JPH03237059A - Superplastic deformable zirconium oxide ceramics having high strength - Google Patents

Superplastic deformable zirconium oxide ceramics having high strength

Info

Publication number
JPH03237059A
JPH03237059A JP2031960A JP3196090A JPH03237059A JP H03237059 A JPH03237059 A JP H03237059A JP 2031960 A JP2031960 A JP 2031960A JP 3196090 A JP3196090 A JP 3196090A JP H03237059 A JPH03237059 A JP H03237059A
Authority
JP
Japan
Prior art keywords
zirconium oxide
ceramics
stabilized
high strength
superplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2031960A
Other languages
Japanese (ja)
Inventor
Taketo Sakuma
佐久間 健人
Yuichi Yoshizawa
吉沢 友一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2031960A priority Critical patent/JPH03237059A/en
Publication of JPH03237059A publication Critical patent/JPH03237059A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide zirconium oxide ceramics having high strength and capable of superplastic deformation by providing a structure which is composed essentially of a dispersed phase consisting of fine stabilized tetragonal zirconium oxide and in which a binding phase as the balance is composed of small amounts of silicon oxide-base compound. CONSTITUTION:A mixture is prepared by mixing 99.5-93wt.% of (A) stabilized tertragonal zirconium oxide stabilized by incorporating stabilizing metal oxide, such as Y2O3 and MgO, and having <=0.5mum mean grain size and 0.5-7wt.% of (B) silicon oxide-base compound (e.g. powdered silicate glass). Subsequently, the above-mentioned mixture is press-compacted into a green compact, and this green compact is heated to a high temp. in the air and sintered. By this method, the zirconium oxide ceramics having a structure which is composed essentially of a dispersed phase consisting of the component (A) and in which a binding phase as the balance is composed of the component (B) and having high strength and superplastic deformability can be produced. This ceramics can be suitably used for the production, e.g. of structural member for automobile engine.

Description

【発明の詳細な説明】 〔産業上の利用分野) この発明は、高強度を有し、かつ超塑性変形が可能な酸
化ジルコニウム(以下Z r 02で示す)系セラミッ
クスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to zirconium oxide (hereinafter referred to as Z r 02) ceramics that have high strength and are capable of superplastic deformation.

〔従来の技術〕[Conventional technology]

従来、例えば自動車エンジンなどの内燃機関の構造部材
の製造に超塑性変形性Z r O2セラミツクスを用い
る試みがなされている。
Previously, attempts have been made to use superplastically deformable Z r O2 ceramics in the manufacture of structural members for internal combustion engines, such as automobile engines.

また、上記超塑性変形性Z r O2セラミツクスか、
例えば特開昭62−91.480号公報に記載される通
り、平均粒径: 0.05〜3μmを有する部分安定化
ZrO2、すなわちY2O3,MgO,CaOあるいは
Ce O2などの安定化金属酸化物を含有させることに
より正方晶と立法晶か共存した組織としたZ r O2
で構成されていることも知られている。
Moreover, the above-mentioned superplastic deformable Z r O2 ceramics,
For example, as described in JP-A No. 62-91.480, partially stabilized ZrO2 having an average particle size of 0.05 to 3 μm, that is, a stabilized metal oxide such as Y2O3, MgO, CaO or CeO2, is used. By including Z r O2, a structure in which tetragonal crystal and cubic crystal coexist was created.
It is also known that it consists of

〔発明か解決しようとする課題〕[Invention or problem to be solved]

