JPH0323645B2 - - Google Patents

Info

Publication number
JPH0323645B2
JPH0323645B2 JP57177530A JP17753082A JPH0323645B2 JP H0323645 B2 JPH0323645 B2 JP H0323645B2 JP 57177530 A JP57177530 A JP 57177530A JP 17753082 A JP17753082 A JP 17753082A JP H0323645 B2 JPH0323645 B2 JP H0323645B2
Authority
JP
Japan
Prior art keywords
temperature
yarn
boiling water
crystallinity
bws
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57177530A
Other languages
Japanese (ja)
Other versions
JPS5971413A (en
Inventor
Masayuki Tani
Yoshuki Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP57177530A priority Critical patent/JPS5971413A/en
Publication of JPS5971413A publication Critical patent/JPS5971413A/en
Publication of JPH0323645B2 publication Critical patent/JPH0323645B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高ドレープ布帛用のポリエステル原
糸の製造方法に関する。 ポリエステル繊維は、優れた物理的性質を有し
ていることから衣料用に広く用いられてきた。そ
して、その衣料に用いられる布帛の風合改良のた
めに数多くの試みがなされている。布帛のドレー
プ性を改良することも、それらの試みのうち1つ
であつて、ドレープ布帛用の原糸を得る試みが提
案されている。 即ち、その1つとして、特開昭55−93832号に
記載されているように高速紡糸されたポリエステ
ルフイラメント糸をポリエステルの二次転位点温
度以下で延伸したものを用いるものがある。 但し、この方法では、高速紡糸されたポリエス
テルフイラメントの糸の結晶化度を高くすること
なく低温延伸していた。この結晶化度を高くした
ものは、低温延伸が難しく、かつ得られる糸は沸
水収縮率が低くなつて、高ドレープ布帛用の原糸
としては不適当と考えられていたので結晶化度の
低いものを用いていた。 しかしながら、ここで得られる糸には、結晶化
度が低いために、この原糸を用いた布帛を精練リ
ラツクス処理する際に、収縮斑が発生し、著しく
品位を低下させるものや、高ドレープ布帛のう
ち、強撚を施すものでは、製織性向上のための撚
止めセツトを行うと、原糸の結晶化度の低い撚糸
のため、沸水収縮率が低下し、かかる沸水収縮率
が低い糸では、高ドレープ布帛が得られないとい
う問題を有するものがあり、充分満足できるもの
ではない。 本発明者らは、かかる問題点を解消するため
に、鋭意研究の結果、従来は得るのが困難であつ
た結晶化度が高く、且つ沸水収縮率が高いという
2つの性質を同時に満足する高ドレープ布帛用の
ポリエステル原糸の製造方法を得て本発明に到達
したものである。 即ち、本発明は、ポリエチレンテレフタレート
を主たる繰返し単位とするポリエステルを紡糸後
の複屈折△nが0.03〜0.08となるよう溶融紡糸
し、該ポリエステルフイラメントを温度160℃以
上の熱処理ローラに複数回ターンさせることによ
り定長下で熱処理して該ポリエステルフイラメン
トの結晶化度を35%以上とせしめた後、温度140
℃以下で、且つ延伸倍率D・Rが 0.7EL≧D・R≧0.5EL (ELは出発原糸の切断伸度) を満足する条件で低温延伸することを特徴とする
高ドレープ布帛用ポリエステル原糸の製造方法に
ある。 以下、本発明を詳細に説明する。 本発明においては、出発原糸としては、複屈折
△nが0.03〜0.08のポリエチレンテレフタレート
を主たる繰返し単位とするポリエステル繊維を用
いる。従つて、該ポリエステル繊維が、ポリエチ
レンテレフタレートからなるホモポリマーの他
に、芳香族や脂肪族ジカルボン酸乃至グリコール
等の所謂第三成分をこれに若干添加したようなも
のでも差しつかえない。 又、複屈折△nが0.03〜0.08のものを得るに
は、高速紡糸により得るのが適当であり、紡糸速
度としては、2500m/分〜4500m/分が好ましく
例示される。 該複屈折△nが0.03未満のものは、次の熱処理
を施す際、熱流動による走行不安定や融着等を起
し、均一な品質のものが得られず好ましくない。
逆に、該複屈折△nが0.08を超えたものでは、熱
処理後、低温延伸した糸の沸水収縮率が低く、熱
応力のピーク温度における値も低いので、本発明
の目的を満足させる糸が得られない。 次に、このような出発原糸を用いて熱処理を施
す。熱処理の条件としては、温度が160℃以上で
行うことが好ましく、定長、若しくは弛緩状態で
行い、該ポリエステルフイラメントの結晶化度が
35%以上になるまで行う必要がある。 該結晶化度が35%未満のものでは、従来のもの
との区別ができず、精練リラツクスの際の収縮斑
や、撚止めセツトの際、沸水収縮率が低下してし
まう等の従来の糸が有していた欠点を改良するこ
とができない。この結晶化度が35%以上に熱処理
された糸を140℃以下の温度で延伸する。該低温
延伸の際の延伸倍率D・Rとしては、0.7EL≧
D・R≧0.5ELが好ましく例示される。但し、EL
は、出発原糸の切断伸度(倍)を示す。前期延伸
倍率D・Rが0.5EL未満の場合は、高い沸水収縮
率のものが得られず、0.7ELを超える場合には、
フイラメント切れが多くなり、毛羽が発生するの
で好ましくない。また、140℃を超える温度で延
伸をすれば、分子の高配向状態で熱が加わり、通
常の延伸糸のように沸水収縮率の低いものしか得
られず、又、次にのべる熱応力のピーク温度が
130℃を超えるものが多くなり、本発明による糸
が得られない。 かくして得られる糸は、沸水収縮率が10%以上
あり、結晶化度が35%であつて、且つ熱応力のピ
ーク温度が130℃以下であり、該ピーク温度にお
ける熱応力が少なくとも0.2g/deであるドレー
プ布帛用原糸として新規なものである。 以下、本発明の方法により得られる糸と、従来
の低温延伸法による糸との相違を説明するが、こ
の比較試験に用いられた糸の出発原糸を第1表に
示す。
The present invention relates to a method for producing polyester yarn for high drape fabrics. Polyester fibers have been widely used for clothing because of their excellent physical properties. Many attempts have been made to improve the texture of the fabrics used for clothing. Improving the drapability of fabrics is one such attempt, and attempts have been proposed to obtain yarns for drapery fabrics. One such method is to use a polyester filament yarn spun at high speed and drawn at a temperature below the secondary transition temperature of the polyester, as described in JP-A No. 55-93832. However, in this method, the polyester filament yarn spun at high speed was drawn at a low temperature without increasing the crystallinity. Threads with a high degree of crystallinity are difficult to draw at low temperatures, and the resulting yarn has a low shrinkage rate in boiling water, making it unsuitable as a yarn for high drape fabrics. I was using something. However, since the yarn obtained here has a low degree of crystallinity, when fabrics using this raw yarn are subjected to scouring relaxation treatment, shrinkage spots occur, which significantly deteriorates the quality, and high drape fabrics. Among these, when high twisting is applied, when the twist set is performed to improve weavability, the boiling water shrinkage rate decreases due to the twisted yarn with a low crystallinity of the raw yarn, and the boiling water shrinkage rate of the yarn with such low boiling water shrinkage rate decreases