JPH03235675A - Power regenerative voltage inverter - Google Patents

Power regenerative voltage inverter

Info

Publication number
JPH03235675A
JPH03235675A JP2030292A JP3029290A JPH03235675A JP H03235675 A JPH03235675 A JP H03235675A JP 2030292 A JP2030292 A JP 2030292A JP 3029290 A JP3029290 A JP 3029290A JP H03235675 A JPH03235675 A JP H03235675A
Authority
JP
Japan
Prior art keywords
power
instantaneous
conversion circuit
load
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2030292A
Other languages
Japanese (ja)
Other versions
JP2990723B2 (en
Inventor
Takashi Kodama
貴志 小玉
Tadashi Ichioka
市岡 忠士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2030292A priority Critical patent/JP2990723B2/en
Publication of JPH03235675A publication Critical patent/JPH03235675A/en
Application granted granted Critical
Publication of JP2990723B2 publication Critical patent/JP2990723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To regulate a power factor continuously by a method wherein the harmonic component of a system is detected with an instantaneous real power and an instantaneous imaginary power which is obtained from phase voltages is added to a basic wave reactive power instruction and a real power applied to a load is obtained from the DC voltage and current of a an inverter circuit and the real power is added to the instantaneous real power to obtain the current instruction of a converter circuit. CONSTITUTION:The harmonic wave component of an instantaneous real power is obtained from the load currents IU-IW of the AC system of a converter circuit 11 and the harmonic component is used as a detection signal for suppressing harmonics. A real power which is supplied to the load 5 by an inverter circuit 13 is added to the harmonic component of the instantaneous real power to obtain the real power control signal of the converter circuit 11. With this constitution, the reactive power component of the inverter circuit 13 is contained in harmonic suppression control by an instantaneous power and, at the same time, PWM control wherein a power factor can be regulated by an instantaneous imaginary power obtained from phase voltages EU-EW and a basic wave reactive power is realized.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、電源自生電圧形インバータに係り、特に誘導
機の可変速機能と電源力率を進みから遅れまで連続的に
調整可能とする調相機能とを合わせ持たせた電圧形イン
バータに関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a self-generating voltage type inverter, and in particular to an adjustable speed function of an induction motor and an adjustment that allows continuous adjustment of the power factor from lead to lag. This invention relates to a voltage source inverter that also has a phase function.

B0発明の概要 本発明は、順変換回路に系統の高調波抑制機能を持たせ
た電源回生電圧形インバータにおいて、系統の高調波成
分を瞬時実電力で検出すると共に、相電圧から求めた瞬
時虚電力と基本波無効電力指令を加算して、逆変換回路
の直流電圧と電流から負荷への実電力を求めて瞬時実電
力に加算して順変換回路の電流指令を求めることにより
、高調波抑制効果を高めなからインバータ負荷にも安定
しf:、電力供給かできろと共に、力率を連続的に調整
できるようにしたものである。
B0 Summary of the Invention The present invention provides a power regeneration voltage source inverter in which a forward conversion circuit has a system harmonic suppression function, which detects system harmonic components using instantaneous actual power and detects instantaneous harmonic components determined from phase voltages. Harmonics can be suppressed by adding the power and the fundamental wave reactive power command to determine the actual power to the load from the DC voltage and current of the inverse conversion circuit, and adding it to the instantaneous actual power to determine the current command of the forward conversion circuit. Because it is highly effective, it is stable even with inverter loads, and not only can it supply electric power, but it can also continuously adjust the power factor.

C1従来の技術 電圧形インバータは、順変換回路を自己消弧形デバイス
(トランジスタやGT○)を用いたP WN1制御回路
に構成することで電源側への電力の回生を可能にする。
C1 Conventional technology A voltage source inverter makes it possible to regenerate power to the power supply side by configuring the forward conversion circuit as a PWN1 control circuit using self-extinguishing devices (transistors and GT○).

第3図は電源回生電圧形インバータの回路図を示す。交
流電源1には電圧形インバータ2〜4が接続され、各イ
ンバータによって電動機5〜7を駆動する構成で示す。
FIG. 3 shows a circuit diagram of a power regeneration voltage type inverter. Voltage type inverters 2 to 4 are connected to AC power source 1, and electric motors 5 to 7 are driven by each inverter.

インバータ2〜4はインバータ2に代表して示すように
、自己消弧形デバイスを主回路スイッチとする順変換回
路11とコンデンサ12と逆変換回路13とを備え、交
流電源lとは交流リアクトル14を通して電力授受を行
い、順変換回路11はコンデンサ12の直流電圧を一定
に保持するようPWM制御することで順逆両方向変換、
即ち電源回生も可能にする。搬送波除去フィルタ15は
PWM制御による搬送波成分の除去を行う。順変換回路
11の制御回路16はコンデンサ12の直流電圧Edと
交流電源1の同期信号を検出して順変換回路11のPW
M制御を行う。
As shown in the inverter 2 as a representative, the inverters 2 to 4 are equipped with a forward conversion circuit 11, a capacitor 12, and an inverse conversion circuit 13 each using a self-arc-extinguishing device as a main circuit switch, and the AC power source l is an AC reactor 14. The forward conversion circuit 11 performs forward and reverse conversion by performing PWM control to maintain the DC voltage of the capacitor 12 constant.
In other words, it also enables power regeneration. The carrier wave removal filter 15 removes the carrier wave component by PWM control. The control circuit 16 of the forward conversion circuit 11 detects the DC voltage Ed of the capacitor 12 and the synchronization signal of the AC power supply 1, and controls the PW of the forward conversion circuit 11.
Performs M control.

ここで、電圧形インバータ2に順変換回路11が持つ電
源回生機能を利用して高調波抑制機能を持たせるには、
制御回路16は交流電源lの電源ラインの負荷電流から
高調波成分を抽出し、この成分に応じた交流電流を電源
1側に供給する。
Here, in order to provide the voltage source inverter 2 with a harmonic suppression function using the power regeneration function of the forward conversion circuit 11,
The control circuit 16 extracts a harmonic component from the load current of the power line of the AC power source 1, and supplies an AC current corresponding to this component to the power source 1 side.

D9発明が解決しようとする課題 従来の構成において、高調波電流を完全に補償しようと
すると、負荷の瞬時実電力の交流分によるエネルギーが
系統に接続される負荷と補償装置を往復してコンデンサ
12の蓄積エネルギーが増減する。従って、コンデンサ
12の電圧を一定に制御しようとすると高調波抑制効果
を低下させることになる。
D9 Problems to be Solved by the Invention In the conventional configuration, when attempting to completely compensate for harmonic currents, the energy due to the alternating current portion of the instantaneous actual power of the load is transferred back and forth between the load connected to the grid and the compensator, and is transferred to the capacitor 12. The stored energy of increases or decreases. Therefore, if an attempt is made to control the voltage of the capacitor 12 to be constant, the harmonic suppression effect will be reduced.

逆に、高調波抑制効果を高めると、コンデンサの直流電
圧が大きく振動し、インバータ13から負荷への安定し
に電力供給ができなくなる。
On the other hand, if the harmonic suppression effect is increased, the DC voltage of the capacitor will greatly oscillate, making it impossible to stably supply power from the inverter 13 to the load.

また、電源電流は正弦波であっても、力率は負荷によっ
て変化し、必ずしも100%にはならない。
Further, even if the power supply current is a sine wave, the power factor changes depending on the load and is not necessarily 100%.

本発明の目的は、高調波抑制効果を高めながらインバー
タ負荷にも安定した電力供給ができると共に、力率を連
続的に調整可能な電圧形インバータを提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a voltage source inverter that can stably supply power to an inverter load while enhancing harmonic suppression effects and that can continuously adjust the power factor.

81課題を解決するための手段と作用 本発明は、前記目的を達成するため、自己消弧形デバイ
スを主回路スイッチとしてPWM制御により電源回生を
可能にした順変換回路と、この順変換回路から直流電力
が供給され負荷に交流電力を供給する逆変換回路と、前
記順変換回路をPWM制御する制御回路とを備えた電源
回生電圧形インバータにおいて、1i7J記制御回路は
順変換回路の交流系統の負荷電流から瞬時実電力の高調
波成分を求める手段と、前記順変換回路の交流系統の相
電圧から虚電力を求めこの虚電力に基本波無効電力を加
算して力率を調整する手段と、前記逆変換回路の直流電
圧と直流電流から負荷の実電力を求める手段と、この負
荷の実電力を前記瞬時実電力の高調波成分に加算した実
電力と前記瞬時虚電力とから前記順変換回路の電流指令
を求める手段とを備え、順変換回路の交流系統の負荷電
流から瞬時実電力の高調波成分を求めて高調波抑制のた
めの検出信号とし、このうち瞬時実電力の高調波成分に
逆変換回路か負荷に供給する実電力を加算して順変換回
路の実電力制御信号とすることて瞬時電力による高調波
抑制制御に逆変換回路の負荷電力分を含ませると共に、
相電圧から求めた瞬時虚電力と基本波無効電力により力
率を調整できるP〜■M制御を行う。
81 Means and Effects for Solving the Problems In order to achieve the above object, the present invention provides a forward conversion circuit that uses a self-arc extinguishing device as a main circuit switch to enable power regeneration through PWM control, and a forward conversion circuit that uses a self-extinguishing device as a main circuit switch to enable power regeneration through PWM control. In a power regeneration voltage type inverter that includes an inverse conversion circuit that is supplied with DC power and supplies AC power to a load, and a control circuit that performs PWM control on the forward conversion circuit, the control circuit 1i7J controls the AC system of the forward conversion circuit. means for determining harmonic components of instantaneous actual power from the load current; means for determining imaginary power from the phase voltage of the AC system of the forward conversion circuit; and adjusting the power factor by adding fundamental wave reactive power to the imaginary power; means for determining the actual power of the load from the DC voltage and DC current of the inverse conversion circuit; and the forward conversion circuit from the real power obtained by adding the real power of the load to the harmonic components of the instantaneous actual power and the instantaneous imaginary power. means for determining the current command of the instantaneous actual power from the load current of the AC system of the forward conversion circuit, and uses the harmonic component of the instantaneous actual power as a detection signal for harmonic suppression; By adding the actual power supplied from the inverse conversion circuit to the load and making it the real power control signal of the forward conversion circuit, the load power of the inverse conversion circuit is included in the harmonic suppression control using instantaneous power.
P~M control is performed that can adjust the power factor using the instantaneous imaginary power and fundamental wave reactive power obtained from the phase voltages.

F、実施例 以下に本発明の実施例を第1図〜第2図を参照しながら
説明する。
F. EXAMPLE An example of the present invention will be described below with reference to FIGS. 1 and 2.

第2図は本発明の実施例による全体構成図を示し、第3
図のものと同−又は相当部分には同一符号が付されてい
る。第2図において、16Aは順変換部制御回路、17
はヘースドライブ回路、18は逆変換部制御回路である
FIG. 2 shows an overall configuration diagram according to an embodiment of the present invention, and FIG.
The same or corresponding parts as those in the figures are given the same reference numerals. In FIG. 2, 16A is a forward conversion unit control circuit;
1 is a Hayes drive circuit, and 18 is an inverse conversion unit control circuit.

第1図は本発明の一実施例を示す制御回路図である。3
相/2相変換部21は、系統の3相負荷電流IL:、I
52.Iwを直交α−β座標上の21目電流■。、Is
に変換する。
FIG. 1 is a control circuit diagram showing one embodiment of the present invention. 3
The phase/two-phase converter 21 converts the three-phase load current IL:, I
52. Iw is the 21st current on the orthogonal α-β coordinate. ,Is
Convert to

同様に、3相/2相変換部22は、系統の相電圧Eu、
 Ev、 Ewを直交α−β座標上の2相電圧E、、E
、に変換する。
Similarly, the three-phase/two-phase converter 22 converts the system phase voltage Eu,
Ev, Ew are two-phase voltages E, , E on orthogonal α-β coordinates
, convert to

) 上述の2相電流1.、I、と2相電圧E、、E6とはα
−β座標軸上の瞬時ベクトルとして取り扱え、瞬時電力
はE、2.I−、Es、Inのスカラ積で表される。従
って、瞬時電力演算部23は2相電圧と電流のスカラ積
の和として瞬時実電力Pと瞬時虚電力qを求める。
) The above two-phase current 1. , I, and the two-phase voltage E, , E6 are α
It can be treated as an instantaneous vector on the −β coordinate axis, and the instantaneous power is E, 2. It is expressed as a scalar product of I-, Es, and In. Therefore, the instantaneous power calculation unit 23 calculates the instantaneous real power P and the instantaneous imaginary power q as the sum of the scalar products of the two-phase voltage and current.

ところで、瞬時実電力P、虚電力Qを直流分と交流分に
分離すると、 −二 Q=Q+Q (4)式のP(交流分)とQ(交流分)は高調波瞬時電
力を表しており、高調波補償対象となる。
By the way, when instantaneous real power P and imaginary power Q are separated into DC and AC components, -2Q=Q+Q (4) P (AC component) and Q (AC component) represent harmonic instantaneous power. , subject to harmonic compensation.

交流分演算部24はローパスフィルタと加算器によって
バイパスフィルタ機能を持ち、瞬時実電力Pから夫々の
交流分(高調波瞬時電力)Phを求める。
The AC component calculation unit 24 has a bypass filter function using a low-pass filter and an adder, and calculates each AC component (harmonic instantaneous power) Ph from the instantaneous actual power P.

基本波無効電力をも補償して力率を調整するために、全
ての瞬時虚電力Q(基本波に起因するもの十高調波に起
因するもの)と、瞬時実電力Pを補償対象とする。
In order to adjust the power factor by also compensating for the fundamental wave reactive power, all instantaneous imaginary powers Q (attributable to the fundamental wave and those attributable to ten harmonics) and instantaneous real power P are subject to compensation.

従って、瞬時虚電力においては、QとQを分離する必要
がなくなり、補償対象抽出のフィルタも不要になる。そ
れ故、第1図では瞬時実電力部分のみフィルタを用いた
構成となっている。
Therefore, in the instantaneous imaginary power, there is no need to separate Q and Q, and a filter for extracting the compensation target is also no longer necessary. Therefore, in FIG. 1, a filter is used only for the instantaneous actual power portion.

すなわち、電流指令部25においては、基本波成分の無
効電力指令Q”(直流分)を補償対象に与えろことで、
任意の進み電流・遅れ電流指令か与えられる。
That is, in the current command unit 25, by giving the reactive power command Q" (DC component) of the fundamental wave component to the compensation target,
An arbitrary lead current/lag current command can be given.

補償対象となる高調波に起因する瞬時実電力Pと、全て
の瞬時虚電力Qが求まったのて、電流措置演算部26:
よ瞬時電力Ph、qhと相電圧E1゜E 11から直交
α−β叱標」二の瞬時電流191.■。
After the instantaneous real power P caused by the harmonics to be compensated and all the instantaneous imaginary powers Q are determined, the current measure calculation unit 26:
From the instantaneous power Ph, qh and the phase voltage E1゜E11 orthogonal α-β, the second instantaneous current 191. ■.

を求める。seek.

、+、l霞 L  E a  E IIJ I Q h
 」2相/3相変換部27は、2相隣時電ゐI。
,+,l Kasumi L E a E IIJ I Q h
The 2-phase/3-phase converter 27 converts the 2-phase adjacent power I.

I〆を3相隣時電流1 ca +  I tb +  
I CQ′に変換して3相隣時電流での補償電流指令値
を求める。
I〆 is the current when three phases are adjacent 1 ca + I tb +
Convert to I CQ' to obtain the compensation current command value for the three-phase adjacent current.

PWM制御g!I28は、3相隣時電流IcaTcb[
cどと補償電流の検出信号IR,Is、  ITとを突
き合わせ、コンパ1ノータによる搬送波との比較方式で
PW:〜1波形のゲート信号を得、このケート信号によ
り順変換回路11の自己消弧素子をスイッチング制御す
る、 上述までの構成により、系統負荷電流に含まれろ高調波
成分を順変換回路11から補償する電流として交流電源
l側に供給する。
PWM control g! I28 is the three-phase adjacent current IcaTcb [
C and the compensation current detection signals IR, Is, and IT are compared with the carrier wave using a comparator 1 notator to obtain a PW:~1 waveform gate signal, and this gate signal causes the forward conversion circuit 11 to self-extinguish. With the above-described configuration that controls the switching of the elements, the forward conversion circuit 11 supplies the harmonic components included in the system load current to the AC power supply l side as a current that compensates for them.

