JPH03236056A - Method for forming and recovering superfine particle - Google Patents

Method for forming and recovering superfine particle

Info

Publication number
JPH03236056A
JPH03236056A JP2033232A JP3323290A JPH03236056A JP H03236056 A JPH03236056 A JP H03236056A JP 2033232 A JP2033232 A JP 2033232A JP 3323290 A JP3323290 A JP 3323290A JP H03236056 A JPH03236056 A JP H03236056A
Authority
JP
Japan
Prior art keywords
brush
ultrafine particles
superfine particles
particles
outside surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2033232A
Other languages
Japanese (ja)
Inventor
Akira Nishiwaki
彰 西脇
Yasuo Morohoshi
保雄 諸星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2033232A priority Critical patent/JPH03236056A/en
Priority to US07/592,366 priority patent/US5374382A/en
Priority claimed from US07/592,366 external-priority patent/US5374382A/en
Priority to DE4031898A priority patent/DE4031898C2/en
Publication of JPH03236056A publication Critical patent/JPH03236056A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance the efficiency of recovering superfine particles and to rapidly recover the superfine particles as well as to prevent the thermal deterioration thereof by scraping the superfine particles stuck to the adherend of a rotating outside surface cylinder by using an in-gas evaporating method by bringing the brush of the outside surface cylinder into contact therewith. CONSTITUTION:An evaporatable material M (e.g.: a prescribed org. photosconductor) is put into a housing container 2 and the inside of a vacuum chamber 1 is evacuated to a high vacuum. An inert gas is introduced into the chamber and the material M is heated in this state. The evaporating material M is stuck continuously to the surface of the rotating drum 3 and the material M of the superfine particles sticking thereto is brought into contact with the brush 9 of the outside surface cylinder having many pieces of brush hair 9B, sycaped and is recovered into a recovery box 4. Two pieces of the brushes 9 may be mounted and the hair 9B consisting of carbon fibers having square tips is usable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子写真感光体の製造に当って用いる有機光
導電体超微粒子などを得る場合における超微粒子の生成
・回収方法と装置に係り、特にガス中蒸発法により超微
粒子を生成させこれを回収する方法に関する。ガス中蒸
発法とは、真空容器内に導入された不活性ガス雰囲気中
で種々の物質を加熱・蒸発・昇華させ、得られる蒸気分
子が不活性ガス分子と衝突しながら徐々に冷却され分子
同士が凝集し、超微粒子を形成させ、その超微粒子を回
収する方法である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for producing and collecting ultrafine particles when obtaining ultrafine organic photoconductor particles used in the production of electrophotographic photoreceptors. In particular, the present invention relates to a method for producing and recovering ultrafine particles by evaporation in gas. The in-gas evaporation method involves heating, evaporating, and sublimating various substances in an inert gas atmosphere introduced into a vacuum container, and the resulting vapor molecules collide with inert gas molecules to gradually cool down and cause the molecules to interact with each other. This is a method in which the particles are aggregated to form ultrafine particles, and the ultrafine particles are collected.

〔従来の技術〕[Conventional technology]

電子写真感光体は、導電性基体上に感光層を形成した基
本構造をもっている。この感光層を形成するための光導
電物質としては、従来、セレンを用いたものが一般的で
あり、その他無機光導電物質として硫化カドミウムや酸
化亜鉛等も知られている。
An electrophotographic photoreceptor has a basic structure in which a photosensitive layer is formed on a conductive substrate. As a photoconductive material for forming this photosensitive layer, selenium has conventionally been commonly used, and other inorganic photoconductive materials such as cadmium sulfide and zinc oxide are also known.

しかし、近年では有機光導電物質を用いることによって
、成膜性の向上を図り、塗工によって生産することによ
り生産性を高める試みがなされている。また、有機光導
電物質を用いると、使用する染料や顔料等の増感剤を選
択すると、感色性を自在にコントロールできる利点があ
る。有機光導電物質としては、ポリ−N−ビニルカルバ
ゾールや2,5−ビス(P−ジエチルアミノフェニル)
−1、3.4−オキサジアゾール等が知られている。
However, in recent years, attempts have been made to improve film formability by using organic photoconductive substances and to increase productivity by producing by coating. Further, when an organic photoconductive substance is used, there is an advantage that color sensitivity can be freely controlled by selecting a sensitizer such as a dye or a pigment to be used. Examples of organic photoconductive substances include poly-N-vinylcarbazole and 2,5-bis(P-diethylaminophenyl).
-1,3,4-oxadiazole and the like are known.