However, some of them have the problem of not being able to obtain high drape fabrics, and are not fully satisfactory. In order to solve these problems, the present inventors have conducted intensive research and have found a high-quality resin that simultaneously satisfies the two properties of high crystallinity and high boiling water shrinkage, which have been difficult to obtain in the past. The present invention was achieved by obtaining a method for producing polyester yarn for drape fabrics. That is, in the present invention, polyester having polyethylene terephthalate as a main repeating unit is melt-spun so that the birefringence Δn after spinning is 0.03 to 0.08, and the polyester filament is turned multiple times by a heat treatment roller at a temperature of 160°C or higher. After heating the polyester filament to a crystallinity of 35% or more at a constant length, the filament is heated at a temperature of 140%.
A polyester raw material for high drape fabric, which is characterized by being stretched at a low temperature below ℃ and under the conditions that the stretching ratio D and R satisfies the following: 0.7EL≧D・R≧0.5EL (EL is the cutting elongation of the starting yarn) It's in the method of manufacturing thread. The present invention will be explained in detail below. In the present invention, a polyester fiber having polyethylene terephthalate as a main repeating unit and having a birefringence Δn of 0.03 to 0.08 is used as the starting yarn. Therefore, in addition to the homopolymer consisting of polyethylene terephthalate, the polyester fiber may be one in which a small amount of a so-called third component such as aromatic or aliphatic dicarboxylic acid or glycol is added. Further, in order to obtain a birefringence Δn of 0.03 to 0.08, it is appropriate to obtain it by high speed spinning, and a preferable example of the spinning speed is 2500 m/min to 4500 m/min. If the birefringence Δn is less than 0.03, it is not preferable because it causes unstable running and fusion due to thermal flow during the subsequent heat treatment, making it impossible to obtain a product of uniform quality.
On the other hand, when the birefringence Δn exceeds 0.08, the boiling water shrinkage of the yarn drawn at low temperature after heat treatment is low, and the value at the peak temperature of thermal stress is also low, so that the yarn that satisfies the purpose of the present invention is I can't get it. Next, heat treatment is performed using such a starting yarn. The heat treatment is preferably carried out at a temperature of 160°C or higher, in a constant length or in a relaxed state, and the crystallinity of the polyester filament is
It is necessary to do this until it reaches 35% or more. If the crystallinity is less than 35%, it cannot be distinguished from conventional yarns, and conventional yarns may suffer from shrinkage spots during scouring and relaxing, and reduced boiling water shrinkage during twist setting. It is not possible to improve the drawbacks that it had. The thread heat-treated to have a crystallinity of 35% or more is drawn at a temperature of 140°C or less. The stretching ratio D/R during the low-temperature stretching is 0.7EL≧
A preferable example is D.R≧0.5EL. However, EL
indicates the breaking elongation (times) of the starting filament. If the initial stretch ratio D/R is less than 0.5EL, a high boiling water shrinkage rate cannot be obtained, and if it exceeds 0.7EL,
This is undesirable because it increases the amount of filament breakage and generates fuzz. In addition, if drawing is carried out at a temperature exceeding 140°C, heat is applied to the highly oriented state of the molecules, resulting in a product with only a low boiling water shrinkage rate like a normal drawn thread, and the peak of thermal stress described below. temperature
Many of the yarns have temperatures exceeding 130°C, making it impossible to obtain the yarn according to the present invention. The yarn thus obtained has a boiling water shrinkage rate of 10% or more, a crystallinity of 35%, a peak temperature of thermal stress of 130°C or less, and a thermal stress of at least 0.2 g/de at the peak temperature. This is a new yarn for drape fabrics. The differences between the yarn obtained by the method of the present invention and the yarn obtained by the conventional low-temperature drawing method will be explained below. Table 1 shows the starting fibers of the yarn used in this comparative test.