ここで、瞬時実電力Phには逆変換回路13が電動機5
に供給する実電力P1.を加算してN?M指令演算部2
6に供給する。この実電力PLはコンデンサ12の電圧
E、と逆変換回路13の直流電流I、の夫々の検出信号
を乗算することで直流負荷を求め、必要に応じてフィル
タによる一次遅れを持って実電力演算部29によって求
められる。
Here, for the instantaneous actual power Ph, the inverse conversion circuit 13
Actual power supplied to P1. Add N? M command calculation section 2
Supply to 6. This actual power PL is obtained by multiplying the detection signals of the voltage E of the capacitor 12 and the DC current I of the inverse conversion circuit 13 to obtain the DC load, and if necessary, calculates the actual power with a first-order delay due to a filter. 29.

また、瞬時実電力Phには順変換回路11のスイッチン
グロス等のロス分を補償するロス電力P(!を加算して
いる。このロス電力PCはコンデンサ電圧E4の検出信
号とコンデンサ12の直流電圧指令Ed″との突き合わ
せで電圧制御回路30から求める。
In addition, a loss power P (!) is added to the instantaneous actual power Ph to compensate for losses such as switching loss of the forward conversion circuit 11. This loss power PC is the detection signal of the capacitor voltage E4 and the DC voltage of the capacitor 12. It is obtained from the voltage control circuit 30 by comparing it with the command Ed''.

本実施例によれば、系統負荷電流から瞬時実電力Pと瞬
時虚電力qを求め、瞬時実電力Pから高調波瞬時実電力
Phを求めると共に、瞬時虚電力qに基本波無効電力指
令Q4を加算することにより虚電力qhを求める。この
うち実電力Phには逆変換回路13が負荷(5)に供給
する実電力PL支び順変換回路11の変換ロス分PCを
加えて順変換回路11の瞬時実電力Pの制御信号とし、
この実電力Pと瞬時虚電力q7から電流指令に変換し、
さらに2相/3相変換と電流フィードバック制御によっ
てPWM制御信号を得る。
According to this embodiment, instantaneous real power P and instantaneous imaginary power q are determined from the grid load current, harmonic instantaneous actual power Ph is determined from instantaneous actual power P, and fundamental wave reactive power command Q4 is applied to instantaneous imaginary power q. The imaginary power qh is obtained by adding. Of these, to the actual power Ph, the real power PL supplied by the inverse conversion circuit 13 to the load (5) and the conversion loss PC of the forward conversion circuit 11 are added to form a control signal for the instantaneous actual power P of the forward conversion circuit 11,
Convert this real power P and instantaneous imaginary power q7 into a current command,
Furthermore, a PWM control signal is obtained by 2-phase/3-phase conversion and current feedback control.

従って、高調波抑制のためには瞬時実電力と虚電力から
高調渡分を求めて順変換回路11への電流指令を求め、
この電流指令に逆変換回路13の負荷実電力を加えて順
変換回路11への電流指令を求めるため、高調波抑制機
能を低下させることなく逆変換回路の負荷にも安定した
電力供給を行うことができる。また、逆変換回路13の
負荷に供給するべき電力を直流電圧と直流電流のみから
求めるため実電力演算部2つを簡単化する。さらに、逆
変換回路13の実電力を高調波抑制のにめの高調波実電
力Phに加算して、順変換回路11の電力制御になるた
め、逆変換回路13がら負荷に供給する電力は力率1に
なるし、同様に回生運転時も力率1に制御される。
Therefore, in order to suppress harmonics, the harmonic component is determined from the instantaneous real power and the imaginary power, and the current command to the forward conversion circuit 11 is determined.
Since the current command to the forward conversion circuit 11 is obtained by adding the load actual power of the inverse conversion circuit 13 to this current command, stable power can be supplied to the load of the inverse conversion circuit without reducing the harmonic suppression function. I can do it. Furthermore, since the power to be supplied to the load of the inverse conversion circuit 13 is determined from only the DC voltage and DC current, the two actual power calculation units are simplified. Furthermore, since the power of the forward conversion circuit 11 is controlled by adding the actual power of the inverse conversion circuit 13 to the harmonic actual power Ph for harmonic suppression, the power supplied to the load from the inverse conversion circuit 13 is The power factor becomes 1, and the power factor is similarly controlled to 1 during regenerative operation.

また、高調波成分を補償する二とて電源電流は正弦波に
ζす、さろに基本波無効電流を補償することによって基
本波電流の位相を力率1に制御できる。
Further, by compensating for harmonic components, the power supply current becomes a sine wave, and by compensating for the fundamental reactive current, the phase of the fundamental current can be controlled to a power factor of 1.

このように、全ての瞬時電力を補償対象とするので、フ
ィルタによって補償対象を抽出することなく、瞬時虚電
力成分に基本波無効電力指令(直流分)を加えることて
任意の基本波無効電流の補償ができ、結果として連続的
な力率の調整が可能である。
In this way, since all instantaneous power is subject to compensation, any fundamental reactive current can be calculated by adding the fundamental wave reactive power command (DC component) to the instantaneous imaginary power component without extracting the compensation subject using a filter. compensation, resulting in continuous power factor adjustment.

G4発明の効果 以上のとおり、本発明によれば、電源回生機能を持つ順
変換回路のPWM制御に、系統負荷電流から求めた瞬時
電力の高調波成分に逆変換回路から負荷に供給する実電
力を瞬時実電力に加えておく几め、系統の高調波抑制効
果を高めながら逆変換回路の負荷にも安定かつ力率lに
しf:電力供給つ・できろ。また、逆変換回路の実電力
は直流電流と電圧から求めるため、回路構成を簡単化す
る。
Effects of the G4 Invention As described above, according to the present invention, in PWM control of a forward conversion circuit having a power regeneration function, harmonic components of instantaneous power obtained from the grid load current are converted to actual power supplied to the load from an inverse conversion circuit. By adding this to the instantaneous actual power, it is possible to increase the harmonic suppression effect of the grid while maintaining stability and power factor l for the load of the inversion circuit. Furthermore, since the actual power of the inverse conversion circuit is determined from DC current and voltage, the circuit configuration is simplified.

まf二、可変速装置として機能する1こけてなく、電力
系統の電源力率を調整できるので力率調整用の進相コン
デンサ、位(目制御リアクトル等か不要こなり、回路構
成が簡単になると共に、負荷を運転していないときでも
、順変換部のみ動作させることで電源力率を連続的に調
整できるので、高性能にして信頼性が向上する。
Second, it functions as a variable speed device, and since it can adjust the power factor of the power supply system, there is no need for phase advance capacitors, phase control reactors, etc. for power factor adjustment, and the circuit configuration is simple. In addition, even when the load is not operating, the power factor of the power source can be adjusted continuously by operating only the forward conversion section, resulting in high performance and improved reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す制御回路図、第2図は
本発明の実施例による電源回生電圧形インバータの全体
構成図、第3図は従来の電源回生電圧形インバータの回
路図である。 ll 順変換回路、13・・・逆変換回路、23・・瞬
時電力演算部、24 交流分演算部、25・電流指令部
、26・・電流指令演算部、29・・実電力演算部、3
0・・・電圧制御回路。
Fig. 1 is a control circuit diagram showing an embodiment of the present invention, Fig. 2 is an overall configuration diagram of a power regeneration voltage type inverter according to an embodiment of the present invention, and Fig. 3 is a circuit diagram of a conventional power regeneration voltage type inverter. It is. ll Forward conversion circuit, 13... Inverse conversion circuit, 23... Instantaneous power calculation section, 24 AC component calculation section, 25. Current command section, 26. Current command calculation section, 29.. Actual power calculation section, 3
0...Voltage control circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)自己消弧形デバイスを主回路スイッチとしてPW
M制御により電源回生を可能にした順変換回路と、この
順変換回路から直流電力が供給され負荷に交流電力を供
給する逆変換回路と、前記順変換回路をPWM制御する
制御回路とを備えた電源回生電圧形インバータにおいて
、前記制御回路は順変換回路の交流系統の負荷電流から
瞬時実電力の高調波成分を求める手段と、前記順変換回
路の交流系統の相電圧から虚電力を求めこの虚電力に基
本波無効電力を加算して力率を調整する手段と、前記逆
変換回路の直流電圧と直流電流から負荷の実電力を求め
る手段と、この負荷の実電力を前記瞬時実電力の高調波
成分に加算した実電力と前記瞬時虚電力とから前記順変
換回路の電流指令を求める手段とを備えたことを特徴と
する電源回生電圧形インバータ。
(1) PW using a self-extinguishing device as the main circuit switch
A forward conversion circuit that enables power regeneration through M control, an inverse conversion circuit that receives DC power from the forward conversion circuit and supplies AC power to a load, and a control circuit that performs PWM control on the forward conversion circuit. In the power regeneration voltage type inverter, the control circuit includes means for determining harmonic components of instantaneous actual power from the load current of the AC system of the forward conversion circuit, and means for determining the imaginary power from the phase voltage of the AC system of the forward conversion circuit. means for adjusting the power factor by adding fundamental wave reactive power to the electric power; means for determining the actual power of the load from the DC voltage and DC current of the inverse conversion circuit; A power regeneration voltage type inverter comprising means for determining a current command for the forward conversion circuit from the real power added to the wave component and the instantaneous imaginary power.
JP2030292A 1990-02-09 1990-02-09 Power regeneration voltage type inverter Expired - Fee Related JP2990723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2030292A JP2990723B2 (en) 1990-02-09 1990-02-09 Power regeneration voltage type inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2030292A JP2990723B2 (en) 1990-02-09 1990-02-09 Power regeneration voltage type inverter

Publications (2)

Publication Number Publication Date
JPH03235675A true JPH03235675A (en) 1991-10-21
JP2990723B2 JP2990723B2 (en) 1999-12-13

Family

ID=12299656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2030292A Expired - Fee Related JP2990723B2 (en) 1990-02-09 1990-02-09 Power regeneration voltage type inverter

Country Status (1)

Country Link
JP (1) JP2990723B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304156A (en) * 2004-04-09 2005-10-27 Toshiba Corp Power converter
CN112136271A (en) * 2018-04-19 2020-12-25 Abb瑞士股份有限公司 System and method for power conversion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304156A (en) * 2004-04-09 2005-10-27 Toshiba Corp Power converter
CN112136271A (en) * 2018-04-19 2020-12-25 Abb瑞士股份有限公司 System and method for power conversion

Also Published As

Publication number Publication date
JP2990723B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
JP3265398B2 (en) DC power transmission device control device
KR101621994B1 (en) Control apparatus for regenerative medium voltage inverter
JPS6137864B2 (en)
US5349522A (en) Method and apparatus for controlling the output voltage of an AC electrical system
JPH04197097A (en) High capacity speed varying system for ac motor
JP2714195B2 (en) Voltage fluctuation and harmonic suppression device
JPS6148167B2 (en)
EP1380098B1 (en) Vector control of an induction motor
JPH03235675A (en) Power regenerative voltage inverter
JP2926931B2 (en) Harmonic suppression device
JP2004159416A (en) Unbalance compensator for three phase-two phase converter
Monfared et al. A simple and efficient control strategy for four-switch three-phase power converters
Kong et al. Enhanced three phase ac stationary frame PI current regulators
JP3006084B2 (en) Power regeneration inverter
JPH10201099A (en) Active filter
JPH07107744A (en) Power converter
JPH10174291A (en) Inverter device linked to system
JPS5819169A (en) Controlling method for pwm control converter
JP7282984B2 (en) POWER CONVERTER AND CONTROL METHOD THEREOF
KR20140085845A (en) Method of compensate for grid current unbalance and distortion for 3-phase bi-directional inverter
JP7112593B2 (en) POWER CONVERTER AND CONTROL METHOD THEREOF
Kanaan et al. MPC based on balanced positive-sequence extraction strategy for grid-tied converter control
Nagar et al. Comparison of three phase SPWM and VF-DPC techniques based on power factor and THD
Li et al. Research on controlling strategy of dual bridge matrix converter-direct torque control of induction motor
Riedemann et al. A PI resonant current controller for an open-end winding induction machine fed by an indirect matrix converter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees