JPH0323352A - Combustion chamber for rocket engine and manufacture thereof - Google Patents

Combustion chamber for rocket engine and manufacture thereof

Info

Publication number
JPH0323352A
JPH0323352A JP15469689A JP15469689A JPH0323352A JP H0323352 A JPH0323352 A JP H0323352A JP 15469689 A JP15469689 A JP 15469689A JP 15469689 A JP15469689 A JP 15469689A JP H0323352 A JPH0323352 A JP H0323352A
Authority
JP
Japan
Prior art keywords
combustion chamber
cylinder
groove
inner cylinder
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15469689A
Other languages
Japanese (ja)
Inventor
Kiyoo Ono
大野 清雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15469689A priority Critical patent/JPH0323352A/en
Publication of JPH0323352A publication Critical patent/JPH0323352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To manufacture a product of stable quality by a method wherein, in a combustion chamber in which a groove is formed in one of contact surfaces of inner and outer cylinders to form a cooling passage, the outer and inner cylinders are diffused and joined with each other through a web being the side wall of the groove. CONSTITUTION:In a combustion chamber, inner and outer cylinders 1 and 2 are concentrically disposed, and a groove 3 is formed at least in one of the contact surfaces thereof to form a cooling passage through which a refrigerant flows. In this case, in manufacture of the combustion chamber, grooves 3 extended in an axial direction and webs 4 to form the side wall thereof are first formed in the outer periphery of the inner cylinder 1. After the groove 3 is then filled with a water soluble core 5, the inner cylinder is covered with the outer cylinder 2. The two end parts of the inner and outer cylinders 1 and 2 are then joined together by electron beam welding, and a space therebetween is vacuum-sealed. HIP treatment is applied, and the inner and outer cylinders 1 and 2 are diffused and joined together through the web 4. Thereafter, a part X is removed, and the water soluble core 5 is removed by pressure water and the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷却通路をもつロケットエンジンの燃焼室及