【表】 本発明方法の糸と従来の低温延伸法の糸と比較
して最も異る点は、沸水収縮率が高いにも拘ら
ず、結晶化度が高いことである。第1図は、本発
明方法の糸と従来の低温延伸法による糸について
結晶化度Xρ(%)(=横軸)と沸水収縮率BWS
(%)(=縦軸)との関係の例を示す図である。 第1図においてで示すものは、第1表に示す
出発原糸を熱処理して種々の結晶化度を有するも
のとし、次いで温度25℃延伸倍率1.4倍の条件で
低温延伸する方法によるものを示し、結晶化度が
35%以上のものは本発明方法の糸を含むものであ
る。結晶化度が35%以上のものでも、沸水収縮率
10%以上と高い糸が得られる。一方、第1図の
で示すものは、第1表に示す糸を、そのまま温度
25℃、延伸倍率1.4倍の条件で低温延伸した後、
熱処理して種々の結晶化度を有する糸とし、その
糸の沸水収縮率を測定したものである。 第1図から明らかなように従来法による糸で
は、沸水収縮率と結晶化度の両方が高いものを得
ることができなかつた。又、通常の高温延伸法に
よる糸について比較してみると、高温延伸法によ
る糸では、結晶化度が35%以上と高いものは、沸
水収縮率が10%を超えることができない。 さらに、紡糸速度が5000m/分を超えると高速
紡糸した糸では、結晶化度は35%以上と高くする
ことができるが、沸水収縮率は高々5%であつ
て、結晶化度が35%以上、沸水収縮率が10%以上
の糸を得ることはできない。 尚、本発明においていう沸水収縮率、結晶化
度、熱応力は、次の測定法により得られるもので
ある。 1 沸水収縮率(BWS) 沸騰水中に試長L(約30cm)の綛を投入し、
30分処理後、風乾させ、綛長L′を測定し、
L−L′/L×100(%)で求めた。 2 結晶化度(Xρ) n−ヘプタン−四塩化炭素系密度匂配管を用
い、25℃で常法により比重ρを測定し、結晶化
度Xρを次式により算出した。 Xρ=(0.7491−1/ρ)/0.06178 3 熱応力 カネボウエンジニアリング製の熱応力測定器
を用い試験長5cm、初荷重0.03g/de、昇温速
度150℃/分で常温から250℃まで昇温して熱応
力を測定した。 次に、本発明の方法により得られる糸が高ドレ
ープ布帛用として優れていることを説明する。 高ドレープ布帛用原糸としては、沸水収縮率が
10%以上と高いことが必要であることは、知られ
ており従来の低温延伸法による糸でも沸水収縮率
は高い。しかし、精練リラツクス処理の際、収縮
斑が発生して、問題であることは前述の通りであ
るが、この理由として、精練リラツクス処理の際
の布帛が受ける熱の影響が極めて大きく、一方、
本発明方法の糸では、結晶化度が促進されている
ので、その影響が少ないためと考えられている。
この現象を確認するために典型的に異る沸水処理
の方法により、それぞれの糸を処理し、その沸水
収縮率BWS(%)の相違を測定した。 第2図は、異る沸水処理条件による沸水収縮率
BWS(%)の関係の例を示す図であつて、縦軸に
は、昇温法により処理した沸水収縮率BWS(%)
をとり、横軸には、沸騰水に試料を投入し前期沸
水収縮率の測定法による沸水収縮率BWS(%)−
即ち、沸水投入法BWS(%)−をとつたものであ
る。昇温法による処理では、温度20℃の水に試料
を浸漬し、2.5℃/分の昇温速度で昇温し、沸騰
後は、前期沸水収縮率の測定法により沸水収縮率
BWS(%)を測定した。 尚、この測定に用いた糸は、第1表に示すポリ
エチレンテレフタレートの高配向未延伸糸を温度
180℃で定長熱処理し、次いで、温度28℃で低温
延伸したもの(本発明の糸に相当するもの)と、
該高配向未延伸糸を熱処理することなく、温度28
℃で延伸したもの(従来法による糸)を用いた。 第2図において、によるものは本発明方法の
糸による測定結果を示し、によるものは、従来
の低温延伸法による糸の測定結果を示す。又、点
1,2,3は、低温延伸の延伸倍率D・Rが1.3、
1.45、1.6の糸の測定結果を示し、一点鎖線A−
Aは昇温法BWSが同じ値を示す場合の線を示し、
該A−A線上、又はその近傍では、沸水処理の方
法により、その沸水収縮率が変化しないことを示
し、の場合がこれに該当する。 一方に示すものでは、沸水処理の方法によ
り、沸水収縮率が大巾に相違することを示してい
る。 実際の布帛の精練リラツクスにあつては、前記
沸水処理の中間的な処理条件が用いられ、且つ、
布帛が受ける熱の影響は、さらに複雑なものであ
つてそれゆえに従来の糸による布帛では収縮斑が
発生するが、本発明方法の糸の場合は、処理条件
による影響が少ないので、収縮斑が発生しない。 次に、撚セツト温度に相当する温度時間で熱処
理し(糸の巻姿は撚セツトに準ずる)、しかる後、
該糸の沸水収縮率BWS(%)を測定した。この測
定に使用した糸としては、第1表に示した高配向
未延伸糸を温度185℃で定長熱処理し、結晶化度
を41%とし、次いで、温度28℃、延伸倍率1.32倍
で低温延伸したものと、同じく該高配向未延伸糸
を熱処理することなく、該低温延伸条件で延伸し
たものとを用いた。 第3図は、撚止セツト温度と、沸水収縮率
BWS(%)の関係の例を示す図であつて、は本
発明方法の糸による測定結果を、は従来法の糸
による測定結果を示す。尚、未処理は、撚セツト
前の糸の沸水収縮率BWS(%)示す。第3図から
明らかなように、本発明による糸は、温度80℃の
撚セツトを行つても、沸水収縮率10%以上を有
し、高ドレープ布帛用に使用することができる。 第4図は、温度と熱応力の関係の例を示す図で
あつて、1,2は本発明の方法によるもの、3は
従来の低温延伸法による糸によるものを示す。即
ち、1は延伸前の熱処理温度として180℃が、2
は同じく熱処理温度として160℃がそれぞれ用い
られ、3は熱処理なしで、低温延伸した糸の熱応
力と温度の関係を示すものである。図の矢印はピ
ーク温度を示す。第4図から明らかなように、本
発明による糸は、熱応力のピーク温度における値
が、従来法の糸によるもの3に較べて高く、0.2
g/de以上を示している。かかる糸は、布帛の
精練リラツクス処理の温度の近傍で高い熱応力を
示し、強い収縮力を有する。このような強い収縮
率は、例えば織物の断面状態を第5図イから第5
図ロの状態−即ち、織物を構成する糸のクリンプ
率を大とせしめるような状態を容易に実現する。
さらに、該ピーク温度を130℃以下とすることに
より、ピーク温度が、精練リラツクス温度の近傍
となり、前記の作用・効果を最も発揮させること
ができる。さらに、前記のように強い収縮力によ
りクリンプ率を大とせしめた織物は、構成糸間の
拘束力−即ち、糸間の接圧が増大し、その風合を
硬くするが、通常、かかる織物は最終仕上の段階
で熱セツトを行うのであつて、この最終の熱セツ
トは、その温度がポリエステル織物の場合は180
℃前後で行い、この温度は本発明による糸を用い
た織物では、ピーク温度の熱応力より低い熱応力
を示す温度であつて、かかる温度で処理したもの
は、前記糸間の接圧応力を緩和させるのに有効で
あり、良好な風合と、高ドレープ性を付与するの
に効果がある。 勿論、この接圧応力緩和のためには、アルカリ
による処理を併用することは可能である。 以下、実施例について説明する。 実施例 1 紡糸速度を種々換えて、極限粘度0.65のポリエ
チレンテレフタレートを溶融紡糸し、第2表に示
した複屈折△nの未延伸糸を得、次いで第6図に
示す工程で熱処理、低温延伸した。第6図は、本
発明方法の工程の例を示す工程図であつて、未延
伸糸1を熱処理ローラ2で、定長180℃×8ター
ンの条件下で熱処理結晶化させ、次にローラ3で
25℃の室温条件下で糸をガラス転位点以下の温度
に冷却し、ローラ3と延伸ローラ4との間で温度
25℃、延伸倍率は供給未延伸糸の伸度(倍)×
0.65の倍率で延伸した。そして、その延伸糸に
2200T/mの撚を加え、75℃で撚止セツトした
後、経32本/cm、緯30本/cmの密度で平織物を製
織した。次いで100℃でリラツクスし、20%の減
量率でアルカリ減量した後130℃で染色し、170℃
でセツトして仕上げ、ドレープ性を評価した。 評価結果を第2表に合せて示す。即ち、No.1の
未延伸糸は△nが0.03未満と低く、結晶化が未発
達の為、熱処理時に流動を起し、加熱ローラ上の
走行が著しく不安定になつて、熱処理を施すこと
ができなかつた。 No.2〜No.6は本発明方法の糸で、リラツクス斑
もなく、ドレープ性良好な織物が得られた。 No.7は熱処理結晶化はしやすいが、延伸後の
BWSが5%と低く、ドレープ性は従来の普通糸
と変わらないものであつた。
[Table] The biggest difference between the yarn produced by the method of the present invention and the yarn produced by the conventional low-temperature drawing method is that the yarn has a high degree of crystallinity despite having a high shrinkage rate in boiling water. Figure 1 shows the crystallinity Xρ (%) (=horizontal axis) and boiling water shrinkage rate BWS for the yarn produced by the method of the present invention and the yarn produced by the conventional low-temperature drawing method.
(%) (=vertical axis) is a diagram showing an example of the relationship. In Fig. 1, the filaments shown in Table 1 are obtained by heat-treating the starting filaments shown in Table 1 to have various degrees of crystallinity, and then stretching them at a low temperature at a temperature of 25°C and a stretching ratio of 1.4 times. , crystallinity is
More than 35% of the yarns contain yarn produced by the method of the present invention. Boiling water shrinkage rate even for crystallinity of 35% or more
A high yarn of 10% or more can be obtained. On the other hand, in Figure 1, the yarn shown in Table 1 is heated as it is.
After low-temperature stretching at 25℃ and a stretching ratio of 1.4 times,
Threads were heat-treated to have various degrees of crystallinity, and the boiling water shrinkage rates of the threads were measured. As is clear from FIG. 1, it was not possible to obtain yarns with high boiling water shrinkage and high crystallinity using the conventional method. Furthermore, when comparing yarns produced by ordinary high-temperature drawing methods, yarns produced by high-temperature drawing methods with a high degree of crystallinity of 35% or more cannot have a boiling water shrinkage rate of more than 10%. Furthermore, when the spinning speed exceeds 5000 m/min, the crystallinity of high-speed spun yarn can be increased to 35% or more, but the boiling water shrinkage rate is at most 5%, and the crystallinity is 35% or more. , it is not possible to obtain yarn with a boiling water shrinkage rate of more than 10%. Incidentally, the boiling water shrinkage rate, crystallinity degree, and thermal stress referred to in the present invention are obtained by the following measuring method. 1 Boiling water shrinkage rate (BWS) A skein of sample length L (approximately 30 cm) is placed in boiling water,
After processing for 30 minutes, air dry and measure the flute length L′.
It was calculated as L-L'/L×100 (%). 2 Crystallinity (Xρ) Specific gravity ρ was measured by a conventional method at 25° C. using an n-heptane-carbon tetrachloride-based density tube, and crystallinity Xρ was calculated using the following formula. Xρ = (0.7491-1/ρ) / 0.06178 3 Thermal stress Using a thermal stress measuring device manufactured by Kanebo Engineering, the test length was 5 cm, the initial load was 0.03 g/de, and the temperature was raised from room temperature to 250°C at a heating rate of 150°C/min. Thermal stress was measured. Next, it will be explained that the yarn obtained by the method of the present invention is excellent for use in high drape fabrics. As yarn for high drape fabric, boiling water shrinkage rate is
It is known that a high shrinkage rate of 10% or more is required, and even yarns produced by conventional low-temperature drawing methods have a high boiling water shrinkage rate. However, as mentioned above, shrinkage spots occur during the scouring relaxation treatment, which is a problem.The reason for this is that the heat that the fabric receives during the scouring relaxation treatment has a very large effect;
It is thought that this is because the crystallinity of the yarn produced by the method of the present invention is promoted, so that its influence is small.
In order to confirm this phenomenon, each yarn was treated using different typical boiling water treatment methods, and the difference in boiling water shrinkage rate BWS (%) was measured. Figure 2 shows boiling water shrinkage rates under different boiling water treatment conditions.
It is a diagram showing an example of the relationship between BWS (%), and the vertical axis shows the boiling water shrinkage rate BWS (%) treated by the heating method.
, and the horizontal axis is the boiling water shrinkage rate BWS (%) - measured by the method of measuring the boiling water shrinkage rate in the first period by adding the sample to boiling water.
That is, it is based on the boiling water injection method BWS (%). In the treatment using the heating method, the sample is immersed in water at a temperature of 20°C, and the temperature is raised at a rate of 2.5°C/min.
BWS (%) was measured. The yarn used in this measurement was a highly oriented undrawn polyethylene terephthalate yarn shown in Table 1.
A yarn that was heat treated at 180°C for a fixed length and then stretched at a low temperature of 28°C (corresponding to the yarn of the present invention);
The highly oriented undrawn yarn is heated to a temperature of 28°C without heat treatment.
A yarn drawn at ℃ (by conventional method) was used. In FIG. 2, the graph shows the measurement results for the yarn according to the method of the present invention, and the graph shows the measurement results for the yarn according to the conventional low-temperature drawing method. In addition, at points 1, 2, and 3, the stretching ratio D/R of low-temperature stretching is 1.3,
The measurement results for yarns of 1.45 and 1.6 are shown, and the dashed line A-
A shows the line when the heating method BWS shows the same value,
On or near the A-A line, the boiling water shrinkage rate does not change depending on the boiling water treatment method, and this case applies. On the one hand, it is shown that the boiling water shrinkage rate varies widely depending on the method of boiling water treatment. In actual fabric scouring relaxation, intermediate treatment conditions of the boiling water treatment are used, and
The effect of heat on the fabric is more complex, and as a result, shrinkage spots occur in fabrics made from conventional yarns, but in the case of yarns made using the method of the present invention, shrinkage spots do not occur because they are less affected by processing conditions. Does not occur. Next, heat treatment is performed at a temperature and time corresponding to the twist set temperature (the winding shape of the yarn is similar to the twist set temperature), and after that,
The boiling water shrinkage rate BWS (%) of the yarn was measured. The yarns used in this measurement were the highly oriented undrawn yarns shown in Table 1, which were heat-treated at a constant length of 185°C to give a crystallinity of 41%, and then at a low temperature of 28°C and a stretching ratio of 1.32 times. The drawn yarn was used, and the highly oriented undrawn yarn was similarly drawn under the low-temperature stretching conditions without being heat-treated. Figure 3 shows the twist set temperature and boiling water shrinkage rate.
FIG. 3 is a diagram showing an example of the relationship between BWS (%), in which 1 shows the measurement results using yarn according to the method of the present invention, and 1 shows the measurement results using yarn according to the conventional method. In addition, "untreated" indicates the boiling water shrinkage rate BWS (%) of the yarn before twist setting. As is clear from FIG. 3, the yarn according to the present invention has a boiling water shrinkage of 10% or more even when twisted at a temperature of 80° C., and can be used for high drape fabrics. FIG. 4 is a diagram showing an example of the relationship between temperature and thermal stress, with 1 and 2 showing yarns made by the method of the present invention, and 3 showing yarns made by the conventional low-temperature drawing method. That is, 1 is 180℃ as the heat treatment temperature before stretching, 2 is
Similarly, 160°C was used as the heat treatment temperature, and 3 shows the relationship between thermal stress and temperature of the yarn drawn at low temperature without heat treatment. The arrow in the figure indicates the peak temperature. As is clear from FIG. 4, the value of the thermal stress at the peak temperature of the yarn according to the present invention is higher than that of the conventional yarn 3, which is 0.2
g/de or higher. Such yarns exhibit high thermal stress near the temperature of the fabric scouring relax treatment and have strong shrinkage forces. Such a strong shrinkage rate, for example, changes the cross-sectional state of the fabric from Figure 5 A to Figure 5.
The state shown in Figure 4, that is, the state in which the crimp rate of the threads constituting the fabric is increased can be easily achieved.
Further, by setting the peak temperature to 130°C or less, the peak temperature becomes close to the scouring relaxation temperature, and the above-mentioned functions and effects can be maximized. Furthermore, in fabrics whose crimp rate is increased by strong contraction force as described above, the binding force between the constituent yarns, that is, the contact pressure between the yarns increases, and the texture becomes hard. Heat setting is performed at the final finishing stage, and the temperature of this final heat setting is 180°C for polyester fabrics.
℃, and this temperature is a temperature at which the fabric using the yarn according to the present invention exhibits a thermal stress lower than the thermal stress at the peak temperature; It is effective for softening, and is effective for imparting a good hand and high drapability. Of course, treatment with alkali can also be used to alleviate this contact pressure stress. Examples will be described below. Example 1 Polyethylene terephthalate with an intrinsic viscosity of 0.65 was melt-spun at various spinning speeds to obtain undrawn yarns with birefringence Δn shown in Table 2, which were then heat treated and low-temperature drawn in the steps shown in FIG. did. FIG. 6 is a process diagram showing an example of the process of the method of the present invention, in which the undrawn yarn 1 is heat-treated and crystallized using a heat treatment roller 2 under conditions of a fixed length of 180°C x 8 turns, and then in
The yarn is cooled to a temperature below the glass transition point under room temperature conditions of 25°C, and the temperature is increased between the roller 3 and the drawing roller 4.
25℃, the drawing ratio is the elongation (times) of the supplied undrawn yarn x
It was stretched at a magnification of 0.65. Then, the drawn yarn
After applying a twist of 2200 T/m and setting the twist at 75°C, a plain weave was woven at a density of 32 threads/cm in warp and 30 threads/cm in weft. Next, it was relaxed at 100℃, and after alkali weight loss with a weight loss rate of 20%, it was dyed at 130℃, and then dyed at 170℃.
The fabric was set and finished, and its drapability was evaluated. The evaluation results are also shown in Table 2. In other words, the undrawn yarn of No. 1 has a low △n of less than 0.03 and crystallization is underdeveloped, so it flows during heat treatment, making the running on the heating roller extremely unstable, making it difficult to perform heat treatment. I couldn't do it. No. 2 to No. 6 were yarns produced by the method of the present invention, and fabrics with good drapability and no relaxation spots were obtained. No. 7 is easily crystallized by heat treatment, but after stretching
The BWS was as low as 5%, and the drapability was the same as that of conventional ordinary yarn.

【表】 実施例 2 紡糸速度3300m/分で、極限粘度0.65のポリエ
チレンテレフタレートを紡糸し、97デニール/36
フイラメント、伸度145%、△n0.048、比重1.35
の未延伸糸を得、第6図に示す工程で、熱処理温
度と延伸倍率を変えて延伸した。 その延伸糸を羽二重織物とジヨーゼツト織物に
してリラツクス斑とドレープ性を評価した。評価
結果を第3表に示す。尚、羽二重は300T/mの
撚を加えて、撚止セツトすることなく経34本/
cm、緯32本/cmの密度で製織し、ジヨーゼツトは
2200T/mの撚を加えて、80℃で撚止セツトし
(第3表中の撚止セツト糸のBWSはこの糸の
BWSを測定したもの)、経30本/cm、緯28本/cm
の密度で製織した。仕上はリラツクス100℃、染
色130℃、仕上セツト160℃とし、アルカ減量率は
20%とした。 No.1〜No.4は熱処理結晶化温度が160℃未満の
為、結晶化度が35%未満であり、リラツクス斑を
起し、また撚止セツトした場合にはBWSが10%
未満となつてドレープ性が得られなかつた。 No.6は熱処理後の冷延伸倍率が伸度(倍)×0.5
未満でBWSが10%に満たず、ドレープ性が得ら
れなかつた。 No.10は延伸倍率が伸度(倍)×0.76と高い為、
延伸中に毛羽・ラツプが発生した。 No.5、No.7、8、9、11は本発明方法の糸でリ
ラツクス斑もなく、良好なドレープ性織物が得ら
れた。
[Table] Example 2 Polyethylene terephthalate with an intrinsic viscosity of 0.65 was spun at a spinning speed of 3300 m/min to produce 97 denier/36
Filament, elongation 145%, △n0.048, specific gravity 1.35
An undrawn yarn was obtained and stretched at different heat treatment temperatures and stretching ratios in the process shown in FIG. The drawn yarn was made into a habutae woven fabric and a jersey woven fabric and evaluated for relaxation unevenness and drapability. The evaluation results are shown in Table 3. In addition, Habutae is twisted at 300T/m and has 34 warps/strands without twist setting.
cm, woven at a density of 32 wefts/cm, the jersey is
Add a twist of 2200T/m and set the twist at 80℃ (BWS of the twist set yarn in Table 3 is
BWS measured), longitude 30 lines/cm, latitude 28 lines/cm
Woven at a density of Finishing was relaxing at 100℃, dyeing at 130℃, finishing set at 160℃, and the alkali weight loss rate was
It was set at 20%. In No. 1 to No. 4, the heat treatment crystallization temperature is less than 160°C, so the crystallinity is less than 35%, causing relaxation unevenness, and the BWS is 10% when the twist is set.
Drapability could not be obtained. For No. 6, the cold stretching ratio after heat treatment is elongation (times) x 0.5
BWS was less than 10% and drapability could not be obtained. No.10 has a high stretching ratio of elongation (times) x 0.76, so
Fuzzing and lapping occurred during stretching. No. 5, No. 7, 8, 9, and 11 were yarns produced by the method of the present invention, and fabrics with good drapability were obtained without any relaxation spots.

【表】【table】

【表】 実施例 3 紡糸速度3350m/分で極限粘度0.64のポリエチ
レンテレフタレートを紡糸し、115デニール/36
フイラメント、伸度135%、△n=0.048の未延伸
糸を得、第6図に示した工程を適用し、熱処理結
晶化につづいて延伸温度を変えて延伸倍率1.3倍
で延伸した。即ち延伸糸1を熱処理ローラ2で定
長180℃×8ターンの条件下で熱処理結晶化させ、
次にローラ3の温度を30℃〜180℃としてローラ
3とローラ4の間で延伸した。その結果を第4表
に示す。
[Table] Example 3 Polyethylene terephthalate with an intrinsic viscosity of 0.64 was spun at a spinning speed of 3350 m/min to produce 115 denier/36
An undrawn filament yarn with an elongation of 135% and Δn=0.048 was obtained, and the process shown in FIG. 6 was applied, followed by heat treatment crystallization, and then drawing at a drawing ratio of 1.3 times by changing the drawing temperature. That is, the drawn yarn 1 is heat treated and crystallized using a heat treatment roller 2 under conditions of a constant length of 180°C x 8 turns.
Next, the temperature of roller 3 was set to 30°C to 180°C, and the film was stretched between rollers 3 and 4. The results are shown in Table 4.

【表】 No.1〜No.7は本発明による糸で結晶化度が35%
以上、BWSが10%以上で熱応力もピーク温度130
℃以下、応力は0.2g/d以上である。 No.8は熱応力ピーク温度が130℃より高く、No.
9はBWSも低いのでドレープ用原糸としては不
適当である。 尚、延伸温度に体するBWSの挙動をみると一
般には熱延伸するとBWSが低下するのに対し、
この場合、全く意外なことだが95〜115℃でBWS
はピークとなり、130℃を超えるとようやくBWS
が低下しはじめ、140℃までは十分高いBWSを維
持している。従つて、延伸温度は140℃以下、好
ましくは130℃以下、最も好ましくは115℃以下で
ある。
[Table] No.1 to No.7 are yarns according to the present invention with a crystallinity of 35%
Above, BWS is 10% or more and thermal stress peak temperature is 130
℃ or less, the stress is 0.2 g/d or more. No. 8 has a thermal stress peak temperature higher than 130℃, and No.
9 has a low BWS, so it is unsuitable as a yarn for drapes. In addition, looking at the behavior of BWS depending on the stretching temperature, while hot stretching generally reduces BWS,
In this case, quite surprisingly, BWS at 95-115℃
reaches its peak, and BWS finally reaches its peak when it exceeds 130℃.
BWS begins to decrease and remains sufficiently high up to 140℃. Therefore, the stretching temperature is below 140°C, preferably below 130°C, most preferably below 115°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法による糸と従来の低温
延伸法による糸について、結晶化度Xρと沸水収
縮率BWS(%)との関係の例を示す図、第2図
は、異る沸水処理条件による沸水収縮率BWS
(%)の関係の例を示す図、第3図は、撚止セツ
ト温度と沸水収縮率BWS(%)の関係の例を示す
図、第4図は、温度と熱応力の関係の例を示す
図、第5図は、織物を構成する糸のクリンプの状
態を示す断面図、第6図は、本発明の方法による
工程の例の示す工程図である。
Figure 1 is a diagram showing an example of the relationship between crystallinity Xρ and boiling water shrinkage BWS (%) for yarns produced by the method of the present invention and yarns produced by the conventional low-temperature drawing method. Boiling water shrinkage rate BWS depending on processing conditions
(%), Figure 3 is a diagram showing an example of the relationship between twist set temperature and boiling water shrinkage rate BWS (%), and Figure 4 is an example of the relationship between temperature and thermal stress. FIG. 5 is a sectional view showing the state of crimping of the threads constituting the fabric, and FIG. 6 is a process diagram showing an example of the process according to the method of the present invention.

Claims (1)

【特許請求の範囲】 1 ポリエチレンテレフタレートを主たる繰返し
単位とするポリエステルを紡糸後の複屈折△nが
0.03〜0.08となるよう溶融紡糸し、該ポリエステ
ルフイラメントを温度160℃以上の熱処理ローラ
に複数回ターンさせることにより定長下で熱処理
して該ポリエステルフイラメントの結晶化度を35
%以上とせしめた後、温度140℃以下で、且つ延
伸倍率D・Rが、 0.7EL≧D・R≧0.5EL (ELは出発原糸の切断伸度) の条件で低温延伸することを特徴とする高ドレー
プ布帛用ポリエステル原糸の製造方法。 2 延伸温度が115℃以下であることを特徴とす
る特許請求の範囲第2項記載の方法。
[Claims] 1. Birefringence △n after spinning polyester whose main repeating unit is polyethylene terephthalate
The degree of crystallinity of the polyester filament is reduced to 35 by melt spinning to obtain a crystallinity of 0.03 to 0.08, and heat treating the polyester filament under a fixed length by turning the polyester filament multiple times with a heat treatment roller at a temperature of 160°C or higher.
% or more, it is characterized by low-temperature stretching at a temperature of 140°C or less and a stretching ratio D/R of 0.7EL≧D/R≧0.5EL (EL is the cutting elongation of the starting yarn). A method for producing polyester yarn for high drape fabric. 2. The method according to claim 2, wherein the stretching temperature is 115°C or lower.
JP57177530A 1982-10-12 1982-10-12 Polyester yarn for high drapery cloth and its manufacture Granted JPS5971413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57177530A JPS5971413A (en) 1982-10-12 1982-10-12 Polyester yarn for high drapery cloth and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57177530A JPS5971413A (en) 1982-10-12 1982-10-12 Polyester yarn for high drapery cloth and its manufacture

Publications (2)

Publication Number Publication Date
JPS5971413A JPS5971413A (en) 1984-04-23
JPH0323645B2 true JPH0323645B2 (en) 1991-03-29

Family

ID=16032533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57177530A Granted JPS5971413A (en) 1982-10-12 1982-10-12 Polyester yarn for high drapery cloth and its manufacture

Country Status (1)

Country Link
JP (1) JPS5971413A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160420A (en) * 1985-01-08 1986-07-21 Toray Ind Inc Yarn for hard-twisting and production thereof
JP2529938B2 (en) * 1985-08-01 1996-09-04 旭化成工業株式会社 Method for producing polyester fabric
JP2823233B2 (en) * 1989-04-22 1998-11-11 旭化成工業株式会社 Polyethylene terephthalate mixed yarn

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593832A (en) * 1979-01-10 1980-07-16 Teijin Ltd Production of woven and knitted fabric
JPS575916A (en) * 1980-06-13 1982-01-12 Teijin Ltd Polyester fiber with soft touch and production of knitted and woven fabrics therefrom
JPS57199814A (en) * 1981-05-28 1982-12-07 Teijin Ltd Preparation of easily dyeable polyester fiber
JPS5854019A (en) * 1981-09-17 1983-03-30 Teijin Ltd Deeply dyeable polyester fiber and its production
JPS58220814A (en) * 1982-06-15 1983-12-22 Teijin Ltd Production of of polyester fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593832A (en) * 1979-01-10 1980-07-16 Teijin Ltd Production of woven and knitted fabric
JPS575916A (en) * 1980-06-13 1982-01-12 Teijin Ltd Polyester fiber with soft touch and production of knitted and woven fabrics therefrom
JPS57199814A (en) * 1981-05-28 1982-12-07 Teijin Ltd Preparation of easily dyeable polyester fiber
JPS5854019A (en) * 1981-09-17 1983-03-30 Teijin Ltd Deeply dyeable polyester fiber and its production
JPS58220814A (en) * 1982-06-15 1983-12-22 Teijin Ltd Production of of polyester fiber

Also Published As

Publication number Publication date
JPS5971413A (en) 1984-04-23

Similar Documents

Publication Publication Date Title
US3816486A (en) Two stage drawn and relaxed staple fiber
US3513110A (en) Open-celled low density filamentary material
JPS5920007B2 (en) Method for manufacturing partially fused yarn
JP2619356B2 (en) Manufacturing method of high-strength polyester yarn
JPH0323645B2 (en)
JP4284758B2 (en) Method for producing polyester composite yarn
US3468996A (en) Process for producing composite polyester yarn that bulks at elevated temperatures
KR100646650B1 (en) A method of preparing for thick and thin polyester filament
JPH0680207B2 (en) Polyester thick yarn and method for producing the same
JPS64491B2 (en)
JPH0335412B2 (en)
US5741587A (en) High filament count fine filament polyester yarns
JPS6115168B2 (en)
US5827464A (en) Making high filament count fine filament polyester yarns
JPH03180572A (en) Production of highly elastic woven fabric
US3595953A (en) Process for producing polyester fibers and having high and constant shrinkage
JPS601427B2 (en) Manufacturing method for polyester woven and knitted fabrics
JPH0327140A (en) Mixed yarn having different fineness and shrinkage
JPS6119730B2 (en)
JPS6399340A (en) Different fineness and different shrinkage blended fiber yarn
JPS6136102B2 (en)
JPH0219216B2 (en)
JPH0128136B2 (en)
JPH07324224A (en) Polyester-based fiber and polyester continuous filament woven fabric
JPS6399323A (en) Production of polyester yarn