他方、近年、μmまたは入オーダーの超微粒子に関して
の研究が種々なされている。かかる超微粒子は、その比
表面積が増大することによって、高い活性度を示すこと
に着目して生成させるものである。
On the other hand, in recent years, various studies have been conducted on ultrafine particles of μm or small order. Such ultrafine particles are produced by focusing on the fact that they exhibit high activity by increasing their specific surface area.

この場合、中でもガス中蒸発法が注目を浴びている。従
来、この方法は専ら無機または金属材料の超微粒子を得
る場合について研究の指向性があったが、たとえば[機
能材料J  1987年6月号、44〜49頁に記載の
ように、有機物超微粒子を得る場合にも研究がなされて
いる。
In this case, the in-gas evaporation method is attracting attention. Conventionally, this method has been researched exclusively in the case of obtaining ultrafine particles of inorganic or metallic materials, but for example, as described in [Functional Materials J, June 1987 issue, pp. 44-49, ultrafine organic particles Research has also been done on obtaining .

何れにしても、従来、ガス中蒸発し被付着体に付着した
超微粒子の回収に際しては、第5図または第6図のよう
にしていた。
In any case, conventionally, ultrafine particles that have evaporated in a gas and adhered to an object have been recovered as shown in FIG. 5 or 6.

すなわち、その第1の方法は、第5図fa)のように、
蒸発性材料Mを収容する容器50、被付着体としての平
板または曲板51および必要により落下粉体の回収容器
52を真空チャンバー(図示せず)内に配設し、この真
空チャンバー内に不活性ガスを送入するとともに、その
内部を真空状態に減圧している状態で、容器50および
または蒸発性材料Mを加熱して蒸発させ、この蒸発した
材料を前記曲板51に付着させ、その後(b)のように
、曲板51表面の付着材料層をブラシ53などにより掻
き落として回収箱54に回収するものである。
That is, the first method is as shown in Figure 5 fa),
A container 50 for accommodating the evaporable material M, a flat plate or curved plate 51 as an adherend, and, if necessary, a collection container 52 for falling powder, are arranged in a vacuum chamber (not shown). While supplying the active gas, the container 50 and/or the evaporative material M are heated and evaporated while the inside thereof is reduced to a vacuum state, and this evaporated material is attached to the curved plate 51, and then As shown in (b), the adhered material layer on the surface of the curved plate 51 is scraped off with a brush 53 or the like and collected in a collection box 54.

第2の方法は、第6図(a)のように、被付着体として
プラスチックウェブ60をリール61から繰り出しなが
らり−ル62に巻き取る過程で、そのウェブ60の表面
に、第1の方法と同様な蒸発態様で、蒸発性材料Mを付
着させ、その回収に際しては、(blのように、ウェブ
60を巻き取ったり一ル62からウェブ60を逆に巻き
出し、その過程で表面の付着した蒸発性材料Mをブラシ
などにより掻き取り回収箱54に回収するものである。
In the second method, as shown in FIG. 6(a), in the process of unwinding a plastic web 60 as an adherend from a reel 61 and winding it onto a reel 62, the first method is applied to the surface of the web 60. The evaporable material M is deposited in the same evaporation manner as in , and when it is recovered, the web 60 is wound up or reversely unwound from the roll 62 as shown in (bl), and in the process, the surface adhesion is removed. The evaporative material M is scraped off with a brush or the like and collected into a collection box 54.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前記第1の方法は、バッチ方式であるため、回
収板に経時的に粉体が順次積層され所定の厚さまで付着
がなされる。したがって、回収板をいかに冷却しても、
積層された粉体層が蒸発源からの放射熱を受けて、耐熱
性に劣る粉体の場合において特に熱劣化が激しい。また
、針状成長する材料の場合、蜘蛛の巣状(糸状)に粒子
が成長し、目的の超微粒子を得ることができない。しか
も、積層に際して余分な粒子が落下して良好に回収する
ことが困難となる。さらに、次記第2の方法と同様に、
付着と回収との2工程となるので、操作的に能率が悪い
However, since the first method is a batch method, the powder is sequentially stacked on the collection plate over time until it reaches a predetermined thickness. Therefore, no matter how much the collection plate is cooled,
The stacked powder layers receive radiant heat from the evaporation source, and thermal deterioration is particularly severe in the case of powders with poor heat resistance. Furthermore, in the case of a material that grows in the form of needles, the particles grow in the form of a spider's web (thread-like), making it impossible to obtain the desired ultrafine particles. Moreover, during stacking, excess particles fall and are difficult to collect properly. Furthermore, similar to the second method below,
Since there are two steps, adhesion and recovery, the process is inefficient in terms of operation.