一方、近年の各種機関の高性能化および高速化、さらに
省力化に伴ない、構造部材の軽量化(小型化および薄肉
化)が強く望まれ、かつその形状が複雑化する傾向にあ
るが、上記の従来超塑性変形性Z r O2セラミツク
スは、十分な強度を具備するものでないために、これら
の要求および傾向に満足な対応ができないのが現状であ
る。
On the other hand, as the performance and speed of various engines have increased in recent years, as well as labor savings, there has been a strong desire for structural members to be lighter (smaller and thinner), and their shapes are becoming more complex. The conventional superplastically deformable Z r O2 ceramics described above do not have sufficient strength, and therefore cannot satisfactorily meet these demands and trends.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、高強度
を有し、かつ塑性変形性にもすぐれたセラミックスを開
発すべく、特にZ r 02セラミツクスに着目し研究
を行なった結果、原料粉末として、Y  OMgO,C
ab、あるいはCe O2な23″ どの安定化金属酸化物を1〜16IIIOρ%の範囲内
の所定の割合で含有させて結晶形を正方晶とすると共に
、いずれも平均粒径で0.1即以下に微細化した安定化
正方晶Z r O2粉末および酸化けい素(以下S I
 O2で示す)県北合物粉末、望ましくはけい酸塩ガラ
ス粉末を用い、これら両粉末を所定の割合に配合し、通
常の条件で、混合し、圧粉体に成形し、焼結すると、焼
結時に安定化正方晶Z r O2中に含有する安定化金
属酸化物がSiO基化合物中に拡散し、かつS t 0
2基化合物は安定化正方晶Z r 02に対するぬれ性
にもすぐれているので、すぐれた焼結性を示し、さらに
SiO県北合物には安定化正方晶Z r O2の粒成長
を抑制し、かつこれによって単斜晶への変態を抑制する
作用があるので、前記安定化正方晶Z r O2の焼結
前後および焼結時の結晶構造か一貫して正方晶を維持す
る、すなわち安定化正方晶Z r O2を微細な粒径に
維持することによって焼結時の変態発生がなくなること
と含まって、この結果製造された、安定化正方晶Z r
 O2からなる分散相と、5lO2基化合物からなる結
合相とで構成されたZ r O2系セラミツクスは、き
イつめて高い強度をもつようになり、さらに結合相を構
成するS iO2基化合物は著しくすぐれた塑性変形性
を有するので、分散相を構成する安定化正方晶Zr○2
が微細であることと含まって、超塑性変形が可能である
という研究結果を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research focusing on Zr02 ceramics in order to develop ceramics with high strength and excellent plastic deformability. As a powder, Y OMgO,C
ab, or CeO2, etc., in a predetermined proportion within the range of 1 to 16IIIOρ% to make the crystal form tetragonal, and the average particle size of both is 0.1 or less. Stabilized tetragonal ZrO2 powder and silicon oxide (hereinafter referred to as S I
Using Kenhoku compound powder (denoted as O2), preferably silicate glass powder, blending these powders in a predetermined ratio, mixing under normal conditions, molding into a green compact, and sintering. During sintering, the stabilized metal oxide contained in the stabilized tetragonal Z r O2 diffuses into the SiO-based compound, and S t 0
Since the two-base compound has excellent wettability to the stabilized tetragonal Z r 02, it exhibits excellent sinterability, and furthermore, it suppresses the grain growth of the stabilized tetragonal Z r 02 in the SiO Kenhokuai compound. , and this has the effect of suppressing the transformation to monoclinic, so that the crystal structure of the stabilized tetragonal Z r O2 before and during sintering consistently maintains the tetragonal structure, that is, stabilized The resulting stabilized tetragonal Z r
ZrO2-based ceramics, which are composed of a dispersed phase consisting of O2 and a binder phase consisting of a 5lO2-based compound, have become tightly packed and have high strength. Because it has excellent plastic deformability, the stabilized tetragonal Zr○2 that constitutes the dispersed phase
The research results showed that superplastic deformation is possible, including the fact that the particles are minute.

この発明は、上記研究結果にもとづいてなされたもので
あって、 平均粒径:0.5μm以下の安定化正方晶Z r O2
からなる分散相を主体とし、残りの結合相が0.5〜7
重量%の5I02基化合物で構成された高強度を有する
超塑性女形性Z r O2系セラミツクスに特徴を有す
るものである。
This invention was made based on the above research results, and includes stabilized tetragonal Z r O2 with an average particle size of 0.5 μm or less.
The main component is a dispersed phase consisting of 0.5 to 7
It is characterized by superplastic feminoid Z r O2 ceramics having high strength and composed of 5I02 group compounds in the weight percent.

なお、この発明のセラミックスにおいて、分散相を構成
する安定化正方晶Z r 02の平均粒径を0.5坤以
下にしたのは、その平均粒径が0.5urrlを越える
と塑性変形性に低下傾向が現われるようになって高度の
超塑性変形を確保することができないばかりでなく、強
度も低下するようになるという理由によるものであり、
また結合相を構成する5IO2基化合物の含有量を0.
5〜7重量%と限定したのは、その含有量が0.5重塁
%未満では、所望の高強度を確保することができないと
共に、さらに−段の塑性変形性の向上も見られず、一方
その含有量か7重量%を越えると、焼結時における安定
化正方晶Z r O2中の安定化金属酸化物のS iO
2基化合物中への拡散が過度に進行し、この結果前記Z
 r O2中の前記安定化金属酸化物の含有量が少なく
なりすぎ、結晶形が不安定となり、セラミックス強度低
下の原因となる変態を起し易くなるという理由にもとづ
くものである。
In addition, in the ceramics of this invention, the average grain size of the stabilized tetragonal Z r 02 constituting the dispersed phase is set to 0.5 urr or less because plastic deformability occurs when the average grain size exceeds 0.5 urrl. This is because not only is it not possible to secure a high degree of superplastic deformation due to a decreasing tendency, but also the strength begins to decrease.
In addition, the content of the 5IO2 group compound constituting the bonded phase was set to 0.
The reason why it is limited to 5 to 7% by weight is that if the content is less than 0.5% by weight, the desired high strength cannot be ensured, and furthermore, no improvement in the plastic deformability of the second stage can be observed. On the other hand, if the content exceeds 7% by weight, the stabilized metal oxide SiO in the stabilized tetragonal ZrO2 during sintering
Diffusion into the two-base compound progresses excessively, and as a result, the Z
This is based on the reason that if the content of the stabilizing metal oxide in rO2 becomes too small, the crystal form becomes unstable and transformation, which causes a decrease in the strength of the ceramic, is likely to occur.

〔実 施 例〕〔Example〕

つぎに、この発明のセラミックスを実施例により具体的
に説明する。
Next, the ceramics of the present invention will be specifically explained using examples.

原料粉末として、第1表に示される平均粒径、安定化金
属酸化物含有量、および結晶形の4種のZ r O2粉
末、並びに同じく第1表に示される平均粒径および成分
組成をもった4種のけい酸塩ガラス粉末を用意し、これ
ら原料粉末を同じく第1表に示される配合割合に配合し
、ボールミル中で72時時間式混合し、乾燥した後、1
ton/cdの圧力で圧粉体にプレス成形し、ついてこ
の圧粉体を、大気中、温度:1300°Cに2時間保持
の条件で焼結することにより、4mmX4mmX100
 mmの寸法をもった抗折力(強度)測定用および7m
mX7mmX7mmの寸法をもった塑性変形性測定用の
本発明セラミックス1〜7および比較セラミックス1〜
4をそれぞれ製造した。
As raw material powders, four types of Z r O2 powders with the average particle size, stabilized metal oxide content, and crystal form shown in Table 1 were used, as well as the average particle size and component composition also shown in Table 1. Four types of silicate glass powders were prepared, these raw material powders were blended in the proportions shown in Table 1, mixed for 72 hours in a ball mill, dried, and then
By press-forming into a compact with a pressure of ton/cd, and then sintering this compact in the atmosphere at a temperature of 1300°C for 2 hours, a 4mm x 4mm x 100mm
For transverse rupture force (strength) measurement with dimensions of mm and 7 m
Ceramics 1 to 7 of the present invention and comparative ceramics 1 to 7 for measuring plastic deformability with dimensions of mX7mmX7mm
4 were produced respectively.

なお、比較セラミックス1〜4は、いずれも結合相を構
成するけい酸塩ガラスを含HLないもの、あるいはこれ
を含有してもその含有量がこの発明の範囲から高い方に
外れたものである。
In addition, Comparative Ceramics 1 to 4 all do not contain HL of silicate glass constituting the binder phase, or even if they do contain it, the content is higher than the range of the present invention. .

ついで、この結果得られた各種のセラミックスについて
、分散相を構成するZ r O2の結晶形および平均粒
径、並びに結合相を構成するけい酸塩ガラスの含有量を
測定した。
Next, for the various ceramics obtained as a result, the crystal form and average particle size of Z r O2 constituting the dispersed phase and the content of silicate glass constituting the binder phase were measured.

また、抗折力は、インストロン型試験機を用い、これに
上記の4 mm X 4 mm X 100mm+の寸
法をもった試料片を立設し、これの上下方向から110
0℃の温度に加熱した状態で0.5mm/minの速さ
で圧fして、40III11の長さまで塑性変形し、こ
の塑性変形後の試料片から3mmX4mmX40mmの
寸法をもった試験片を切り出し、これを用いて測定した
The transverse rupture strength was measured by using an Instron type testing machine, setting up the sample piece with the above dimensions of 4 mm x 4 mm x 100 mm+, and measuring 110 mm from the top and bottom of the sample piece.
Pressure f at a speed of 0.5 mm/min in a state heated to a temperature of 0 ° C. to plastically deform it to a length of 40III11, cut out a test piece with dimensions of 3 mm x 4 mm x 40 mm from this sample piece after plastic deformation, This was used for measurement.

さらに、塑性変形性試験は、同じくインストロン型試験
機を用い、上記の7mmX7mmX7m+nの司法をも
った試験片を1200℃に加熱した状態で、0.1mr
@/+ninの速さで圧下し、これに割れが発生した時
点の厚さ:tを測定することにより行ない、T/1x1
oo  (%)を求め(Tは試験前の厚さ(7mm)を
示す)、塑性変形性を評価した。これらの結果を第2表
に示した。
Furthermore, the plastic deformability test was conducted using the same Instron type testing machine, with the above 7mm x 7mm x 7m+n test piece heated to 1200°C, and heated to 0.1 mr.
This is done by rolling down at a speed of @/+nin and measuring the thickness: t at the point where cracks occur, T/1x1
oo (%) was determined (T indicates the thickness (7 mm) before the test), and the plastic deformability was evaluated. These results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

第1表および第2表に示される結果から、本発明セラミ
ックス1〜7は、いずれも結合相を構成するけい酸塩ガ
ラスを全く含有しない比較セラミックス1,2に比して
高強度を有し、かつ−段と塑性変形性にもすぐれ、超塑
性変形が可能であることを示しており、一方比較セラミ
ックス34に見られるように、結合相の含有量がこの発
明の範囲から高い方に外れると、分散相を構成するZ 
r O2中の安定化金属酸化物の結合相への拡散移動が
過度に進み、この結果Z r O2の結晶形が不安定と
なって正方晶と単斜晶の混在した状態となり、強度か低
下するようになることか明らかである。
From the results shown in Tables 1 and 2, ceramics 1 to 7 of the present invention all have higher strength than comparative ceramics 1 and 2, which do not contain any silicate glass constituting the binder phase. , and also have excellent plastic deformability, indicating that superplastic deformation is possible.On the other hand, as seen in Comparative Ceramic 34, the content of the binder phase is higher than the range of the present invention. and Z constituting the dispersed phase
The diffusion movement of the stabilized metal oxide in rO2 to the binder phase progresses excessively, and as a result, the crystal form of ZrO2 becomes unstable, resulting in a mixed state of tetragonal and monoclinic crystals, resulting in a decrease in strength. It is clear that this will become the case.

上述のように、この発明のセラミックスは、高強度と超
塑性変形性を兼ね備えているので、これを各種構造部材
の製造に適用した場合、軽量化および形状複雑化をはか
ることが可能となるなど工業上有用な特性を有するので
ある。
As mentioned above, the ceramics of this invention have both high strength and superplastic deformability, so when applied to the manufacture of various structural members, it is possible to reduce weight and create complex shapes. It has industrially useful properties.

Claims (1)

【特許請求の範囲】[Claims] (1)平均粒径:0.5μm以下の安定化正方晶酸化ジ
ルコニウムからなる分散相を主体とし、残りの結合相が
0.5〜7重量%の酸化けい素基化合物からなることを
特徴とする高強度を有する超塑性変形性酸化ジルコニウ
ム系セラミックス。
(1) Average particle size: Mainly composed of a dispersed phase consisting of stabilized tetragonal zirconium oxide with an average particle size of 0.5 μm or less, and the remaining binder phase consists of 0.5 to 7% by weight of a silicon oxide-based compound. A superplastically deformable zirconium oxide ceramic with high strength.
JP2031960A 1990-02-13 1990-02-13 Superplastic deformable zirconium oxide ceramics having high strength Pending JPH03237059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2031960A JPH03237059A (en) 1990-02-13 1990-02-13 Superplastic deformable zirconium oxide ceramics having high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2031960A JPH03237059A (en) 1990-02-13 1990-02-13 Superplastic deformable zirconium oxide ceramics having high strength

Publications (1)

Publication Number Publication Date
JPH03237059A true JPH03237059A (en) 1991-10-22

Family

ID=12345528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2031960A Pending JPH03237059A (en) 1990-02-13 1990-02-13 Superplastic deformable zirconium oxide ceramics having high strength

Country Status (1)

Country Link
JP (1) JPH03237059A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029141A1 (en) * 1994-04-22 1995-11-02 Shinagawa Refractories Co., Ltd. Zirconia sinter, process for producing the same, grinding part material, and orthodontic bracket material
CN102482162A (en) * 2009-08-21 2012-05-30 株式会社则武 Zirconia sintered body, and mixture, pre-sintered compact and pre-sintered calcined body for sintering zirconia sintered body
US8987157B2 (en) 2010-08-20 2015-03-24 Noritake Co., Limited Sintered zirconia, and composition for sintering and calcined body therefor
CN115894016A (en) * 2022-12-14 2023-04-04 圣泉(扬州)新材料科技有限公司 Preparation method of zirconia ceramic

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029141A1 (en) * 1994-04-22 1995-11-02 Shinagawa Refractories Co., Ltd. Zirconia sinter, process for producing the same, grinding part material, and orthodontic bracket material
US5656564A (en) * 1994-04-22 1997-08-12 Shinagawa Refractories Co., Ltd. Zirconia-based sinter, process for producing the same, gringing part material, and bracket material for dental correction
CN102482162A (en) * 2009-08-21 2012-05-30 株式会社则武 Zirconia sintered body, and mixture, pre-sintered compact and pre-sintered calcined body for sintering zirconia sintered body
EP2468699A1 (en) * 2009-08-21 2012-06-27 Noritake Co., Limited Zirconia sintered body, and mixture, pre-sintered compact and pre-sintered calcined body for sintering zirconia sintered body
EP2468699A4 (en) * 2009-08-21 2013-06-05 Noritake Co Ltd Zirconia sintered body, and mixture, pre-sintered compact and pre-sintered calcined body for sintering zirconia sintered body
US8877664B2 (en) 2009-08-21 2014-11-04 Noritake Co., Limited Zirconia sintered body, and mixture, pre-sintered compact and pre-sintered calcined body for sintering zirconia sintered body
US8987157B2 (en) 2010-08-20 2015-03-24 Noritake Co., Limited Sintered zirconia, and composition for sintering and calcined body therefor
CN115894016A (en) * 2022-12-14 2023-04-04 圣泉(扬州)新材料科技有限公司 Preparation method of zirconia ceramic

Similar Documents

Publication Publication Date Title
US4626518A (en) Method for manufacturing high toughness sintered bodies
US4640902A (en) Low thermal conductivity Si3 N4 /ZrO2 composite ceramics
JPH0232230B2 (en)
JPH03237059A (en) Superplastic deformable zirconium oxide ceramics having high strength
JPS6131071B2 (en)
JPH07237958A (en) High-strength porcelain and production thereof
JPS6159266B2 (en)
JPS6230666A (en) High toughenss silicon nitride sintered body and manufacture
JPS6316359B2 (en)
JPH035371A (en) Production of si3n4 sintered compact
JP2627922B2 (en) Silicon nitride sintered body
JP3180971B2 (en) Zirconia ceramics and method for producing the same
JPS59107968A (en) Manufacture of zirconia ceramics
JP2627797B2 (en) Silicon nitride sintered body for cutting tool and method for producing the same
JP3142022B2 (en) Cutting tool made of silicon nitride sintered body
JPH0585505B2 (en)
JPS6222949B2 (en)
JPH03252365A (en) Production of high-strength sintered silicon nitride compact
JPS59107966A (en) Manufacture of zirconia ceramics
JPH03275563A (en) High strength silicon nitride ceramic
JPH0687650A (en) Alumina-based sintered compact and its production
JPS6395160A (en) Antiabrasive sliding member
JPS6272559A (en) Zirconium oxide ceramic containing ferric oxide
JPS6020347B2 (en) Manufacturing method of silicon nitride sintered body
JPS62202862A (en) Zro2 sintered body and manufacture