びその製造方法に関する. 〔従来の技術〕 従来、冷却通路をもつロケットエンジンの燃焼ン燃焼室
の製造に当っては、第4図(a)に示すように内fil
lに溝加工をし、第4図(b)〜(e)に示すように、
溝にワックスOlを充填し、内筒lとワックス外面に銀
粉02を塗布し、その上で銅電鋳を行って電鋳層03を
形戒し、切削加工を行って溝の両端部を露出させ、ワッ
クスOlと銀粉02を除去することによって、冷却通路
04をもつ燃焼室を製造している. 〔発明が解決しようとする課題〕 前記従来の電鋳による冷却通路をもつロケットエンジン
の燃焼室の製造方法においては、電鋳に長い期間を要し
、かつ電鋳層の品質バラツキが大きかった. 本発明は、前記従来の技術がもつ以上のような問題点を
解消し、短かい期間でかつ品質が安定した冷却通路をも
つロケットエンジンの燃焼室及びその製造方法を提供す
ることを目的とする.(!ill!を解決するための手
段〕 本発明は、上記課題を解決するために、次の手段を採用
したロケントエンジンの燃焼室及びその製造方法に係る
. (1)断面が同心円状に設けられた内筒と外筒とを有し
、該内筒及び外筒の接する面の少なくとも一方に溝が設
けられ冷媒の通過する冷却通路としたロケットエンジン
の燃焼室において、溝の側壁であるウェブを通じて外筒
と内筒とが拡散接合されていることを特徴とするロケッ
トエンジンの燃焼室. (2)内筒と超合金からなる外筒とが接する面の内筒側
に溝が設けられ、前記外筒内面に内筒材と同系のメッキ
層が設けられ、内筒の溝の側壁であるウェブ及び前記メ
ッキ層とを通じて外筒と{3)断面が同心円状に設けら
れた内筒と外筒とを有し、該内筒と外筒の接する面の少
なくとも一方に溝が設けられ冷媒の通過する冷却通路と
したロケットエンジンの燃焼室の製造方法において、溝
に耐熱可溶性中子を充填し内外筒を着接して内外筒の間
を、真空密閉した後、これらを熱間静水圧加工(Hot
 Issostatic Press.  以下HIP
という)することにより内外筒を拡散接合し、前記耐熱
可溶性中子を除去することを特徴とするロケットエンジ
ンの燃焼室の製造方法.〔作 用〕 本発明(1)においては、内筒と外筒のいづれか一方に
設けられた冷媒が通過する冷却通路の溝の側壁であるウ
エプを通じて外筒と内筒とが拡散接合され、外筒と外筒
の接合強度が向上し、かつ従来の電鋳法によるポロシテ
ィ等の欠陥が減少して品質が安定する.従って、強度が
向上した分だけ肉厚を減少させ、ペイロード(積荷)を
大きくできる.また、電鋳を用いないために、工期が著
しく短縮される. 本発明(2)においては、前記の本発明(1)の作用に
加えて、外筒として高強度かつ耐熱性のすぐれる超合金
を用いており、強度が著しく向上し、従来燃焼器の周囲
に別途設けていた超合金製の耐圧ジャケットが不要とな
り、または耐圧ジャケットを設けるにしてもその重量を
軽減させることができる.また、外筒の内面に内筒と同
系の材料をあらかじめメッキしてあるので、拡散接合性
にすぐれ、特に内筒が銅系材である場合冷却通路の外筒
側の面も伝熱効率の良い銅系材料のメッキとなるので、
冷却能を高く保持できる. 本発明(3)においては、内筒と外筒の接する面の一方
に冷却通路として形威する溝に耐熱可熔性中子を充填し
、内外筒を着接して内外筒間を真空密閉した後HIP処
理することにより、内外筒は溝の側壁をなすウェブ部分
において拡散接合され、両者の接合強度が向上し、また
従来の電鋳法によるボロシティ等の欠陥が減少する.ま
た、その後耐熱可溶性中子を除去することによって、冷
却通路をもつ燃焼室が製造される。更に、本発明(3)
では電鋳を用いていないため、工期が著しく短縮される
. 〔実施例〕 本発明の第一の実施例を第1図及び第2図によって説明
する. 第2図(a)に示すように、断面円形の第1図(a)に
示される形状の内筒lの外周に軸方向に複数の満3を加
工する.4は溝3の側壁を形成するウェブである.この
溝3に、第2図(b)に示すように、水溶性中子5を充
填する.その上で第2図(c)に示すように、外筒2を
かぶせる.内筒1と外筒2の両端部を電子ビーム溶接に
よって接合することにより内筒lと外筒2の間は真空密
閉される.なお外筒1を分割したものを使用する場合に
は、分割部も電子ビーム溶接接合する.この状態にした
ものを、HIP処理することにより、第2図(d)に示
すように、前記ウェブ4を通して内筒と外筒は拡散接合
一体化される.その上で外筒側から溝の両端が出てくる
まで第1図(a)のXの部分を機械加工除去し、水溶性
中子5を圧力水等を利用して除去することにより、内筒
と外筒との間に冷却通路3が形威された燃焼室が製造さ
れる.本実施例における内筒と外筒、水溶性中子の材質
及び処理条件の1例を挙げると次の通りである.電子ビ
ーム溶接の条件・・・溶け込み深さ2〜3一/sHIP
の条件・・・500℃×2時間,陶0気圧なお、上記の
ように内筒,外筒が銅合金で使用されるときには、中子
除去に酸又はアルカリ溶液を使用できないために、水溶
性中子を使用する必要がある. 従来の電鋳法によれば、45日の工期を必要としたが、
本実施例ではこれが9日(中子充填から中子除去まで)
に短縮された.また、従来の銅電鋳法によるものでは、
ホ゜ロシテイがあり引張強さが低< (20kg/鵬3
以下)伸びが低い(20%以下)であったが、本実施例
では内筒と外筒の接合部が、母材と同一組織となり、母
材強度と同じ特性が得られる.また、本実施例ではボロ
シティの発生もない. なお、本実施例では、水溶性中子を使用しているが、中
子として低融点の金属を使用することもできる.例えば
純アルミニウム(融点660℃)の戚形品を溝に充填し
、500℃前後でHIP加工し、機械加工した後に、9
00℃程度に加熱して純アルξニウムを溶し出して除去
するようにしてもよい.本発明の第二の実施例を第3図
によって説明する. 第3図は、本発明の第二の実施例に係るロケットエンジ
ンの燃焼器断面を示す.外筒2はNi基超合金であるイ
ンコネル718材(商品名)からなり、冷却通路用の溝
3の刻設された内筒lは第一の実施例の一例として示し
たCu−0.7Cr−0.06Zrのクロム銅を用いた
.外1i12の冷却通路面にはCuメッキ層10が設け
られており、また、外筒2と内筒1とは拡散接合されて
いる. 本実施例の燃焼器の製造方法について説明する.基本的
には第2図に示される第一の実施例のステップとほぼ同
様であるが、本実施例では、内筒lに溝加工を施すとと
もに、外筒2内面に純Cuメッキを施こす.次に内筒l
の溝に第1実施例と同様に水溶性中子を充填し、内筒1
と外筒2の前部及び後部を電子ビーム溶接を行って密封
するとともに内外筒1.2の間を真空引きし密閉する.
その後、これらを、第一の実施例と同じ条件にてHIP
処理を行って内外1111.2を接合し、冷却通路の入
口と出口を切削加工により設け、最後に冷却通路の人口
に高圧水を圧入して、水溶性中子を熔解させて水溶性中
子を除去した. 本実施例においては、従来法(電鋳法)に比し工期が5
分のI程度に短縮されるとともに、内外筒1.2の接合
強度が1.5〜2倍程度まで向上した.また、外筒2を
インコネル71B材としたので、外筒2の強度が著しく
向上するとともに、外筒2の冷却通路側の面に伝熱効率
の良いCuメンチ層が残っているので、十分な冷却能を
確保できる.更に、外筒2の肉厚を大きくすることによ
り従来用いられているNi基超合金製の耐圧ジャケット
を不要とすることが可能となる. すなわち、本実施例によれば工期の著しい短縮と部材強
度を可能とし、肉厚を大幅に軽減できるので、安価で軽
量の燃焼器とすることができる.この軽量化した分、宇
宙に打ち上げるペイロードを増すこともできる. 〔発明の効果〕 以上説明したように、本発明は次の効果を奏することが
できる. (1)  内外筒が、冷却通路を形戒する溝のウェブを
通して拡散接合されているために、ボロシティ等の欠陥
が減少し品質が安定する.また、従来のように電鋳を用
いていないために、工期を著しく短縮することができる
. (2)外筒として高強度かつ耐熱性のすぐれた超合金を
用いているために、強度を著しく向上させることができ
、従来燃焼器の周囲に別途設けていた超合金製の耐熱ジ
ャケットが不要となり、また耐熱ジャケットを設けると
してもその重量を軽減させることができる.また外筒の
内面に内筒と同系の材料をメッキしているために、内外
筒の拡散接合性がすぐれている. (3)冷却通路としての溝に耐熱可溶性中子を充填した
上内外筒を間を真空密閉した上で}IIP処理すること
によって、内外筒を拡散接合して強固に結合することが
できる.また、ポロシティ等の欠陥が減少して品質が安
定すると共に、工期を著しく短縮することができる.
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a combustion chamber for a rocket engine having a cooling passage and a method for manufacturing the same. [Prior Art] Conventionally, when manufacturing a combustion chamber for a rocket engine having a cooling passage, an inner filtration chamber is used as shown in Fig. 4(a).
As shown in Figure 4(b) to (e),
Fill the groove with wax Ol, apply silver powder 02 to the inner cylinder l and the outer surface of the wax, perform copper electroforming on top of that to shape the electroformed layer 03, and perform cutting to expose both ends of the groove. By removing wax Ol and silver powder 02, a combustion chamber with a cooling passage 04 is manufactured. [Problems to be Solved by the Invention] In the conventional method of manufacturing a rocket engine combustion chamber having a cooling passage by electroforming, the electroforming process required a long period of time and the quality of the electroformed layer varied widely. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the conventional technology and provide a combustion chamber for a rocket engine having a cooling passage with stable quality in a short period of time, and a method for manufacturing the same. .. (Means for Solving! ill!) In order to solve the above problems, the present invention relates to a combustion chamber for a Rokento engine and a method for manufacturing the same, which employ the following means. (1) The cross section is concentric. In the combustion chamber of a rocket engine, the combustion chamber of a rocket engine has an inner cylinder and an outer cylinder, and at least one of the contact surfaces of the inner cylinder and the outer cylinder is provided with a groove to serve as a cooling passage through which a refrigerant passes. A combustion chamber of a rocket engine characterized in that an outer cylinder and an inner cylinder are diffusion-bonded through a web. (2) A groove is provided on the inner cylinder side of the surface where the inner cylinder and the outer cylinder made of superalloy contact. , a plating layer of the same type as the inner cylinder material is provided on the inner surface of the outer cylinder, and the outer cylinder and the inner cylinder having a concentric cross section are formed through the web, which is the side wall of the groove of the inner cylinder, and the plating layer. A method for manufacturing a combustion chamber for a rocket engine, which has an outer cylinder and has a groove on at least one of the contacting surfaces of the inner cylinder and the outer cylinder to form a cooling passage through which a refrigerant passes, wherein the groove is filled with a heat-resistant soluble core. After adhering the inner and outer cylinders and vacuum-sealing the space between the inner and outer cylinders, they are subjected to hot isostatic processing (Hot Isostatic Pressure Processing).
Issostatic Press. Below is HIP
A method for manufacturing a combustion chamber for a rocket engine, characterized in that the inner and outer cylinders are diffusion-bonded by performing the above steps (referred to as "removal of the heat-resistant fusible core"). [Function] In the present invention (1), the outer cylinder and the inner cylinder are diffusion bonded through the weep, which is the side wall of the groove of the cooling passage provided in either the inner cylinder or the outer cylinder, through which the refrigerant passes. The joint strength between the cylinder and outer cylinder is improved, and defects such as porosity caused by conventional electroforming methods are reduced, resulting in stable quality. Therefore, the wall thickness can be reduced to the extent that the strength has been improved, and the payload (cargo) can be increased. Additionally, since electroforming is not used, the construction period is significantly shortened. In the present invention (2), in addition to the effects of the present invention (1), a superalloy with high strength and excellent heat resistance is used for the outer cylinder, and the strength is significantly improved. This eliminates the need for a pressure-resistant jacket made of superalloy, which was previously provided separately, and even if a pressure-resistant jacket is provided, its weight can be reduced. In addition, since the inner surface of the outer cylinder is pre-plated with a material similar to that of the inner cylinder, it has excellent diffusion bonding properties, and especially if the inner cylinder is made of copper-based material, the surface of the cooling passage on the outer cylinder side also has good heat transfer efficiency. Since it is plated with copper-based material,
Able to maintain high cooling capacity. In the present invention (3), a heat-resistant fusible core is filled in a groove serving as a cooling passage on one of the contact surfaces of the inner cylinder and the outer cylinder, and the inner and outer cylinders are adhered to form a vacuum seal between the inner and outer cylinders. By post-HIPing, the inner and outer cylinders are diffusion bonded at the web portions that form the side walls of the groove, improving the bonding strength between the two and reducing defects such as borosity caused by conventional electroforming. Furthermore, by subsequently removing the heat-resistant soluble core, a combustion chamber with cooling passages is manufactured. Furthermore, the present invention (3)
Because it does not use electroforming, the construction period is significantly shortened. [Example] A first example of the present invention will be explained with reference to FIGS. 1 and 2. As shown in FIG. 2(a), a plurality of holes are machined in the axial direction on the outer circumference of an inner cylinder l having a circular cross section and the shape shown in FIG. 1(a). 4 is a web forming the side wall of the groove 3. This groove 3 is filled with a water-soluble core 5 as shown in FIG. 2(b). Then, as shown in Fig. 2(c), cover the outer cylinder 2. By joining both ends of the inner cylinder 1 and outer cylinder 2 by electron beam welding, the space between the inner cylinder 1 and the outer cylinder 2 is vacuum-sealed. In addition, when using a divided outer cylinder 1, the divided parts are also joined by electron beam welding. By subjecting this state to HIP processing, the inner tube and the outer tube are integrated by diffusion bonding through the web 4, as shown in FIG. 2(d). Then, the part marked X in Fig. 1(a) is removed by machining until both ends of the groove come out from the outer cylinder side, and the water-soluble core 5 is removed using pressurized water, etc. A combustion chamber with a cooling passage 3 formed between the cylinder and the outer cylinder is manufactured. An example of the materials and processing conditions for the inner cylinder, outer cylinder, and water-soluble core in this example is as follows. Electron beam welding conditions...Penetration depth 2-31/sHIP
Conditions: 500°C x 2 hours, 0 atm pressure When the inner cylinder and outer cylinder are made of copper alloy as mentioned above, acid or alkaline solution cannot be used to remove the core, so water-soluble It is necessary to use a core. According to the conventional electroforming method, it required a construction period of 45 days, but
In this example, this is 9 days (from core filling to core removal)
It was shortened to . In addition, with the conventional copper electroforming method,
There is a hole and the tensile strength is low (20kg/Peng 3
(below) The elongation was low (20% or less), but in this example, the joint between the inner cylinder and the outer cylinder has the same structure as the base metal, and the same properties as the base metal strength can be obtained. Further, in this example, no volocity occurs. Although a water-soluble core is used in this example, a metal with a low melting point can also be used as the core. For example, after filling a groove with a shaped product of pure aluminum (melting point 660°C), HIPing it at around 500°C, and machining it,
Alternatively, pure aluminum may be removed by heating to about 00°C to elute pure aluminum. A second embodiment of the present invention will be explained with reference to FIG. FIG. 3 shows a cross section of a combustor of a rocket engine according to a second embodiment of the present invention. The outer cylinder 2 is made of Inconel 718 material (trade name), which is a Ni-based superalloy, and the inner cylinder 1 with grooves 3 for cooling passages is made of Cu-0.7Cr shown as an example of the first embodiment. -0.06Zr chromium copper was used. A Cu plating layer 10 is provided on the cooling passage surface of the outer cylinder 1i12, and the outer cylinder 2 and the inner cylinder 1 are diffusion bonded. The method for manufacturing the combustor of this example will be explained. Basically, the steps are almost the same as those of the first embodiment shown in FIG. .. Next, the inner cylinder l
A water-soluble core is filled in the groove of the inner cylinder 1 in the same manner as in the first embodiment.
The front and rear parts of outer cylinder 2 are sealed by electron beam welding, and the space between inner and outer cylinders 1.2 is evacuated and sealed.
Thereafter, these were subjected to HIP under the same conditions as in the first example.
After processing, the inner and outer parts 1111.2 are joined together, the inlet and outlet of the cooling passage are provided by cutting, and finally, high-pressure water is injected into the cooling passage to melt the water-soluble core and form a water-soluble core. has been removed. In this example, the construction period is 55% compared to the conventional method (electroforming method).
It has been shortened to about 1/2, and the joint strength of the inner and outer cylinders 1.2 has been improved by about 1.5 to 2 times. In addition, since the outer cylinder 2 is made of Inconel 71B material, the strength of the outer cylinder 2 is significantly improved, and since a Cu minced layer with good heat transfer efficiency remains on the surface of the outer cylinder 2 on the cooling passage side, sufficient cooling is achieved. ability can be secured. Furthermore, by increasing the wall thickness of the outer cylinder 2, it becomes possible to eliminate the need for a pressure-resistant jacket made of a conventionally used Ni-based superalloy. In other words, according to this embodiment, the construction period can be significantly shortened, the strength of the members can be increased, and the wall thickness can be significantly reduced, making it possible to create an inexpensive and lightweight combustor. This weight reduction also allows for an increase in the payload that can be launched into space. [Effects of the Invention] As explained above, the present invention can have the following effects. (1) Since the inner and outer cylinders are diffusion bonded through the web of grooves that form the cooling passages, defects such as volocity are reduced and quality is stabilized. In addition, because it does not use electroforming like conventional methods, the construction period can be significantly shortened. (2) Since a superalloy with high strength and excellent heat resistance is used for the outer cylinder, the strength can be significantly improved, eliminating the need for a separate superalloy heat-resistant jacket that was conventionally installed around the combustor. Therefore, even if a heat-resistant jacket is provided, its weight can be reduced. In addition, because the inner surface of the outer cylinder is plated with the same material as the inner cylinder, the diffusion bonding between the inner and outer cylinders is excellent. (3) By vacuum-sealing the upper and outer cylinders whose grooves serving as cooling passages are filled with a heat-resistant soluble core and performing IIP treatment, the inner and outer cylinders can be firmly joined by diffusion bonding. In addition, defects such as porosity are reduced, quality is stabilized, and the construction period can be significantly shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の第一の実施例の燃焼室の縦断面
図、第1図(b)は第1図(a)のA−A断面図、第2
図(a)〜(a)は前記第一の実施例の製造工程の説明
図、第3図は本発明の第二の実施例の燃焼室の横断面図
、第4図(a)〜(e)は従来の電鋳法による製造工程
の説明図である.
FIG. 1(a) is a vertical cross-sectional view of a combustion chamber according to the first embodiment of the present invention, FIG. 1(b) is a cross-sectional view taken along line AA in FIG. 1(a), and FIG.
Figures (a) to (a) are explanatory diagrams of the manufacturing process of the first embodiment, Figure 3 is a cross-sectional view of the combustion chamber of the second embodiment of the present invention, and Figures 4 (a) to ( e) is an explanatory diagram of the manufacturing process using the conventional electroforming method.

Claims (1)

【特許請求の範囲】 1、断面が同心円状に設けられた内筒と外筒とを有し、
該内筒及び外筒の接する面の少なくとも一方に溝が設け
られ冷媒の通過する冷却通路としたロケットエンジンの
燃焼室において、溝の側壁であるウェブを通じて外筒と
内筒とが拡散接合されていることを特徴とするロケット
エンジンの燃焼室。 2、内筒と超合金からなる外筒とが接する面の内筒側に
溝が設けられ、前記外筒内面に内筒材と同系のメッキ層
が設けられ、内筒の溝の側壁であるウェブ及び前記メッ
キ層とを通じて外筒と内筒とが拡散接合されていること
を特徴とする請求項1に記載のロケットエンジンの燃焼
室。 3、断面が同心円状に設けられた内筒と外筒とを有し、
該内筒と外筒の接する面の少なくとも一方に溝が設けら
れ冷媒の通過する冷却通路としたロケットエンジンの燃
焼室の製造方法において、溝に耐熱可溶性中子を充填し
内外筒を着接して内外筒の間を、真空密閉した後、これ
らを熱間静水圧加工することにより内外筒を拡散接合し
、前記耐熱可溶性中子を除去することを特徴とするロケ
ットエンジンの燃焼室の製造方法。
[Claims] 1. It has an inner cylinder and an outer cylinder whose cross sections are concentric,
In the combustion chamber of a rocket engine, a groove is provided in at least one of the contacting surfaces of the inner cylinder and the outer cylinder to serve as a cooling passage through which a refrigerant passes, and the outer cylinder and the inner cylinder are diffusion bonded through webs that are side walls of the groove. The combustion chamber of a rocket engine. 2. A groove is provided on the inner cylinder side of the surface where the inner cylinder and the outer cylinder made of superalloy contact, and a plating layer of the same type as the inner cylinder material is provided on the inner surface of the outer cylinder, and the side wall of the groove of the inner cylinder is provided. The combustion chamber for a rocket engine according to claim 1, wherein the outer cylinder and the inner cylinder are diffusion-bonded through the web and the plating layer. 3. It has an inner cylinder and an outer cylinder whose cross sections are concentric,
In the method for manufacturing a combustion chamber of a rocket engine, a groove is provided on at least one of the contact surfaces of the inner cylinder and the outer cylinder to form a cooling passage through which a refrigerant passes. A method for manufacturing a combustion chamber for a rocket engine, which comprises vacuum-sealing the space between the inner and outer cylinders, then subjecting them to hot isostatic pressure processing to diffusion-bond the inner and outer cylinders, and removing the heat-resistant soluble core.
JP15469689A 1989-06-19 1989-06-19 Combustion chamber for rocket engine and manufacture thereof Pending JPH0323352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15469689A JPH0323352A (en) 1989-06-19 1989-06-19 Combustion chamber for rocket engine and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15469689A JPH0323352A (en) 1989-06-19 1989-06-19 Combustion chamber for rocket engine and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0323352A true JPH0323352A (en) 1991-01-31

Family

ID=15589948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15469689A Pending JPH0323352A (en) 1989-06-19 1989-06-19 Combustion chamber for rocket engine and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0323352A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128816A (en) * 2006-11-21 2008-06-05 Tohoku Univ Non-destructive inspection device by potential difference method, and measurement method of non-destructive inspection using it
CN113172265A (en) * 2021-04-15 2021-07-27 西安航天动力试验技术研究所 Anti-cavity-crossing high-temperature gas generation device body and machining method thereof
CN114439652A (en) * 2021-12-29 2022-05-06 北京航天动力研究所 Thermal protection enhancement mode 3D prints spray tube extension

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128816A (en) * 2006-11-21 2008-06-05 Tohoku Univ Non-destructive inspection device by potential difference method, and measurement method of non-destructive inspection using it
CN113172265A (en) * 2021-04-15 2021-07-27 西安航天动力试验技术研究所 Anti-cavity-crossing high-temperature gas generation device body and machining method thereof
CN114439652A (en) * 2021-12-29 2022-05-06 北京航天动力研究所 Thermal protection enhancement mode 3D prints spray tube extension

Similar Documents

Publication Publication Date Title
EP0388968B1 (en) Method of producing clad metals
US4135286A (en) Sputtering target fabrication method
US6691397B2 (en) Method of manufacturing same for production of clad piping and tubing
US4844863A (en) Method of producing clad metal
GB2240063A (en) Method of manufacturing dual alloy turbine disks
JPH0724941B2 (en) Semi-finished product for use in manufacturing inner clad tubular product and method of manufacturing inner clad tubular product
US5972521A (en) Expanded metal structure and method of making same
JPS6237203B2 (en)
US3711936A (en) Method for forming composite articles from alloy in temporary condition of superplasticity
US4977034A (en) Process for coextrusion billets with multiple metallic cylindrical layers by hot isostatic pressing and product
US4454977A (en) Process of producing corrosion-resistant tubular connection pieces
JPH0323352A (en) Combustion chamber for rocket engine and manufacture thereof
JPS6018205A (en) Manufacture of titanium-clad steel material
JP3240211B2 (en) Copper-aluminum dissimilar metal joint material
US6378755B1 (en) Joined structure utilizing a ceramic foam bonding element, and its fabrication
JPH0245955B2 (en)
US3913208A (en) Process for producing bimetallic and polymetallic bodies in which the metallic components are joined together with metallurgical bond
JP2819370B2 (en) Manufacturing method of corrosion resistant clad pipe
JPH0216185B2 (en)
JPH01150487A (en) Manufacture of multilayer metal tubular body
JPH04182023A (en) Manufacture of clad metallic tube
JPS61223106A (en) Production of high alloy clad product
JPS61123486A (en) Manufacture of double layer clad round bar
DE10108105A1 (en) Process for the production of a corrosion-resistant separating body
RU2106941C1 (en) Process of soldering of telescopic structures