他方、第2の方法では、工程が2工程となることととも
に、リール間で付着材料を掻き落とすので、掻き落とし
が安定せず、かつウェブがプラスチックであるため強く
ブラシを当てることができず、掻き落とし難い。したが
って、回収作業性が悪いとともに、回収率が劣る。
On the other hand, in the second method, there are two steps, and since the adhering material is scraped off between the reels, the scraping is not stable, and since the web is made of plastic, it is not possible to apply a strong brush to the web. Difficult to scrape off. Therefore, the collection efficiency is poor and the collection rate is poor.

一方、本出願人は、先に特願平1−143479号にお
いて、ドラム状被付着体に対してブレードを接触させな
がら付着超微粒子を掻き落とすことを提案したが、被付
着体が僅かにでもその取付ガタにより振動したり、また
被付着体の表面が真円でないと、被付着体に対するブレ
ード先端の接触および押圧力が変化し掻き取りムラを生
じる。
On the other hand, the present applicant previously proposed in Japanese Patent Application No. 1-143479 that the attached ultrafine particles be scraped off while bringing a blade into contact with a drum-shaped object to be adhered, but even if the adhered object is slightly If the mounting play causes vibration, or if the surface of the object to be adhered to is not a perfect circle, the contact and pressing force of the blade tip against the object to be adhered will change, causing uneven scraping.

また、掻き取り性を高めるためにブレードを強く被付着
体に接触させようとしても、ブレードの材質的な限界な
どから、過度に強く押圧させるとブレードが撓むなどの
理由により、線圧を高くするには限界があった。さらに
、ブレードはある幅を有するものであるため、高精度に
加工しても、その先端は必ずしも直線でなく、若干の凹
凸は避けられない。その結果、掻き取りムラを根本的に
生じる。かくして、ブレードを用いる限り、掻き取り性
の向上には限界があり、場合により、超微粒子が被付着
体表面にフィルム状に残存するいわゆるフィルミング現
象がみられる。
In addition, even if you try to bring the blade into strong contact with the object to improve scraping performance, due to the limitations of the material of the blade, if you press too hard, the blade will bend. There was a limit to what I could do. Furthermore, since the blade has a certain width, even if it is machined with high precision, its tip is not necessarily straight, and some unevenness is unavoidable. As a result, uneven scraping fundamentally occurs. Thus, as long as a blade is used, there is a limit to the improvement in scraping performance, and in some cases, a so-called filming phenomenon in which ultrafine particles remain in the form of a film on the surface of the adherend is observed.

そこで、本発明の主たる目的は、回収性にきわめて優れ
るとともに、回収効率が高く、回収する超微粒子の性状
が優れる超微粒子の生成・回収方法を提供することにあ
る6 〔課題を解決するための手段〕 上記課題は、ガス中蒸発法により蒸発した超微粒子を連
続的に回転する外面円筒の被付着体に付着させ、その被
付着体の回転過程で前記被付着体と軸を平行にした外面
円筒のブラシを前記被付着体表面に接触させて前記超微
粒子を連続的に掻き落として回収することで解決できる
Therefore, the main purpose of the present invention is to provide a method for producing and recovering ultrafine particles that has extremely excellent recovery performance, high recovery efficiency, and excellent properties of the recovered ultrafine particles6. Means] The above-mentioned problem is achieved by attaching ultrafine particles evaporated by an in-gas evaporation method to a continuously rotating outer cylindrical adherend, and in the process of rotation of the adherend, the outer surface whose axis is parallel to the adherend. This problem can be solved by bringing a cylindrical brush into contact with the surface of the adherend to continuously scrape off and collect the ultrafine particles.

