JPH03234594A - Aluminum alloy support for printing plate - Google Patents

Aluminum alloy support for printing plate

Info

Publication number
JPH03234594A
JPH03234594A JP3106690A JP3106690A JPH03234594A JP H03234594 A JPH03234594 A JP H03234594A JP 3106690 A JP3106690 A JP 3106690A JP 3106690 A JP3106690 A JP 3106690A JP H03234594 A JPH03234594 A JP H03234594A
Authority
JP
Japan
Prior art keywords
intermetallic compounds
aluminum alloy
printing
plate
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3106690A
Other languages
Japanese (ja)
Other versions
JP2688786B2 (en
Inventor
Toshiki Muramatsu
俊樹 村松
Mamoru Matsuo
守 松尾
Kazunari Takizawa
滝沢 一成
Hirokazu Sakaki
榊 博和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Fujifilm Holdings Corp
Original Assignee
Sky Aluminium Co Ltd
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd, Fuji Photo Film Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP3106690A priority Critical patent/JP2688786B2/en
Publication of JPH03234594A publication Critical patent/JPH03234594A/en
Application granted granted Critical
Publication of JP2688786B2 publication Critical patent/JP2688786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make ink contamination hard to generate on a non-image part during printing, to continuously perform printing many times and to obtain a sharp printing image by properly prescribing the intermetallic compound in an anodic oxidation film corresponding to the component system of an alloy. CONSTITUTION:The number of the intermetallic compounds, especially, the intermetallic compounds having a size of 1mum or more in the max. length present in an anodic oxidation film per a unit area exerts large effect on ink contamination properties and, by prescribing the number of the intermetallic compounds having a size of 1mum or more in the max. length per a unit area to a certain value or less, ink contamination resistance can be markedly improved. Then, the number of the intermetallic compounds having a size of 1mum or more in the max. length in the anodic oxidation film is set to 7000/1mm<2> or less. By this method, an aluminum alloy support for a printing plate hard to, generate ink contamination on a non-image part during printing and excellent in printability is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はオフセット印刷または平版印刷に使用される
アルミニウム合金支持体に関するものであり、特に印刷
中において非画像部の汚れの生じにくい印刷版用アルミ
ニウム合金支持体、すなわち耐インク汚れ性の優れた印
刷版用アルミニウム合金支持体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an aluminum alloy support used in offset printing or lithographic printing, and in particular to an aluminum alloy for printing plates that is less likely to cause stains in non-image areas during printing. The present invention relates to a support, that is, an aluminum alloy support for printing plates that has excellent ink stain resistance.

従来の技術 一般にオフセット印刷版もしくは平版印刷版としては、
アルミニウム合金素板の表面に粗面化処理、陽極酸化処
理などの表面処理を施して支持体とし、その支持体上に
感光性物質を塗布、乾燥させて所謂PS板とし、そのP
S板上に画像露光、現像、ガム引き等の製版処理を施し
たものが使用されている。このような製版処理の過程に
おいて、現像処理により未溶解で残留した感光層は画像
部を形成し、−力感光層が除去されてその下のアルミニ
ウム表面が露出した部分は親水性のため水受容部となっ
て非画像部を形成する。
Conventional technology Generally speaking, offset printing plates or lithographic printing plates are
The surface of an aluminum alloy base plate is subjected to surface treatments such as roughening treatment and anodizing treatment to form a support, and a photosensitive material is applied onto the support and dried to form a so-called PS plate.
The plate that has been subjected to plate-making processes such as image exposure, development, and gumming on an S plate is used. In this plate-making process, the photosensitive layer that remains undissolved by the development process forms an image area, and the area where the photosensitive layer is removed and the underlying aluminum surface is exposed is hydrophilic and therefore absorbs water. area to form a non-image area.

ところでこのようなオフセット印刷用もしくは平版印刷
用の支持体としては、一般に軽量でかつ表面処理性、加
工性、耐食性に優れたアルミニウム合金圧延板が使用さ
れる。このような目的のアルミニウム合金圧延板として
は、従来は、Its 1050. JIS 1100.
 JIS 3H3等からなる板厚11〜0.5市程度の
アルミニウム合金圧延板が使用されており、このような
アルミニウム圧延板は、表面を粗面化し、その後陽極酸
化処理を施して印刷版に使用されている。具体的には、
特開昭48−49501号に記載されているように機械
的粗面化処理、化学的エツチング処理、陽極酸化皮膜処
理を順に施したアルミニウム平版印刷版、あるいは特開
昭51mm2146234号に記載されているように電
気化学的処理、後処理、陽極酸化処理を順に施したアル
ミニウム平版印刷版、特公昭48−28123号に記載
されている化学エツチング処理、陽極酸化処理を順に施
したアルミニウム平版印刷版、あるいは機械的粗面化処
理後に特公昭48〜28123号に記載されている処理
を施したアルミニウム平版印刷版等が知られている。
By the way, as a support for such offset printing or planographic printing, aluminum alloy rolled plates are generally used, which are lightweight and have excellent surface treatment properties, workability, and corrosion resistance. Conventionally, the rolled aluminum alloy plate for this purpose is Its 1050. JIS 1100.
Aluminum alloy rolled plates made of JIS 3H3, etc., with a thickness of 11 to 0.5 mm are used, and these rolled aluminum plates have their surfaces roughened and then anodized before being used for printing plates. has been done. in particular,
An aluminum lithographic printing plate which has been sequentially subjected to mechanical roughening treatment, chemical etching treatment, and anodic oxide film treatment as described in JP-A-48-49501, or as described in JP-A-51-2146234. An aluminum lithographic printing plate that has been subjected to electrochemical treatment, post-treatment, and anodization treatment in this order, an aluminum lithographic printing plate that has been subjected to chemical etching treatment and anodization treatment in order as described in Japanese Patent Publication No. 48-28123, or Aluminum lithographic printing plates and the like are known which are subjected to a mechanical surface roughening treatment as described in Japanese Patent Publication No. 48-28123.

発明が解決しようとする課題 前述のような印刷用アルミニウム合金圧延板を実際に印
刷に使用するにあたっては、先ず既に述べたように素板
表面を機械的方法、化学的方法、電気化学的方法のうち
いずれか1種、または2種以上の組合わされた工程によ
って粗面化した後、印刷性向上のために0.5〜4g/
rrr程度の生成量で陽極酸化皮膜を生成し、その後感
光剤を塗布して露光し、現像等の製版処理を行ない、印
刷機の円筒形版胴に巻付け、湿し水の存在下においてイ
ンクを画像部に付着させ、ゴムブランケットに転写後、
紙面に印刷する。
Problems to be Solved by the Invention When actually using the above-mentioned rolled aluminum alloy plate for printing, the surface of the base plate is first subjected to mechanical, chemical, and electrochemical methods, as described above. After roughening the surface by one or a combination of two or more steps, 0.5 to 4 g/
An anodic oxide film is formed in an amount of about After adhering to the image area and transferring it to the rubber blanket,
Print on paper.

以上のようにして使用される印刷用アルミニウム合金圧
延板には、機械的性能を除けば次の(N〜(E)のよう
な特性が要求される。
The aluminum alloy rolled plate for printing used as described above is required to have the following properties (N to (E)), except for mechanical performance.

囚 粗面化処理によって均一な凹凸が形成されること。Uniform unevenness is formed by surface roughening treatment.

(Bl  感光膜の密着性が良いこと。(Bl Good adhesion of photoresist film.

fc)  印刷中に非画像部に汚れを生じないこと。fc) No stains should occur in non-image areas during printing.

(鴎 画像部の調子再現性が優れること。(Seaweed: Excellent tone reproducibility in the image area.

(El  現像後の画線部検査の際において画線部が見
やすくなるように、地の色調(粗面化処理後の色1m)
が白くなること。
(El) To make the image area easier to see when inspecting the image area after development, the color tone of the background (color 1m after roughening treatment)
to become white.

これらの要求特性のうち、特に四は最も基本的な特性で
あり、粗面化処理によって不均一な凹凸が形成されれば
、(B)〜(Elの特性にも悪影響を及ぼし、また充分
な耐刷力が得られなくなる。化学的エツチングや電気化
学的エツチングによって素板の表面を均一に粗面化する
ためには、素板の合金組成や製造条件を適切に選択する
必要がある。このような観点から、一般には素板として
前述のように純アルミニウム系の月51056合金やl
llltl合金、島るいはAl−Mn系合金(3003
合金)、さらにはAl−Mg系合金が選ばれており、ま
た最近ではこれらの合金中の成分をさらに規制した材料
も開発されており、これらによって前記(Nの特性自体
はある程度達成されるようになっている。
Among these required characteristics, 4 is the most basic characteristic, and if unevenness is formed by the surface roughening treatment, it will have a negative effect on the characteristics of (B) to (El), and it will not be possible to obtain sufficient characteristics. The printing durability will not be obtained. In order to uniformly roughen the surface of the blank plate by chemical etching or electrochemical etching, it is necessary to appropriately select the alloy composition of the blank plate and manufacturing conditions. From this point of view, pure aluminum-based Tsuki 51056 alloy or L is generally used as the base plate.
lltl alloy, island or Al-Mn alloy (3003
alloys), and even Al-Mg alloys, and recently materials have been developed in which the components in these alloys are further regulated. It has become.

ところで最近では、より鮮明な印刷が要求され、また同
じ版を用いてより多くの部数の印刷が可能となることが
望まれている。そのためには、印刷中に非画像部にイン
ク汚れが生じないことが特に重要となる。
Nowadays, clearer printing is required, and it is desired to be able to print a larger number of copies using the same printing plate. To this end, it is particularly important that ink stains do not occur in non-image areas during printing.

この発明は以上の事情を背景としてなされたもので、特
に印刷中に非画像部にインク汚れが生じに(い印刷適性
の優れた印刷版用アルミニウム合金支持体を提供するこ
とを目的とするものである。
This invention was made against the background of the above-mentioned circumstances, and it is an object of the present invention to provide an aluminum alloy support for a printing plate that has excellent printability, especially in preventing ink stains from occurring in non-image areas during printing. It is.

課題を解決するための手段 本発明者等は前述の問題を解決するべく、印刷中の非画
像部のインク汚れ発生に関して種々実験・検討を重ねた
結果、支持体表面の陽極酸化皮膜中に存在する最大長さ
 1μs以上の金属間化合物の数が耐インク汚れ性に大
きな影響を及ぼしていることを見出し、この発明をなす
に至った。
Means for Solving the Problem In order to solve the above-mentioned problem, the inventors of the present invention conducted various experiments and studies regarding the occurrence of ink stains in non-image areas during printing, and found that the presence of ink stains in the anodic oxide film on the surface of the support. It was discovered that the number of intermetallic compounds having a maximum length of 1 μs or more has a great effect on ink stain resistance, and this invention was made based on this discovery.

具体的には、請求項1の発明は、純Al系もしくはAl
−Mg系のアルミニウム合金圧延板を基板とし、その基
板表面に粗面化処理が施されかつ陽極酸化皮膜が0.5
〜4g/rdの生成量で形成された印刷版用アルミニウ
ム合金支持体において、陽極酸化皮膜中の最大長さ 1
mm2以上の大きさの金属間化合物の数が1mm2当り
7000個以下であることを特徴とするものである。
Specifically, the invention of claim 1 provides pure Al-based or Al-based
- The substrate is an Mg-based aluminum alloy rolled plate, and the surface of the substrate is roughened and has an anodic oxide film of 0.5
In the aluminum alloy support for printing plates formed with a production amount of ~4 g/rd, the maximum length in the anodic oxide film 1
It is characterized in that the number of intermetallic compounds with a size of mm2 or more is 7000 or less per mm2.

また請求項2の発明は、Al−Mn系のアルミニウム合
金圧延板を基板とし、その基板表面に粗面化処理が施さ
れかつ陽極酸化皮膜が0.5〜4g/dの生成量で形成
された印刷版用アルミニウム合金支持体において、陽極
酸化皮膜中の最大長さlμs以上の大きさの金属間化合
物の数が 1mm2当り30000個以下であることを
特徴とするものである。
In addition, the invention of claim 2 uses an Al-Mn-based aluminum alloy rolled plate as a substrate, and the surface of the substrate is subjected to a roughening treatment, and an anodized film is formed in an amount of 0.5 to 4 g/d. The aluminum alloy support for printing plates is characterized in that the number of intermetallic compounds having a maximum length of 1 μs or more in the anodized film is 30,000 or less per 1 mm 2 .

作   用 本発明者等が印刷中の非画像部の汚れ発生に関して種々
実験・検討を重ねたところ、次のような事実が判明した
Function The inventors of the present invention have repeatedly conducted various experiments and studies regarding the occurrence of stains in non-image areas during printing, and have found the following fact.

すなわち、繰返し印刷を行なうことによる応力と、長時
間湿し水で濡れていることとが相俟って、陽極酸化皮膜
に割れ等の破壊が生しれば、地のアルミニウム合金が湿
し水と接触して腐食が生し、その腐食部分では親水性が
低下してその部分にインクが付着し、非画像部が汚れる
ことが判明した。
In other words, if the stress from repeated printing and being wet with dampening water for a long period of time combine to cause cracks or other damage to the anodized film, the underlying aluminum alloy may be damaged by the dampening water. It was found that corrosion occurs due to contact, and the hydrophilicity of the corroded areas decreases, causing ink to adhere to those areas and staining non-image areas.

さらに、このような陽極酸化皮膜の破壊は、主に皮膜中
に存在していた金属間化合物とマトリックスとの界面で
発生していることが判明した。そしてこれらの事実から
、陽極酸化皮膜中に存在する金属間化合物、特に最大長
さ lμs以上の大きさの金属間化合物の単位面積当り
の個数が耐インク汚れ性に大きな影響を与えており、単
位面積当りの最大長さ l−以上の金属間化合物の個数
をある値以下に規制することによって、耐インク汚れ性
を著しく改善し得ることを見出したのである。
Furthermore, it was found that such destruction of the anodic oxide film mainly occurred at the interface between the intermetallic compound existing in the film and the matrix. Based on these facts, the number of intermetallic compounds present in the anodic oxide film, especially those with a maximum length of lμs or more per unit area, has a great influence on ink stain resistance, and the unit It has been found that ink stain resistance can be significantly improved by regulating the number of intermetallic compounds having a maximum length of 1- or more per area to a certain value or less.

ここで実際には、使用されているアルミニウム合金の種
類(合金系)によって金属間化合物の種類は異なり、ま
たその金属間化合物の種類によって金属間化合物の個数
が耐インク汚れ性に与える影響の程度も異なる。
In reality, the type of intermetallic compound differs depending on the type of aluminum alloy (alloy system) used, and the degree of influence that the number of intermetallic compounds has on ink stain resistance depends on the type of intermetallic compound. are also different.

Its 1050050合金00合金のような純A/系
のアルミニウム合金やAl−Mg系アルミニウム合金に
おいては、金属間化合物として主としてAl−Fe系、
Al−Fe−8i系の金属間化合物が存在し、この場合
は最大長さ l−以上の金属間化合物が陽極酸化皮膜中
に 1mm2当り7000個以上存在すれば非画像部の
インク汚れが激しくなる。
In pure A/based aluminum alloys and Al-Mg based aluminum alloys such as its 1050050 alloy 00 alloy, intermetallic compounds mainly include Al-Fe based,
If Al-Fe-8i-based intermetallic compounds exist, and in this case there are 7000 or more intermetallic compounds with a maximum length of 1 or more per 1 mm2 in the anodic oxide film, ink stains in non-image areas will become severe. .

一方It33003003合金なAl−Mn系のアルミ
ニウム合金の場合は、主にAl−Mn−Fe系やAl’
−Mn−Fe−3i系の金属間化合物が存在し、かっこ
の系の場合は純アルミニウム系や入/−Mg系の場合よ
りも金属間化合物の数が本質的に多くなる。しかしなが
らAl−Mn−Fe系やAl−Mn−F e−8i系の
金属間化合物はAl−Fe系やAl−Fe−3i系の金
属間化合物と比較してマトリックスとの電位差が少なく
、そのためたとえ陽極酸化皮膜に割れが生じたとしても
腐食に至るに長時間を要するから、耐インク汚れ性に与
える影響は少ない。したがってAjMn系合金の場合は
純Al系やAl−Mg系合金の場合よりも金属間化合物
の個数が多くても耐インク汚れ性は良好であるが、陽極
酸化皮膜中における最大長さ 1μm以上の金属間化合
物の 1mm2当りの個数が30000個を越えて存在
すれば非画像部のインク汚れが発生し易くなる。
On the other hand, in the case of Al-Mn-based aluminum alloys such as It33003003 alloys, mainly Al-Mn-Fe-based and Al'
Intermetallic compounds of the -Mn-Fe-3i system are present, and the number of intermetallic compounds is essentially greater in the case of the parentheses system than in the case of the pure aluminum system or the /-Mg system. However, Al-Mn-Fe-based and Al-Mn-Fe-8i-based intermetallic compounds have a smaller potential difference with the matrix than Al-Fe-based and Al-Fe-3i-based intermetallic compounds. Even if cracks occur in the anodic oxide film, it takes a long time for corrosion to occur, so there is little effect on ink stain resistance. Therefore, in the case of AjMn-based alloys, the ink stain resistance is good even if the number of intermetallic compounds is larger than that of pure Al-based or Al-Mg-based alloys, but the maximum length in the anodic oxide film is 1 μm or more. If the number of intermetallic compounds per 1 mm2 exceeds 30,000, ink stains in non-image areas are likely to occur.

したがって基板として純アルミ系もしくはAlMg系合
金の圧延板を用いる場合は最大長さLtm以上の金属間
化合物の個数を 1mm2当り7000個以下と規定し
、また基板としてA I −M n系合金の圧延板を用
いる場合は最大長さ IILIT1以上の金属間化合物
の個数を 1mm2当り 30000個以下と規定した
Therefore, when using a rolled sheet of pure aluminum or AlMg alloy as a substrate, the number of intermetallic compounds with a maximum length of Ltm or more is defined as 7000 or less per 1 mm2, and when using a rolled sheet of AI-Mn alloy as a substrate, When using a plate, the number of intermetallic compounds with a maximum length of IILIT1 or more is specified as 30,000 or less per 1 mm2.

なおここで純Al系のアルミニウム合金とは、一般には
F e  O,60wI%以下、S i  OjOW1
%以下で残部が実質的にAlよりなるもの、またAJM
g系のアルミニウム合金とは、Mg  3.[lvf%
以下を必須成分として含有し、F e O,60v1%
以下、S i O,30v1%以下で残部が実質的にA
lよりなるものと定義することができる。さらにAl−
Mn系のアルミニウム合金とは、必須成分としてMn1
.2w1%以下を含有し、Fe[1,6v1%以下、S
iQ、3w1%以下、残部が実質的にAlよりなるもの
と定義することができる。
Note that the pure Al-based aluminum alloy here generally refers to F e O, 60wI% or less, S i OjOW1
% or less, with the remainder consisting essentially of Al, and AJM
The g-based aluminum alloy is Mg 3. [lvf%
Contains the following as essential ingredients: F e O, 60v1%
Below, S i O, 30v1% or less, the remainder is substantially A
It can be defined as consisting of l. Furthermore, Al-
Mn-based aluminum alloys include Mn1 as an essential component.
.. Contains 2w1% or less, Fe[1,6v1% or less, S
iQ, 3w1% or less, and the remainder can be defined as being substantially composed of Al.

前述のような最大長さ lμs以上の金属間化合物の個
数の規制は、合金の成分組成の調整や、化学的粗面化処
理条件あるいはその後のデスマット条件、さらには電気
化学的粗面化処理(電解粗面化処理)条件を適切に選択
することによって達成可能である。
The number of intermetallic compounds with a maximum length of lμs or more as described above can be controlled by adjusting the composition of the alloy, chemical roughening treatment conditions or subsequent desmutting conditions, and even electrochemical roughening treatment ( This can be achieved by appropriately selecting the conditions for electrolytic surface roughening treatment.

粗面化処理は、機械的粗面化処理、化学的粗面化処理、
電気化学的粗面化処理のうちの1種または2種以−Lで
行なえば良(、これらのうち機械的粗面化処理にはアル
ミニウム合金圧延板表面を金属ワイヤでひっかくワイヤ
ブラシグレイン法や、研磨球と研磨剤で圧延板表面を粗
面化するポールグレイン法、ナイロンブラシと研磨剤で
表面を粗面化するブラシグレイン法があり、さらに最近
ではアルミニウム板の圧延時に表面を211面化したロ
ールを用いて圧延板表面を粗面化する方法もある。
Surface roughening treatment includes mechanical roughening treatment, chemical roughening treatment,
One or more of the electrochemical surface roughening treatments may be used (among these, mechanical surface roughening treatments include the wire brush grain method, in which the surface of the rolled aluminum alloy plate is scratched with a metal wire). There is the pole grain method, which roughens the surface of a rolled plate using an abrasive ball and abrasive, and the brush grain method, which roughens the surface using a nylon brush and abrasive.More recently, there is a method that roughens the surface of an aluminum plate by making it 211-sided during rolling. There is also a method of roughening the surface of a rolled plate using rolled rolls.

圧延板表面に機械的粗面化処理のみを施してその後直ち
に陽極酸化処理を施して印刷版支持体として用いること
は稀であるが、このように機械的粗面化処理後に直ちに
陽極酸化処理を施した場合には、陽極酸化皮膜中に存在
する金属間化合物の数は粗面化処理前の圧延板の表面に
存在していた金属間化合物の数にほぼ等しい。したがっ
てこの場合には粗面化処理前の圧延板表面の 1μm以
上の金属間化合物の数を前述のような数以下に規制すれ
ば良く、そのためにはアルミニウム合金のFe量やS1
量を規制すれば良い。例えば純All系のアルミニウム
合金やAj−Mg系のアルミニウム合金の場合、Fe量
を0.20v1%以下、5illを0.1Ov1%以下
とすれば、陽極酸化皮膜中の・1LIJT1以上の大き
さの金属間化合物を 1nuj当り70[10個以下と
することができる。
It is rare to apply only mechanical roughening treatment to the surface of a rolled plate and then immediately anodize it and use it as a printing plate support. When roughening is carried out, the number of intermetallic compounds present in the anodic oxide film is approximately equal to the number of intermetallic compounds present on the surface of the rolled sheet before the roughening treatment. Therefore, in this case, the number of intermetallic compounds with a diameter of 1 μm or more on the surface of the rolled sheet before roughening treatment should be controlled to be below the number mentioned above.
The amount should be regulated. For example, in the case of pure All-based aluminum alloys or Aj-Mg-based aluminum alloys, if the amount of Fe is 0.20v1% or less and 5ill is 0.1Ov1% or less, the size of .1LIJT1 or more in the anodic oxide film is The number of intermetallic compounds can be reduced to 70 [10 or less] per 1 nuj.

一般には、機械的粗面化処理の後には化学的粗面化処理
としての化学エツチング、または機械的粗面化処理によ
る汚れ(スマット)を除去するための化学エツチングを
施すことが多い。このように化学エツチングを施す場合
は、その条件によっては金属間化合物が脱落し、金属間
化合物の数がかなり減少する。したがってその場合には
素材アルミニウム合金のFe量やSi量を規制する必要
はない。この場合の化学エツチングとしてはエツチング
剤としてアルカリを用いるのが通常であり、このアルカ
リエツチング剤としては苛性ソーダ、炭酸ソーダ、アル
ミン酸ソータ、メタ珪酸ソーダ、リン酸ソーダ、水酸化
カリウム、水酸化リチウム等が用いられる。またその濃
度と温度の好ましい範囲はそれぞれ1〜50重量%、2
0〜100℃であり、アルミニウムの溶解量が5〜20
g/rrfとなるような条件を適用することが好ましい
Generally, after the mechanical surface roughening treatment, chemical etching as a chemical surface roughening treatment or chemical etching to remove dirt (smut) caused by the mechanical surface roughening treatment is often performed. When chemical etching is performed in this manner, intermetallic compounds may fall off depending on the conditions, and the number of intermetallic compounds may be considerably reduced. Therefore, in that case, there is no need to regulate the amount of Fe or Si in the aluminum alloy material. In this case, chemical etching usually uses an alkali as an etching agent, and examples of the alkaline etching agent include caustic soda, soda carbonate, aluminate sorter, sodium metasilicate, sodium phosphate, potassium hydroxide, lithium hydroxide, etc. is used. The preferable ranges of concentration and temperature are 1 to 50% by weight and 2% by weight, respectively.
The temperature is 0 to 100℃, and the amount of aluminum dissolved is 5 to 20℃.
It is preferable to apply conditions such that g/rrf.

化学的エツチングの後には、表面に残留するスマットを
除去するために酸洗いを行なうのが通常である。この酸
洗いに用いられる酸としては、硝酸、硫酸、燐酸、クロ
ム酸、フッ酸、ホウフッ化水素酸などがある。また特に
電気化学的粗面化処理を施した後のスマット除去処理と
しては、特開昭53−12739号公報に記載されてい
るような50〜90℃の温度の15〜65重量%の硫酸
と接触させる方法や、特開昭48−28123号公報に
記載されているようなアルカリエツチングを適用するこ
とが望ましい。
Chemical etching is usually followed by pickling to remove any smut remaining on the surface. Examples of acids used for this pickling include nitric acid, sulfuric acid, phosphoric acid, chromic acid, hydrofluoric acid, and hydrofluoroboric acid. In particular, as a smut removal treatment after electrochemical surface roughening treatment, smut removal treatment using 15 to 65% by weight sulfuric acid at a temperature of 50 to 90°C as described in JP-A-53-12739 is recommended. It is desirable to apply a contacting method or alkali etching as described in Japanese Patent Application Laid-Open No. 48-28123.

上述のような粗面化処理の後には、印刷性向上のために
陽極酸化処理を施す。この陽極酸化処理は、表面の親水
性をより向上せさる己ともに、耐刷力を向上させるに有
効であるが、生成される陽極酸化皮膜の厚みが膜生成量
にして0.5g1rd未満ではこれらの効果が充分に得
られず、一方4g/dを越えて膜厚を大きくしてもこれ
らの効果が飽和するばかりでなく、逆に陽極酸化皮膜に
割れが生じ易くなる。したがって陽極酸化皮膜の厚みは
膜生成量にして05〜4g/rrfの範囲内とする。
After the surface roughening treatment as described above, anodization treatment is performed to improve printability. This anodic oxidation treatment is effective in improving the hydrophilicity of the surface and also in improving the printing durability, but if the thickness of the anodized film produced is less than 0.5g1rd in terms of film production On the other hand, even if the film thickness is increased beyond 4 g/d, these effects are not only saturated, but the anodic oxide film is more likely to crack. Therefore, the thickness of the anodic oxide film should be within the range of 0.5 to 4 g/rrf in terms of film production amount.

この陽極酸化処理の具体的方法としては、この分野で従
来より行なわれている方法で行なうことができる。具体
的には硫酸、燐酸、クロム酸、シュウ酸、スルファミン
酸、ベンゼンスルホン酸などあるいはこれらの2種類以
上を組み合わせた水溶液又は非水溶液中でアルミニウム
板に直流または交流の電流を流すことによりアルミニウ
ム支持体表面に陽極酸化皮膜を形成することができる。
As a specific method for this anodizing treatment, any conventional method used in this field can be used. Specifically, aluminum is supported by passing a direct or alternating current through an aluminum plate in an aqueous or non-aqueous solution containing sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, or a combination of two or more of these. Anodic oxide film can be formed on the body surface.

陽極酸化処理の条件は使用される電解液によって種々変
化するので一概には言えないが、−射的には電解液の濃
度が1〜80%、液温5〜70℃、電流tlJj O,
5〜60A/dffl、電圧 1〜100V、電解時間
ID〜 100秒の範囲が適当である。
The conditions for anodizing treatment vary depending on the electrolytic solution used, so it cannot be generalized, but in terms of electrolytic solution concentration: 1 to 80%, solution temperature: 5 to 70°C, current: tlJj O,
Appropriate ranges are 5 to 60 A/dffl, voltage 1 to 100 V, and electrolysis time ID to 100 seconds.

これらの陽極酸化皮膜処理の内でも、特に英国特許第1
,412.768号に記載されている硫酸中で高電流密
度で陽極酸化する方法、及び米国特許第3,511,6
61号に記載されている燐酸を電解浴として陽極酸化す
る方法が好ましい。
Among these anodic oxidation coating treatments, the British Patent No. 1
, 412.768, and U.S. Pat. No. 3,511,6.
The method of anodic oxidation using phosphoric acid as an electrolytic bath as described in No. 61 is preferred.

陽極酸化されたアルミニウム合金板は更に米国特許第2
,714.066号及び同第3,181゜461号に記
載されているようにアルミニウム金属シリケート、例え
ば珪酸ナトリウムの水溶液に浸漬するなどの方法により
処理したり、米国特許第3,860.426号に記載さ
れているように水溶性金属塩(例えば酢酸亜鉛など)を
含む親水性セルロース(例えばカルボキシメチルセルロ
ースなど)の下塗り層を設けることもできる。
The anodized aluminum alloy plate is further covered by U.S. Patent No.
, 714.066 and 3,181.461, by methods such as immersion in an aqueous solution of aluminum metal silicate, e.g., sodium silicate, or as described in U.S. Pat. A subbing layer of hydrophilic cellulose (such as carboxymethylcellulose) containing a water-soluble metal salt (such as zinc acetate) may also be provided as described in .

以上のようにして得られるこの発明による印刷版用アル
ミニウム合金支持体の上には、28版の感光層として従
来より知られている感光層を設けて感光性平版印刷版を
得ることができ、これを製版処理して得た平版印刷版は
優れた耐インク汚れ性を有している。
On the aluminum alloy support for printing plates according to the present invention obtained as described above, a photosensitive layer conventionally known as a 28-plate photosensitive layer can be provided to obtain a photosensitive lithographic printing plate. The lithographic printing plate obtained by plate-making processing has excellent ink stain resistance.

実  施  例 次にこの発明による印刷版用アルミニウム合金支持体の
実施例についてその比較例とともに説明する。
EXAMPLES Next, examples of the aluminum alloy support for printing plates according to the present invention will be described together with comparative examples thereof.

第1表の合金Nα1〜3に示す成分組成のアルミニウム
合金を溶製し、半連続鋳造法によって450X 120
0X 3500n+1の鋳塊を製造した。その鋳塊に対
し片面7順ずつの調剤を行なった後、次のような条件で
処理した。
Aluminum alloys having the compositions shown in Alloys Nα1 to 3 in Table 1 were melted and cast into 450X 120 by semi-continuous casting.
An ingot of 0X 3500n+1 was produced. The ingot was subjected to seven preparations on each side, and then treated under the following conditions.

すなわち純Al系のN(11合金については、560℃
で鋳塊に均熱処理を施した後、450℃に加熱して厚さ
 4關まで熱間圧延し、次いで一次冷間圧延によって!
、5mm厚とした後、連続焼鈍炉によって500℃で中
間焼鈍し、さらに最終冷間圧延を施して1¥さ D、3
mrmのH18テンパー材とした。
That is, pure Al-based N (for alloy 11, 560°C
After applying soaking treatment to the ingot, it was heated to 450℃ and hot rolled to a thickness of 4 mm, and then first cold rolled!
, after making it 5mm thick, it was intermediately annealed at 500℃ in a continuous annealing furnace, and then final cold rolled to a thickness of 1 yen D, 3
Mrm H18 tempered material was used.

またAl−Mg系のNα2合金については、530℃で
鋳塊に均熱処理を施した後、450℃に加熱して厚さ 
311IIまで熱間圧延し、次いで一次冷間圧延によっ
て 1.Omm厚とした後、バッチ炉によって350℃
で中間焼鈍し、さらに最終冷間圧延を施して厚さ 0.
3mnの■118テンパー材とした。
For Al-Mg based Nα2 alloys, the ingot is soaked at 530°C and then heated to 450°C to reduce the thickness.
1. By hot rolling to 311II and then by primary cold rolling. After making it 0mm thick, it was heated to 350℃ in a batch furnace.
It is intermediately annealed and then final cold rolled to a thickness of 0.
It was made of 3mm thick ■118 tempered material.

さらにAl−Mn系のNα3合金については、530℃
で鋳塊に均熱処理を施した後、450℃に加熱して厚さ
 3閣まで熱間圧延し、次いで厚さ 03關まで冷間圧
延してFI18テンパー材とした。
Furthermore, for Al-Mn based Nα3 alloy, 530°C
After subjecting the ingot to soaking treatment, it was heated to 450°C and hot-rolled to a thickness of 3 mm, and then cold-rolled to a thickness of 0.3 mm to obtain an FI18 tempered material.

以上のようにして得られた各合金Nn1〜3の圧延板に
対し、第2表の記号A−Eに示すような各方法で粗面化
処理を施した。なおここで第2表中において、粗面化処
理記号A、[3の場合はいずれも機械的粗面化処理の後
に化学的粗面化処理を行なったもの、m固化処理記号C
の場合は化学的粗面化処理のみを行なったもの、粗面化
処理記号り。
The rolled plates of each of the alloys Nn1 to Nn3 obtained as described above were subjected to surface roughening treatment using various methods shown in symbols A to E in Table 2. In Table 2, the roughening treatment symbol A, [3] are those in which chemical roughening treatment was performed after mechanical roughening treatment, m solidification treatment symbol C
In the case of , only chemical roughening treatment has been performed, and the surface roughening treatment symbol is .

Eの場合はいずれも機械的粗面化処理の後に化学的粗面
化処理を行ないさらに電気化学的粗面化処理を行なった
ものである。なおまた、第2表中の各化学的粗面化処理
の後には、いずれも25%硝酸水溶液によりデスマット
処理を行なった。また各電気化学的粗面化処理の後には
25%l■2S04にて90℃×30秒のデスマット処
理を行なった。
In the case of E, chemical roughening treatment was performed after mechanical roughening treatment, and then electrochemical roughening treatment was further performed. Furthermore, after each chemical surface roughening treatment in Table 2, a desmut treatment was performed using a 25% nitric acid aqueous solution. Further, after each electrochemical surface roughening treatment, a desmut treatment was performed at 90° C. for 30 seconds in 25% l2S04.

m重化処理の後には、液m25℃の25%硫酸電解浴に
て電流密度 1.5A/dfftの条件にて陽極酸化処
理を行ない、膜厚0.5μmの陽極酸化皮膜を生成させ
た。
After the m-heavy treatment, anodic oxidation treatment was performed in a 25% sulfuric acid electrolytic bath at 25° C. at a current density of 1.5 A/dfft to form an anodic oxide film with a thickness of 0.5 μm.

陽極酸化処理後の各板について、陽極酸化皮膜中の最大
長さ 111m以上の大きさの金属間化合物の数を調べ
たところ、第3表に示すような結果が得られた。なおこ
こで陽極酸化皮膜中の金属間化合物の数は、陽極酸化処
理後の板表面を走査型電子顕微鏡で観察し、画像解析を
行なって調べた。
When the number of intermetallic compounds having a maximum length of 111 m or more in the anodic oxide film of each plate after the anodizing treatment was investigated, the results shown in Table 3 were obtained. The number of intermetallic compounds in the anodized film was determined by observing the surface of the plate after the anodizing treatment using a scanning electron microscope and performing image analysis.

また陽極酸化処理後の各種の皮膜表面に次のような組成
の感光層を乾燥時の塗布材が2.5 g / rrrと
なるように設けた。
Further, a photosensitive layer having the following composition was provided on the surface of each film after the anodizing treatment so that the coating material when dried was 2.5 g/rrr.

[感光層組成] ナフトキノン−1・2−ジアド−5−スルホニルクロラ
イドとピロガロール、アセトン樹脂とのエステル化合物
(米国特許第3.635.709号明細書の実施例1に
記載のもの)  ・・・・・・0.75gクレゾールノ
ホラック樹脂   ・・・・・・2.00gオイルブル
ー1603 (オリエント化学製)・・・・・・0.0
4g エチレンジクロライド     ・・・・・・ 16 
g2−メトキシエチルアセテート 曲−12gこのよう
にして感光層を形成した各感光性平版印刷版について、
3kwのメタルハライドランプで1mの距離から60秒
間画像露光し、次いでS i 02 / N a 20
のモル比が12でS i O2含有量が1,5の珪酸ナ
トリウム水溶液で現像処理し、水洗乾燥後、オフセット
輪転機を用いて15万部の印刷試験を行なった。その後
、目視にて非画像部の点状汚れの程度を評価した。その
結果を第3表中に併せて示す。
[Photosensitive layer composition] Ester compound of naphthoquinone-1,2-diad-5-sulfonyl chloride, pyrogallol, and acetone resin (described in Example 1 of U.S. Pat. No. 3,635,709)... ...0.75g Cresol noholac resin ...2.00g Oil Blue 1603 (manufactured by Orient Chemical) ...0.0
4g Ethylene dichloride 16
g2-Methoxyethyl acetate Song-12gFor each photosensitive lithographic printing plate with a photosensitive layer formed in this way,
Image exposure for 60 seconds from a distance of 1 m with a 3 kW metal halide lamp, then S i 02 / N a 20
The film was developed with an aqueous sodium silicate solution having a molar ratio of 12 and an S i O2 content of 1.5, and after washing and drying, a printing test of 150,000 copies was conducted using an offset rotary press. Thereafter, the degree of dotted stains in the non-image area was visually evaluated. The results are also shown in Table 3.

第  3  表 絶倒では、いずれも15万部印刷後も非画像部にインク
汚れが発生しておらず、耐インク汚れ性が著しく優れて
いる。
Table 3 shows that no ink stains occurred in the non-image area even after printing 150,000 copies, and the ink stain resistance was extremely excellent.

発明の効果 実施例からも明らかなように、この発明の印刷版用アル
ミニウム合金支持体は、合金の成分系に応じて陽極酸化
皮膜中の金属間化合物を適切に規制することによって、
平版印刷用印刷版、オフセット印刷用印刷版として使用
した際における耐インク汚れ性が優れ、印刷中において
非画像部にインク汚れが生じにくいから、多数の部数を
連続印刷することができるとともにより鮮明な印刷画像
を得ることができる。
Effects of the Invention As is clear from the examples, the aluminum alloy support for printing plates of the present invention has the following effects by appropriately regulating the intermetallic compounds in the anodic oxide film depending on the alloy composition
It has excellent ink stain resistance when used as a printing plate for lithographic printing or offset printing, and ink stains are less likely to occur in non-image areas during printing, making it possible to print a large number of copies continuously and with greater clarity. It is possible to obtain a print image with a high quality.

Claims (2)

【特許請求の範囲】[Claims] (1)純Al系もしくはAl−Mg系のアルミニウム合
金圧延板を基板とし、その基板表面に粗面化処理が施さ
れかつ陽極酸化皮膜が0.5〜4g/m^3の生成量で
形成された印刷版用アルミニウム合金支持体において、 陽極酸化皮膜中の最大長さ1μm以上の大きさの金属間
化合物の数が1mm^2当り7000個以下であること
を特徴とする印刷版用アルミニウム合金支持体。
(1) A pure Al-based or Al-Mg-based rolled aluminum alloy plate is used as a substrate, and the surface of the substrate is roughened and an anodized film is formed in an amount of 0.5 to 4 g/m^3. An aluminum alloy support for printing plates, characterized in that the number of intermetallic compounds with a maximum length of 1 μm or more in the anodized film is 7000 or less per 1 mm^2. support.
(2)Al−Mn系のアルミニウム合金圧延板を基板と
し、その基板表面に粗面化処理が施されかつ陽極酸化皮
膜が0.5〜4g/m^3の生成量で形成された印刷版
用アルミニウム合金支持体において、陽極酸化皮膜中の
最大長さ1μm以上の大きさの金属間化合物の数が1m
m^2当り30000個以下であることを特徴とする印
刷版用アルミニウム合金支持体。
(2) A printing plate whose substrate is an Al-Mn-based aluminum alloy rolled plate, the surface of which has been subjected to roughening treatment, and an anodic oxide film is formed at a production rate of 0.5 to 4 g/m^3. The number of intermetallic compounds with a maximum length of 1 μm or more in the anodic oxide film is 1 m
An aluminum alloy support for a printing plate, characterized in that the number of particles is 30,000 or less per m^2.
JP3106690A 1990-02-09 1990-02-09 Aluminum alloy support for printing plate Expired - Fee Related JP2688786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3106690A JP2688786B2 (en) 1990-02-09 1990-02-09 Aluminum alloy support for printing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3106690A JP2688786B2 (en) 1990-02-09 1990-02-09 Aluminum alloy support for printing plate

Publications (2)

Publication Number Publication Date
JPH03234594A true JPH03234594A (en) 1991-10-18
JP2688786B2 JP2688786B2 (en) 1997-12-10

Family

ID=12321090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3106690A Expired - Fee Related JP2688786B2 (en) 1990-02-09 1990-02-09 Aluminum alloy support for printing plate

Country Status (1)

Country Link
JP (1) JP2688786B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136280A2 (en) * 2000-03-09 2001-09-26 Fuji Photo Film Co., Ltd. Substrate for a planographic printing plate and substrate fabrication method
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
WO2010038812A1 (en) 2008-09-30 2010-04-08 富士フイルム株式会社 Electrolytic treatment method and electrolytic treatment device
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
WO2011037005A1 (en) * 2009-09-24 2011-03-31 富士フイルム株式会社 Lithographic printing original plate
WO2011078010A1 (en) 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136280A2 (en) * 2000-03-09 2001-09-26 Fuji Photo Film Co., Ltd. Substrate for a planographic printing plate and substrate fabrication method
EP1136280A3 (en) * 2000-03-09 2004-07-21 Fuji Photo Film Co., Ltd. Substrate for a planographic printing plate and substrate fabrication method
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
WO2010038812A1 (en) 2008-09-30 2010-04-08 富士フイルム株式会社 Electrolytic treatment method and electrolytic treatment device
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
WO2011037005A1 (en) * 2009-09-24 2011-03-31 富士フイルム株式会社 Lithographic printing original plate
CN102548769A (en) * 2009-09-24 2012-07-04 富士胶片株式会社 Lithographic printing original plate
US20120189959A1 (en) * 2009-09-24 2012-07-26 Fujifilm Corporation Lithographic printing original plate
US8883401B2 (en) 2009-09-24 2014-11-11 Fujifilm Corporation Lithographic printing original plate
CN105082725A (en) * 2009-09-24 2015-11-25 富士胶片株式会社 Lithographic printing original plate
US9207537B2 (en) 2009-09-24 2015-12-08 Fujifilm Corporation Lithographic printing original plate
US20160026081A1 (en) * 2009-09-24 2016-01-28 Fujifilm Corporation Lithographic printing original plate
CN105082725B (en) * 2009-09-24 2018-05-04 富士胶片株式会社 Original edition of lithographic printing plate
WO2011078010A1 (en) 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element

Also Published As

Publication number Publication date
JP2688786B2 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
JPH0576530B2 (en)
JPH0549735B2 (en)
JPH0361753B2 (en)
JPH0147545B2 (en)
JPH0311635B2 (en)
JPS6347349A (en) Aluminum alloy support for lithographic printing plate
JPH0528198B2 (en)
JP2544215B2 (en) Method for producing aluminum alloy base plate for printing plate support
JPH0473394B2 (en)
JPH03177528A (en) Aluminum alloy sheet stock for supporting body of printing form plate
JPH03234594A (en) Aluminum alloy support for printing plate
US4610946A (en) Aluminum-zirconium alloy support for lithographic printing plate
JPS6286143A (en) Aluminum alloy blank for support of printing plate
JPS62181191A (en) Production of planographic plate material
JPS6330294A (en) Aluminum alloy support for planographic printing plate and its preparation
JPH028918B2 (en)
JPH04165041A (en) Aluminum alloy plate for printing supporting body and manufacture thereof
JPS6280255A (en) Manufacture of aluminum alloy support for offset printing
JPH0473393B2 (en)
JPS63135294A (en) Aluminum alloy substrate for lithographic plate and production thereof
JPS6347348A (en) Aluminum alloy support for lithographic printing plate
JPH04254545A (en) Aluminum alloy substrate for planographic printing plate
JPS6347347A (en) Aluminum alloy support for lithographic printing plate
JPH0146578B2 (en)
JP4016310B2 (en) Aluminum alloy support for lithographic printing plate and method for producing base plate for support

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees