lower than that of the conventional method.

第3図はキャリア濃度6 、 5 X 10”cm−°
におけるウェーハ内EPD分布を示したものである。
Figure 3 shows a carrier concentration of 6.5 x 10"cm-°
This figure shows the EPD distribution within the wafer.

このうち同図(A)は従来のLEC法により育成された
結晶に関するもの、同図(B)は温度勾配のみ85℃/
 cmとし、他の条件は実施例と同一にした方法により
得られた結晶に関するもの、また同図(C)は本実施例
により育成された結晶に関するものである。同図におい
て、口は一辺5mmの正方形領域内における平均EPD
値が500cm以下の領域、目は同じ<EPD値が50
0〜2000cm−”以下の領域、口が2000〜50
00 cm゛以下の領域、■はEPD値が5000cm
−”を超える領域であることをそれぞれ示している。同
図より従来法、比較例、本実施例と順に温度勾配が減少
するにしたがって転位密度が5007cm−’以下の無
転位領域が増大(7ていくことがわかる。
Of these, the same figure (A) relates to a crystal grown by the conventional LEC method, and the same figure (B) shows only a temperature gradient of 85°C/
cm, and the other conditions were the same as in the example, and FIG. In the same figure, the mouth is the average EPD within a square area of 5 mm on each side.
Area where the value is 500 cm or less, eyes are the same <EPD value is 50
0-2000cm-” area below, mouth 2000-50
Area below 00 cm゛, ■ indicates EPD value of 5000 cm
-''. From the figure, as the temperature gradient decreases in the conventional method, comparative example, and present example, the dislocation-free area where the dislocation density is 5007 cm-' or less increases (7 I know what's going on.

なお、上記実施例ではイオウをドープしたInP単結晶
の製造を説明したが亜鉛を含むI n、 P単結晶の製
造にも適用でき、同様の効果が得られる。
In the above embodiment, the production of an InP single crystal doped with sulfur was explained, but the present invention can also be applied to the production of an In, P single crystal containing zinc, and similar effects can be obtained.

[発明の効果] 以上説明したごとくこの発明は、イオウもしくは亜鉛を
含む1. n P単結晶を育成するにあたり、少なくと
も結晶引上げ軸が貫通する部位に上記引上げ軸と嵌合す
る円筒部が形成されてなる半密閉型容器でるつぼの周囲
を覆うとともに、上記半密閉型容器には、引上げ軸の隙
間から流出する揮発性元素の蒸気の減少分を補給する蒸
気補給手段を接続し、該蒸気補給手段によって上記半密
閉型容器内にO,O]atm以上4 atm以下のリン
蒸気圧を加え、かつ液体封止剤の鉛直方向温度勾配を5
℃/cm以上50℃/ cm未満に、また上記蒸気補給
部の温度を300℃以上700℃以下に制御して結晶の
引上げを行なうようにしたので、半密閉容器内に印加さ
れたリン蒸気圧によって封止剤」二にさらされた単結晶
の表面からリンが蒸発するのを防止できるとともに、温
度勾配が高すぎないため転位の増殖を抑えることができ
、また温度勾配が小さくかつ蒸気補給部の温度を700
℃以下としているのでガス対流による温度の揺らぎを抑
え、双晶の発生を防止できる。その結果、転位密度が低
くかつ単結晶化率の高いSまたはZn含有InP単結晶
が得られるという効果がある。
[Effects of the Invention] As explained above, the present invention provides 1. containing sulfur or zinc. In growing the nP single crystal, the crucible is covered with a semi-closed container formed with a cylindrical part that fits with the pulling shaft at least in the portion through which the crystal pulling shaft passes, and the semi-closed container is is connected to a steam replenishment means for replenishing the reduced amount of volatile element vapor flowing out from the gap in the pulling shaft, and the steam replenishment means supplies phosphorus of at least O, O] atm and at most 4 atm into the semi-closed container. The vapor pressure is applied and the vertical temperature gradient of the liquid sealant is
℃/cm to less than 50℃/cm, and the temperature of the steam supply section was controlled to 300℃ to 700℃ to pull the crystals, so the phosphorus vapor pressure applied inside the semi-closed container It is possible to prevent phosphorus from evaporating from the surface of the single crystal exposed to the sealant, and because the temperature gradient is not too high, it is possible to suppress the proliferation of dislocations. temperature of 700
℃ or less, it is possible to suppress temperature fluctuations due to gas convection and prevent the occurrence of twin crystals. As a result, an S- or Zn-containing InP single crystal having a low dislocation density and a high single crystallization rate can be obtained.

しかも、蒸気補給部の温度を700℃以下に制御して半
密閉型容器内のリン蒸気圧を4 atm以下としたので
、引上げ軸が貫通する部位に引上げ軸と嵌合する円筒部
を有する構造が簡単でかつ破壊せずに取外し可能な半密
閉型容器を用いてInP単結晶を育成できるようになり
、転位密度が低くかつ単結晶化率の高いSまたはZn含
有InP単結晶を工業的に製造することが容易となると
いう効果がある。
Moreover, since the temperature of the steam replenishment part was controlled to be below 700°C and the phosphorus vapor pressure inside the semi-closed container was below 4 atm, the structure had a cylindrical part that fitted with the pulling shaft in the part through which the pulling shaft penetrated. It has become possible to grow InP single crystals using a semi-closed container that is easy to remove and can be removed without destruction, and it has become possible to industrially produce S- or Zn-containing InP single crystals with low dislocation density and high single crystallinity. This has the effect of making it easier to manufacture.

なお、上記実施例ではるつぼを支持する回転軸3と引上
げ軸5の両方の軸のまわりに、隙間断面積Aと長さLの
比A / I、が所定値以下となる円筒部6a、8aを
設けているが、少なくとも引」二げ軸5についてそのよ
うな構造としておけば容器を開閉できるので、回転軸3
に関してはB20.のような封止剤で封止する構造とす
ることも可能であり、実用上何ら差し支えない。
In the above embodiment, cylindrical portions 6a and 8a are provided around both the rotating shaft 3 that supports the crucible and the pulling shaft 5, such that the ratio A/I of the gap cross-sectional area A and the length L is equal to or less than a predetermined value. However, if at least the pull shaft 5 has such a structure, the container can be opened and closed.
Regarding B20. It is also possible to have a structure in which the structure is sealed with a sealant such as, and there is no problem in practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法に使用される単結晶成長装置の一
実施例を示す断面図、 第2図は本発明方法と従来法によりそれぞれ育5 6 成された結晶の転位密度とキャリア濃度との関係を示す
グラフ、 第3図(A)、(B)、(C)は、従来法と比較例およ
び本発明方法によりそれぞれ育成された結晶のウェーハ
面内での転位密度分布を示すEPDマツプである。 1・・・・高圧容器、2・・・・るつぼ、3・・・・回
転軸、5・・・・引上げ軸、6,8・・・・半密閉型容
器、7・・・・ヒータ、6a、、8a・・・・円筒部、
6 b、 10・・・・蒸気補給手段(リザーバ)。 (A) (B) C/C=6.5x1018Cm13 図 C/C (cm−3) (C) (110) E P D(cm−2) 口  <500 1]  500〜2000 [2000〜 5000 院狽  >5000 手続補正書 (自発)
Fig. 1 is a cross-sectional view showing an example of a single crystal growth apparatus used in the method of the present invention, and Fig. 2 shows the dislocation density and carrier concentration of crystals grown by the method of the present invention and the conventional method, respectively. 3 (A), (B), and (C) show the dislocation density distribution within the wafer plane of crystals grown by the conventional method, the comparative example, and the method of the present invention, respectively. It's a map. 1... High pressure container, 2... Crucible, 3... Rotating shaft, 5... Pulling shaft, 6, 8... Semi-closed container, 7... Heater, 6a, 8a... Cylindrical part,
6 b, 10... Steam supply means (reservoir). (A) (B) C/C=6.5x1018Cm13 Figure C/C (cm-3) (C) (110) E P D (cm-2) Mouth <500 1] 500~2000 [2000~5000 Insho >5000 Procedural amendment (voluntary)

Claims (1)

【特許請求の範囲】[Claims] (1)るつぼ内に原料と添加物および封止剤を入れてヒ
ータにより加熱、融解させ、原料融液表面を液体封止剤
で覆った状態で種結晶を接触させてこれを徐々に引き上
げることによりイオウもしくは亜鉛を含むInP単結晶
を育成するにあたり、上記るつぼの周囲を、少なくとも
結晶引上げ軸が貫通する部位に上記引上げ軸と嵌合する
円筒部が形成されてなる半密閉型容器で覆うとともに、
上記半密閉型容器には、引上げ軸の隙間から流出する揮
発性元素の蒸気の減少分を補給する蒸気補給手段を接続
し、該蒸気補給手段によって上記半密閉型容器内に0.
01atm以上4atm以下のリン蒸気圧を加え、かつ
液体封止剤の鉛直方向温度勾配を5℃/cm以上50℃
/cm未満に、また蒸気補給部の温度を300℃以上7
00℃以下に制御して結晶の引上げを行なうことを特徴
とする単結晶成長方法。
(1) Putting the raw material, additives, and sealant in a crucible, heating and melting it with a heater, and gradually pulling it up by contacting a seed crystal with the surface of the raw material melt covered with the liquid sealant. When growing an InP single crystal containing sulfur or zinc, the crucible is surrounded by a semi-closed container in which a cylindrical part that fits the crystal pulling shaft is formed at least in the part through which the crystal pulling shaft passes. ,
The semi-closed container is connected to a steam replenishing means for replenishing the reduced amount of volatile element vapor flowing out from the gap between the pulling shafts, and the vapor replenishing means fills the semi-closed container with zero.
Apply a phosphorus vapor pressure of 01 atm or more and 4 atm or less, and set the vertical temperature gradient of the liquid sealant to 5°C/cm or more and 50°C.
/cm, and the temperature of the steam supply section to 300℃ or higher7
1. A method for growing a single crystal, characterized by pulling the crystal at a temperature of 00° C. or lower.
JP3193290A 1990-02-13 1990-02-13 Single crystal growth method Expired - Lifetime JP2719673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3193290A JP2719673B2 (en) 1990-02-13 1990-02-13 Single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3193290A JP2719673B2 (en) 1990-02-13 1990-02-13 Single crystal growth method

Publications (2)

Publication Number Publication Date
JPH03237088A true JPH03237088A (en) 1991-10-22
JP2719673B2 JP2719673B2 (en) 1998-02-25

Family

ID=12344747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3193290A Expired - Lifetime JP2719673B2 (en) 1990-02-13 1990-02-13 Single crystal growth method

Country Status (1)

Country Link
JP (1) JP2719673B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106597A1 (en) * 2003-05-07 2004-12-09 Sumitomo Electric Industries Ltd. Indium phosphide substrate, indium phosphide single crystal and process for producing them
WO2005106083A1 (en) * 2004-04-28 2005-11-10 Nippon Mining & Metals Co., Ltd. InP SINGLE CRYSTAL WAFER AND InP SINGLE CRYSTAL MANUFACTURING METHOD
USRE41551E1 (en) 1996-04-26 2010-08-24 Sumitomo Electric Industries, Ltd. Method of preparing group III-V compound semiconductor crystal
CN115198369A (en) * 2022-07-15 2022-10-18 中国电子科技集团公司第十三研究所 Device and method for indium phosphide synthesis and VGF crystal preparation
CN115198369B (en) * 2022-07-15 2024-06-11 中国电子科技集团公司第十三研究所 Device and method for indium phosphide synthesis and VGF crystal preparation

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41551E1 (en) 1996-04-26 2010-08-24 Sumitomo Electric Industries, Ltd. Method of preparing group III-V compound semiconductor crystal
JPWO2004106597A1 (en) * 2003-05-07 2006-07-20 住友電気工業株式会社 Indium phosphide substrate, indium phosphide single crystal, and manufacturing method thereof
EP1634981A4 (en) * 2003-05-07 2011-09-07 Sumitomo Electric Industries Indium phosphide substrate, indium phosphide single crystal and process for producing them
WO2004106597A1 (en) * 2003-05-07 2004-12-09 Sumitomo Electric Industries Ltd. Indium phosphide substrate, indium phosphide single crystal and process for producing them
CN100378257C (en) * 2003-05-07 2008-04-02 住友电气工业株式会社 Indium phosphide substrate, indium phosphide single crystal and process for producing them
US7442355B2 (en) 2003-05-07 2008-10-28 Sumitomo Electric Industries, Ltd. Indium phosphide substrate and indium phosphide monocrystal and method of manufacturing thereof
JP2015129091A (en) * 2003-05-07 2015-07-16 住友電気工業株式会社 indium phosphide substrate and indium phosphide crystal
KR101030099B1 (en) * 2003-05-07 2011-04-20 스미토모덴키고교가부시키가이샤 Indium phosphide substrate, indium phosphide single crystal and process for producing them
EP1634981A1 (en) * 2003-05-07 2006-03-15 Sumitomo Electric Industries, Ltd. Indium phosphide substrate, indium phosphide single crystal and process for producing them
JP2012236770A (en) * 2003-05-07 2012-12-06 Sumitomo Electric Ind Ltd Indium phosphide substrate, and indium phosphide crystal
JP5233070B2 (en) * 2003-05-07 2013-07-10 住友電気工業株式会社 Indium phosphide substrate, indium phosphide single crystal, and manufacturing method thereof
US8815010B2 (en) 2004-04-28 2014-08-26 Nippon Mining & Metals Co., Ltd. InP single crystal wafer and method for producing InP single crystal
WO2005106083A1 (en) * 2004-04-28 2005-11-10 Nippon Mining & Metals Co., Ltd. InP SINGLE CRYSTAL WAFER AND InP SINGLE CRYSTAL MANUFACTURING METHOD
CN115198369A (en) * 2022-07-15 2022-10-18 中国电子科技集团公司第十三研究所 Device and method for indium phosphide synthesis and VGF crystal preparation
CN115198369B (en) * 2022-07-15 2024-06-11 中国电子科技集团公司第十三研究所 Device and method for indium phosphide synthesis and VGF crystal preparation

Also Published As

Publication number Publication date
JP2719673B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
USRE41551E1 (en) Method of preparing group III-V compound semiconductor crystal
CN103958746A (en) Method for growing beta-ga2o3 single crystal
EP0162467B1 (en) Device for growing single crystals of dissociative compounds
JP4966007B2 (en) InP single crystal wafer and method of manufacturing InP single crystal
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JPH03237088A (en) Method for growing single crystal
JPH10259100A (en) Production of garium-arsenic single crystal
EP0174060B1 (en) Method for growing a single crystal
JPH1087392A (en) Production of compound semiconductor single crystal
JPH0365593A (en) Single crystal growing apparatus
JP4344021B2 (en) Method for producing InP single crystal
JP3831913B2 (en) Method for producing compound semiconductor single crystal
JP2855408B2 (en) Single crystal growth equipment
JP3945073B2 (en) Single crystal manufacturing method
JPH02233588A (en) Growth of single crystal
JP2719672B2 (en) Single crystal growth method
JP2576239B2 (en) Compound semiconductor crystal growth equipment
JP2002234792A (en) Method of producing single crystal
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JPH06102588B2 (en) Method for growing compound semiconductor crystal
JPH03193689A (en) Production of compound semiconductor crystal
JPH0873294A (en) Apparatus for growing single crystal
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JPS61158896A (en) Method for producing compound semiconductor single crystal and apparatus therefor