〔作 用〕[For production]

本発明では、外面円筒の被付着体を用い、これを回転さ
せる過程で、その表面に付着した超微粒子を掻き取るよ
うにしているので、付着した超微粒子が速やかに掻き落
とされ、蒸発源からの熱劣化などがなく性状・物性に優
れた超微粒子を得ることができるとともに、−工程で超
微粒子の生成および回収を行うことができる。
In the present invention, an adherend with a cylindrical outer surface is used, and in the process of rotating it, the ultrafine particles adhering to the surface are scraped off, so that the adhered ultrafine particles are quickly scraped off and removed from the evaporation source. It is possible to obtain ultrafine particles with excellent properties and physical properties without thermal deterioration, and the ultrafine particles can be generated and recovered in the -step.

さらに、被付着体に付着した超微粒子の掻き落としに際
して、ブラシを用いており、これらの毛先を点的に被付
着体表面に抑圧できるので、十分な接触圧力を得ること
ができ、もって掻き落とし性が優れたものとなる。さら
に、被付着体およびブラシがそれぞれ外面円筒であるた
め、先に提案した例のように両者の接触面が平面である
ときと比較して、被付着体表面からブラシの毛先が離れ
たとき、超微粒子を跳ね飛ばす力が大きくなる。
Furthermore, when scraping off the ultrafine particles adhering to the object, a brush is used, and since the tips of these bristles can be pressed onto the surface of the object in spots, sufficient contact pressure can be obtained, which makes it possible to scrape off the ultrafine particles that have adhered to the object. It has excellent removability. Furthermore, since the adherend and the brush each have a cylindrical outer surface, when the brush bristles are separated from the adherend surface, compared to when the contact surface between the two is flat as in the example proposed earlier, , the power to knock off ultrafine particles increases.

さらに、被付着体表面およびブラシの加工精度に左右さ
れないの。
Furthermore, it is not affected by the surface of the object to be adhered to or the machining accuracy of the brush.

かかる理由により、掻き取り性が先の提案例に比較して
格段に優れたものとなる。
For this reason, the scraping property is much better than that of the previously proposed example.

〔発明の具体的構成〕[Specific structure of the invention]

以下本発明をさらに詳説する。 The present invention will be explained in more detail below.

第1図は本発明の第1実施例を示したもので、真空チャ
ンバー1内に、蒸発性材料Mの収容容器2、外面円筒の
回転ドラム3およびこれに臨む一部が開口した回収箱4
が配設されている。真空チャンバー1にはアルゴンやヘ
リウムなどの不活性ガスGの供給管5、真空ポンプ6に
連なる排気管7がそれぞれ連通しており、排気管7には
真空度を検出するための圧力計8が取付られている。回
転ドラム3は収容容器2の上方に位置して配置されてい
る。また、回収箱4は熱遮蔽材料により形成され、収容
容器2および回転ドラム3への蒸発性材料Mの付着部と
熱的に遮断されている。
FIG. 1 shows a first embodiment of the present invention, in which a vacuum chamber 1 includes a container 2 for storing an evaporable material M, a rotating drum 3 with a cylindrical outer surface, and a collection box 4 facing the drum with a partially open part.
is installed. The vacuum chamber 1 is connected to a supply pipe 5 for an inert gas G such as argon or helium, and an exhaust pipe 7 connected to a vacuum pump 6. The exhaust pipe 7 is equipped with a pressure gauge 8 for detecting the degree of vacuum. It is installed. The rotating drum 3 is located above the container 2. The collection box 4 is made of a heat shielding material and is thermally isolated from the storage container 2 and the portion where the evaporative material M is attached to the rotating drum 3.

他方、回収箱4内には、ブラシロール9Aの周囲に多数
のブラシ毛9Bを有する外面円筒ブラシ9が、回収箱4
の開口を介して回転ドラム3表面に接触するように、回
転ドラム3の回転軸と平行な回転軸をもって配設されて
いる。さらに、回転ドラム3は実施例では時計方向に図
示しない駆動モータにより回転されるようになっている
とともに、ブラシ9はブラシロール9Aが図示しない駆
動モータにより同時計方向に回転するようになっている
On the other hand, inside the collection box 4, an outer cylindrical brush 9 having a large number of bristles 9B around a brush roll 9A is placed inside the collection box 4.
The rotary drum 3 is disposed with a rotation axis parallel to the rotation axis of the rotary drum 3 so as to be in contact with the surface of the rotary drum 3 through an opening of the rotary drum 3 . Further, in the embodiment, the rotary drum 3 is rotated clockwise by a drive motor (not shown), and the brush roll 9A of the brush 9 is rotated in the same clockwise direction by a drive motor (not shown). .

また、ブラシ9のブラシ毛9Bの回転域において、振り
落としブレードlOが回収箱4に固定された状態で設け
られている。
Further, in the rotation range of the bristles 9B of the brush 9, a shake-off blade 10 is provided fixed to the collection box 4.

さらに、蒸発性材料Mの収容容器2はセラミックなどの
耐熱性材料で形成しておくのが好ましく、この収容容器
2およびまたは直接蒸発性材料Mがヒーター加熱、誘導
加熱、レーザー加熱、抵抗加熱あるいは電子銃加熱など
によりその材料Mが充分蒸発する温度に加熱される。ま
た、その際、回転ドラム3は真空チャンバー1内の温度
にしておく他、好ましくは冷却、たとえば10℃以下に
冷却しておく。この冷却には、回転ドラム3内に冷却用
熱媒体たとえば冷却水を通すことで可能である。
Further, it is preferable that the storage container 2 for the evaporable material M is made of a heat-resistant material such as ceramic, and that the storage container 2 and/or the directly evaporable material M can be heated by heater heating, induction heating, laser heating, resistance heating or The material M is heated by electron gun heating or the like to a temperature at which the material M is sufficiently evaporated. Further, at this time, the rotating drum 3 is not only kept at the temperature within the vacuum chamber 1, but also preferably cooled, for example, to 10° C. or lower. This cooling can be achieved by passing a cooling heat medium, such as cooling water, through the rotating drum 3.

このように構成された装置において、真空チャンバー1
内を真空ポンプ6により減圧して高真空にした後、不活
性ガスを送入し、好ましくは0.01〜50 Torr
に保つ。この状態で、蒸発性材料Mに対して加熱すると
、そのガス中蒸発が生じ、蒸発した材料Mは、回転して
いる回転ドラム3の表面に連続的に付着する。この付着
した材料Mは、接触部において向流的に接触するブラシ
9により掻き取られ回収箱4内に回収される。また、ブ
ラシ毛9Bに付着した材料Mについては、ブレードlO
に毛先が接触するので、同様に掻き取られる。
In the apparatus configured in this way, the vacuum chamber 1
After reducing the pressure inside the chamber to a high vacuum using the vacuum pump 6, an inert gas is introduced, preferably at a pressure of 0.01 to 50 Torr.
Keep it. In this state, when the evaporative material M is heated, evaporation occurs in the gas, and the evaporated material M continuously adheres to the surface of the rotating drum 3. This adhered material M is scraped off by the brush 9 that contacts countercurrently at the contact portion and is collected into the collection box 4 . Moreover, regarding the material M attached to the brush bristles 9B, the blade lO
Since the tips of the hair come into contact with the , it is scraped off in the same way.

材料Mが掻き取られ裸になった回転ドラム3の表面には
次の新たな材料が付着される。このようにして、回転ド
ラム3の表面において、材料Mの付着および掻き取りが
連続的になされる。したがって、回転ドラム3の表面に
付着した材料は速やかに、再び材料加熱用熱源からの輻
射熱を受けることな(掻き取られるので、従来の第1法
のように、熱による劣化(熱ダメージ)がなく、良質な
超微粒子を得ることができる。蒸発付着から掻き取りま
での時間は、たとえば回転ドラム3の回転速度を調節す
ることが設定できる。
The next new material is adhered to the surface of the rotary drum 3 from which the material M has been scraped off and becomes bare. In this way, the material M is continuously deposited and scraped off on the surface of the rotating drum 3. Therefore, the material adhering to the surface of the rotating drum 3 is quickly scraped off without being exposed to radiant heat from the heat source for heating the material again, so unlike the conventional first method, there is no deterioration due to heat (thermal damage). The time from evaporation deposition to scraping can be set by adjusting the rotational speed of the rotary drum 3, for example.

回収箱4に回収された超微粒子は、ある程度の量となっ
た時点で、ガス中蒸発操作を終了して、真空チャンバー
■を開放して取り出される。
When the ultrafine particles collected in the collection box 4 reach a certain amount, the evaporation operation in the gas is completed, the vacuum chamber (2) is opened, and the ultrafine particles are taken out.

第2図は第2実施例を示したもので、回転ドラム3に対
して、複数図示例では2つのブラシ9X、9Yを配設し
たものである。この場合、ブラン9Yによる掻き取り力
をブラシ9Xの掻き取り力より大きくすることができる
FIG. 2 shows a second embodiment, in which two brushes 9X and 9Y are disposed on the rotary drum 3 in the illustrated example. In this case, the scraping force by the swing 9Y can be made larger than the scraping force by the brush 9X.

ブラシ毛9Bの材質、植設密度、高さ、太さなどは適宜
選定できる。材質としては、通常金属繊維を用いるが、
もし、材料Mが静電気を発生させブラシに付着しがちの
場合、ブラシ毛9Bの材質としてカーボン繊維を用いる
ことができる。ブラシ毛9Bの毛先形状は、球状より第
3図のように各張っているのが望ましい。回転ドラム3
の材質としでは、適宜のものを用いることができるが、
通常、金属製のものを用いることができる。
The material, planting density, height, thickness, etc. of the brush bristles 9B can be selected as appropriate. Metal fiber is usually used as the material, but
If the material M generates static electricity and tends to adhere to the brush, carbon fiber can be used as the material for the brush bristles 9B. It is preferable that the tips of the brush bristles 9B have a taut shape as shown in FIG. 3 rather than a spherical shape. Rotating drum 3
As for the material, any suitable material can be used, but
Usually, metal can be used.

ブラシ9に付着した材料Mを振るい落とすには、第4図
のように、振るい落とし糸11をブラシ毛9Bの回転域
に張設することができる。
In order to shake off the material M adhering to the brush 9, a sieving thread 11 can be stretched over the rotating region of the brush bristles 9B, as shown in FIG.

他方、回転ドラム3からの材料Mの掻き落とし性を高め
るために、ブラシ9を回転トラム3表面に対して接離す
る、あるいは回転ドラム3の軸方向と平行に往復運動す
るように振動させることができる。
On the other hand, in order to improve the ability to scrape off the material M from the rotating drum 3, the brush 9 may be moved toward and away from the surface of the rotating tram 3, or vibrated so as to reciprocate in parallel to the axial direction of the rotating drum 3. I can do it.

上記各側では、蒸発性材料を収容容器にバッチ的に供給
したが、真空チャンバー内の加熱容器へスクリューフィ
ーダーなどにより連続的に供給するなどすれば大量の蒸
発処理が可能である。
In each of the above-mentioned sides, the evaporable material was supplied to the storage container in a batch manner, but a large amount of evaporation processing can be performed by continuously supplying the evaporable material to the heating container in the vacuum chamber using a screw feeder or the like.

本発明において、目的の超微粒子としては、10〜数万
人、特に10〜数千人を得る場合において好適に適用で
きる。また、超微粒子の種類としては、無機材料、金属
材料の他、有機材料であってもよい。特に、本発明者ら
は、有機感光体を得る場合の有機顔料、とりわけアンス
アンスロン系顔料を得る場合に最適であることを確認済
である。
In the present invention, the target ultrafine particles can be suitably applied when obtaining 10 to tens of thousands of people, particularly 10 to several thousand people. Further, the type of ultrafine particles may be an organic material as well as an inorganic material or a metal material. In particular, the present inventors have confirmed that it is optimal for obtaining organic pigments, particularly anth-anthrone pigments, for obtaining organic photoreceptors.

有機感光体は、導電性基体上に、有機光導電体粒子を、
分散機によって分散剤およびバインダー樹脂中に分散し
たものを塗布することにより一般的に得ることができる
Organophotoreceptors include organic photoconductor particles on a conductive substrate.
It can generally be obtained by coating a dispersant dispersed in a dispersant and a binder resin using a dispersing machine.

この場合、最終的に得ようとする感光体としては、導電
性基体上に、有機光導電体粒子(顔料)を電荷発生材料
として電荷輸送材料中に分散させた単一層型感光体と、
導電性基体上に、電荷発生材料層を形成しその上に電荷
輸送材料層を形成した機能分離型感光体とがある。本発
明は、これら両者の形態の感光体の製造における超微粒
子を得る場合に適している。
In this case, the final photoreceptor to be obtained is a single-layer photoreceptor in which organic photoconductor particles (pigment) are dispersed in a charge transport material as a charge generation material on a conductive substrate;
There is a functionally separated photoreceptor in which a charge-generating material layer is formed on a conductive substrate and a charge-transporting material layer is formed thereon. The present invention is suitable for obtaining ultrafine particles in the production of photoreceptors of both types.

〔実施例〕〔Example〕

次に実施例を示し本発明の効果を明らかにする。 Next, Examples will be shown to clarify the effects of the present invention.

(実施例1) 第1図の装置により、ガス中蒸発を行った。(Example 1) Evaporation in gas was performed using the apparatus shown in FIG.

電子写真用有機感光体を製造するために用いる有機顔料
超微粒子を生成・回収した。この有機顔料としては、4
.lO−ジブロモアンスアンスロンを用い、真空チャン
バーをヘリウムガス雰囲気下に置き、かつ1O=Tor
rに減圧し、材料を300〜350℃に加熱し真空蒸発
させ第1図法に従って超微粒子を得た。
Ultrafine organic pigment particles used for manufacturing organic photoreceptors for electrophotography were produced and recovered. As this organic pigment, 4
.. Using 1O-dibromoanthron, the vacuum chamber is placed under a helium gas atmosphere, and 1O=Tor
The material was heated to 300 to 350°C and evaporated in vacuum to obtain ultrafine particles according to the method shown in Figure 1.

その結果、熱劣化がない超微粒子を約45%の回収率を
もって回収できた。また、この回収率は回転ドラムの径
、蒸発率を制御することでほぼ100%の回収率が得ら
れることが他の実験により明らかとなった。
As a result, ultrafine particles without thermal deterioration could be recovered with a recovery rate of about 45%. Further, other experiments have revealed that a recovery rate of approximately 100% can be obtained by controlling the diameter of the rotating drum and the evaporation rate.

(比較例1) 第5図の従来法1によって、同様の有機顔料を得た。そ
の結果、回収した粉体は糸状となり、かつその内部は、
オレンジ色、表面は深紅色となっており、熱劣化の影響
が明らかに認められ、回収率は35〜40%であった。
(Comparative Example 1) A similar organic pigment was obtained by conventional method 1 shown in FIG. As a result, the collected powder becomes thread-like, and its inside is
The color was orange, and the surface was deep red, and the influence of thermal deterioration was clearly recognized, and the recovery rate was 35 to 40%.

(比較例2) 第6図の従来法2によって、同様の有機顔料を回収した
。その結果、超微粒子を得ることができたが、比較例1
の場合の200倍の時間(延べ50時間)の操作時間を
要し、かつ回収率は6〜7%と著しく低かった。
(Comparative Example 2) A similar organic pigment was recovered by conventional method 2 shown in FIG. As a result, ultrafine particles could be obtained, but Comparative Example 1
The operation time was 200 times longer (total of 50 hours) than in the case of the above method, and the recovery rate was extremely low at 6 to 7%.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、回収性にきわめて優れる
とともに、回収効率が高く、回収する超微粒子の性状が
優れる超微粒子を生成・回収できる。
As described above, according to the present invention, it is possible to generate and recover ultrafine particles that have extremely excellent recoverability, high recovery efficiency, and excellent properties of the recovered ultrafine particles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の概要図、第2図は第2実
施例の概要図、第3図はブラシ毛の形状例の拡大図、第
4図はブラシ毛に付着した超微粒子の振るい落とし線の
配設例の概要図、第5図および第6図はそれぞれ従来技
術の概要説明図である。
FIG. 1 is a schematic diagram of the first embodiment of the present invention, FIG. 2 is a schematic diagram of the second embodiment, FIG. 3 is an enlarged diagram of an example of the shape of the brush bristles, and FIG. A schematic diagram of an example of arrangement of drop lines for fine particles, and FIGS. 5 and 6 are schematic explanatory diagrams of the prior art, respectively.

Claims (2)

【特許請求の範囲】[Claims] (1)ガス中蒸発法により蒸発した超微粒子を連続的に
回転する外面円筒の被付着体に付着させ、その被付着体
の回転過程で前記被付着体と軸を平行にした外面円筒の
ブラシを前記被付着体表面に接触させて前記超微粒子を
連続的に掻き落として回収することを特徴とする超微粒
子の生成・回収方法。
(1) Ultrafine particles evaporated by the in-gas evaporation method are attached to a continuously rotating external cylindrical object, and the external cylindrical brush whose axis is parallel to the adhering object during the rotation process of the adhering object. A method for producing and collecting ultrafine particles, characterized in that the ultrafine particles are continuously scraped off and recovered by bringing the ultrafine particles into contact with the surface of the adherend.
(2)被付着体およびブラシの回転方向は同方向とした
請求項1記載の方法。
(2) The method according to claim 1, wherein the object to be adhered and the brush are rotated in the same direction.
JP2033232A 1990-02-14 1990-02-14 Method for forming and recovering superfine particle Pending JPH03236056A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2033232A JPH03236056A (en) 1990-02-14 1990-02-14 Method for forming and recovering superfine particle
US07/592,366 US5374382A (en) 1990-02-14 1990-10-03 Method of generation and recovery of ultra-fine particles
DE4031898A DE4031898C2 (en) 1990-02-14 1990-10-08 Process for producing and recovering ultrafine particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2033232A JPH03236056A (en) 1990-02-14 1990-02-14 Method for forming and recovering superfine particle
US07/592,366 US5374382A (en) 1990-02-14 1990-10-03 Method of generation and recovery of ultra-fine particles

Publications (1)

Publication Number Publication Date
JPH03236056A true JPH03236056A (en) 1991-10-22

Family

ID=26371904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033232A Pending JPH03236056A (en) 1990-02-14 1990-02-14 Method for forming and recovering superfine particle

Country Status (1)

Country Link
JP (1) JPH03236056A (en)

Similar Documents

Publication Publication Date Title
US3650737A (en) Imaging method using photoconductive element having a protective coating
US5186872A (en) Method for generation and collection of ultra fine particles without scatter
JPH03236056A (en) Method for forming and recovering superfine particle
US5374382A (en) Method of generation and recovery of ultra-fine particles
JPH03236057A (en) Method for forming and recovering superfine particle
JP2821799B2 (en) Method and apparatus for producing and recovering fine powder
JPH038437A (en) Method and equipment for producing and recovering ultrafine particle
JPH03236055A (en) Method and device for forming and recovering superfine particle
JPH03236054A (en) Method and device for forming and recovering superfine particle
JP2873868B2 (en) Particle generator for gas evaporation method
JPS61255352A (en) Photosensitive body
JPH0463130A (en) Method for forming and recovering superfine particles
JPH0656501B2 (en) Method for producing photosensitive material having overcoat layer
JPS63159862A (en) Image forming member for electrostatic photography using amorphous boron
JPS59124024A (en) Magnetic recording medium
JP4566486B2 (en) Electrophotographic photoreceptor and method for producing the same
JP2959685B2 (en) Method for producing fine-particle powder, fine-particle powder, and method for forming functional film containing fine-particle powder
JP3850626B2 (en) Carbon nanotubes, carbon nanotube production method, contact charger and image forming apparatus
JP3895072B2 (en) Electrophotographic photoreceptor and method for producing the same
JPH0331846A (en) Photosensitive body superior in oxidation prevention and manufacture of the same
JPS5998323A (en) Manufacturing device of magnetic recording medium
JPS63144359A (en) Electrophotographic sensitive body
JP2000075511A (en) Production of electrophotographic photoreceptor
JPS60198548A (en) Electrophotographic sensitive body
JPH11236668A (en) Thin film forming device and vacuum deposition device