JPH0323307A - Exhaust gas purifying device - Google Patents

Exhaust gas purifying device

Info

Publication number
JPH0323307A
JPH0323307A JP1156391A JP15639189A JPH0323307A JP H0323307 A JPH0323307 A JP H0323307A JP 1156391 A JP1156391 A JP 1156391A JP 15639189 A JP15639189 A JP 15639189A JP H0323307 A JPH0323307 A JP H0323307A
Authority
JP
Japan
Prior art keywords
catalyst carrier
exhaust gas
heater
catalytic carrier
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1156391A
Other languages
Japanese (ja)
Other versions
JP2928540B2 (en
Inventor
Yoshimi Ohashi
大橋 義美
Tomoharu Higashimatsu
東松 智春
Hidetoshi Yamauchi
山内 英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP1156391A priority Critical patent/JP2928540B2/en
Publication of JPH0323307A publication Critical patent/JPH0323307A/en
Application granted granted Critical
Publication of JP2928540B2 publication Critical patent/JP2928540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To reduce heat loss and temperature difference of a catalytic carrier during regeneration processing, by arranging a heat insulation layer between the inner wall of a passage communicating to the exhaust passage of an internal combustion engine, and an heater arranged on the outer circumference of the catalytic carrier. CONSTITUTION:After exhaust gas in an internal combustion engine E is purified by an exhaust gas purifying device 1, it is discharged. Namely, the exhaust gas is led into the catalytic carrier 3 inside a casing 2 to purify it. In this occasion, pressure in an exhaust pipe passage Ea is monitored by a control device C through a pressure sensor Ps and a piezoelectric-crystal element Pe, and exhaust purifying action is continued until the detected value reaches a set value. And when regeneration processing of the catalytic carrier 3 is carried out, a switch S is closed by the control device C so as to electrify an heater 6. After the catalytic support 3 is heated, a compressor Co is driven to supply secondary air to the catalytic carrier 3. In this time, heat loss and temperature difference of the catalytic carrier 3 is reduced by a heat insulation layer 7 covering the heater 6.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はディーゼルエンジン等の内燃機関における排
気ガスを浄化処理する排気ガス浄化装置に関する. [従来の技術] 従来、例えばディーゼルエンジンの排気ガスを浄化する
場合には、コージエライトによってハニカム状に形成し
た触媒担体と、その触媒担体に担持された触媒威分とを
有するフィルターをディーゼルエンジンの排気側に接続
し、このフィルターによって前記排気ガス中のカーボン
,NOx及びHC等を酸化分解するようになっている。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to an exhaust gas purification device for purifying exhaust gas from an internal combustion engine such as a diesel engine. [Prior Art] Conventionally, for example, when purifying the exhaust gas of a diesel engine, a filter having a catalyst carrier formed in a honeycomb shape of cordierite and a catalyst component supported on the catalyst carrier is used to purify the exhaust gas of the diesel engine. This filter oxidizes and decomposes carbon, NOx, HC, etc. in the exhaust gas.

[発明が解決しようとする課題] ところが、上記のフィルターにおける触媒担体は融点(
1200〜1300℃)の低いコージエライトによって
形成されているため、触媒担体内に滞留したカーボンを
除去するための再生処理に際して、触媒担体の一端にて
カーボンに着火した後、その触媒担体に着火位置側から
エアを供給すると、排気ガスの不均一な燃焼が生じて、
局部的な温度上昇が生じ、再生処理を繰り返し行うと、
触媒担体が溶損して再利用が不可能になるという問題が
あった。
[Problem to be solved by the invention] However, the catalyst carrier in the above filter has a melting point (
Since it is made of cordierite with a low temperature (1200-1300℃), during the regeneration process to remove the carbon accumulated in the catalyst carrier, after the carbon is ignited at one end of the catalyst carrier, the catalyst carrier is placed on the ignition position side. If air is supplied from the
If a local temperature rise occurs and the regeneration process is repeated,
There was a problem in that the catalyst carrier was eroded and could not be reused.

上記の問題を解決するため、触媒担体として耐熱性及び
熱伝導性に優れた炭化珪素焼結体を使用することがすで
に提案されている。ところが、この場合には、材料の熱
伝導性が高すぎるため、従来から利用されている熱源と
して、例えば、エンジンからの排ガスの熱風又は、触媒
担体の端部に設けられた電気ヒーターがあるが、これら
の熱源を使用した場合、前記炭化珪素焼結体製担体を十
分に高温に加熱することができず、再生処理が不可能と
なったり、不完全になったりした。従って、再生を完全
に行うためには、より大容量の熱源が必要となり、電気
ヒーターの場合には大形のヒーターを利用するか、ある
いは、長時間の通電が必要となる。この場合、ヒーター
用バッテリの寿命が短くなったり、コストアンプを招く
という問題があった. 又、大容量の熱源を用いて再生処理を行うと、触媒担体
が炭化珪素焼結体製であっても、温度分布が生じ易く、
そのため再生処理を繰り返し行う内に、触媒担体にクラ
ックが発生し、そのクラックから触媒担体全体が破損し
て、上記の問題を解決するには至らなかった. そこで、本発明者らは、再生処理における炭化珪素焼結
体製触媒担体の熱収支を検討したところ、前記触媒担体
の場合には担体自体を加熱するのに必要な熱量と、担体
を通過する排気ガスに失う熱量とが比較的少なく、相当
の熱量が触媒担体の径方向、すなわち、担体の外周にあ
るケーシングに伝わっていることが解明された。
In order to solve the above problems, it has already been proposed to use a silicon carbide sintered body having excellent heat resistance and thermal conductivity as a catalyst carrier. However, in this case, the thermal conductivity of the material is too high, so conventionally used heat sources include, for example, hot air from the exhaust gas from the engine or an electric heater installed at the end of the catalyst carrier. When these heat sources were used, the silicon carbide sintered body carrier could not be heated to a sufficiently high temperature, and the regeneration process became impossible or incomplete. Therefore, in order to perform complete regeneration, a heat source with a larger capacity is required, and in the case of an electric heater, it is necessary to use a large heater or to apply electricity for a long time. In this case, there were problems such as shortening the life of the heater battery and increasing costs. In addition, when regeneration treatment is performed using a large-capacity heat source, temperature distribution tends to occur even if the catalyst carrier is made of sintered silicon carbide.
As a result, as the regeneration process was repeated, cracks appeared in the catalyst carrier, and the entire catalyst carrier was damaged from the cracks, making it impossible to solve the above problem. Therefore, the present inventors investigated the heat balance of the catalyst carrier made of sintered silicon carbide in the regeneration process, and found that in the case of the catalyst carrier, the amount of heat required to heat the carrier itself and the amount of heat that passes through the carrier. It has been found that the amount of heat lost to the exhaust gas is relatively small, and a considerable amount of heat is transmitted in the radial direction of the catalyst carrier, that is, to the casing on the outer periphery of the carrier.

この発明は上記の事情を考慮してなされたものであって
、その目的は再生処理中における触媒担体からの熱伝導
に伴う熱損失を防止し、安定した完全な再生を行い、か
つ、担体の所定部分間の温度差を少なくして、クランク
の発生に起因する触媒担体の破損を確実に防止すること
ができ、耐久性を向上させることが可能な排気ガス浄化
装置を提供することにある。
This invention was made in consideration of the above circumstances, and its purpose is to prevent heat loss due to heat conduction from the catalyst carrier during regeneration treatment, to perform stable and complete regeneration, and to An object of the present invention is to provide an exhaust gas purification device that can reduce the temperature difference between predetermined portions, reliably prevent damage to a catalyst carrier caused by cranking, and improve durability.

[課題を解決するための手段] 上記の目的を達威するため、この発明では、内燃機関の
排気側に連通ずる通路を備えたケーシングと、多孔質炭
化珪素焼結体によってハニカム状に形成されると共に通
路内に配設された触媒担体と、触媒担体の外周に配設さ
れたヒーターと、そのヒーターと通路の内壁との間に配
設された断熱層とを設けている。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a casing provided with a passage communicating with the exhaust side of an internal combustion engine, and a porous silicon carbide sintered body formed in a honeycomb shape. The catalyst carrier includes a catalyst carrier disposed within the passage, a heater disposed around the outer periphery of the catalyst carrier, and a heat insulating layer disposed between the heater and the inner wall of the passage.

[作用] 触媒担体の再生処理に際してヒーターを動作させれば、
触媒担体が外周側から中心へ向って加熱され、触媒担体
が迅速かつ均一に加熱される。そのため、再生処理を極
めて短時間に行うことができ、触媒担体の両端部分間の
温度差を少なくして、クランクの発生を防止できる.又
、ヒーターと通路の内壁との間の熱伝達が断熱層によっ
て抑制されて触媒担体からの放熱が未然に防止され、ヒ
ーターを利用して触媒担体を十分に再生処理が可能な温
度にまで加熱することができ、しかも触媒担体内の熱伝
達を迅速に行って完全な再生を極めて短時間に行うこと
ができる. 以下、この発明を図面に従って詳細に説明する。
[Function] If the heater is operated during the catalyst carrier regeneration process,
The catalyst carrier is heated from the outer circumference toward the center, and the catalyst carrier is heated quickly and uniformly. Therefore, the regeneration process can be performed in an extremely short time, and the temperature difference between both ends of the catalyst carrier can be reduced to prevent cranking. In addition, the heat transfer between the heater and the inner wall of the passage is suppressed by the heat insulating layer, preventing heat radiation from the catalyst carrier, and the catalyst carrier is heated to a temperature that allows sufficient regeneration processing using the heater. Furthermore, complete regeneration can be achieved in an extremely short time by rapid heat transfer within the catalyst carrier. Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図に示すように、排気ガス浄化装置1は金属パイプ
製のケーシング2を備え、そのケーシング2の通路2a
が内燃機関Eの排気管路Eaに接続されている。このケ
ーシング2内には排気ガスを浄化するための触媒担体3
が配設されている。
As shown in FIG. 1, the exhaust gas purification device 1 includes a casing 2 made of metal pipe, and a passage 2a of the casing 2.
is connected to the exhaust pipe line Ea of the internal combustion engine E. Inside this casing 2 is a catalyst carrier 3 for purifying exhaust gas.
is installed.

触媒担体3は、第2図及び第3図に示すように、高い融
点(〜3000℃)を有する多孔質炭化珪素焼結体によ
ってハニカム状に形成されると共に、全体として円柱状
をなしている。そして、この触媒担体3には軸線方向に
平行に延びる多数のガス通過孔4が形成され、各ガス通
過孔4の供給側及び排出側のいずれか一端が炭化珪素質
の小片5によって交互に封止されている。更に、触媒担
体3の各ガス通過孔4の内壁面にはシリカ膜が形戒され
、そのシリカ膜に白金族元素やその他の金属元素及びそ
の酸化物等からなる酸化触媒が担持されている。
As shown in FIGS. 2 and 3, the catalyst carrier 3 is formed into a honeycomb shape by a porous silicon carbide sintered body having a high melting point (~3000° C.), and has a cylindrical shape as a whole. . A large number of gas passage holes 4 extending parallel to the axial direction are formed in this catalyst carrier 3, and one end of each gas passage hole 4 on the supply side or discharge side is alternately sealed with small pieces 5 made of silicon carbide. It has been stopped. Further, a silica film is formed on the inner wall surface of each gas passage hole 4 of the catalyst carrier 3, and an oxidation catalyst made of platinum group elements, other metal elements, their oxides, etc. is supported on the silica film.

前記触媒担休3の外周にはセラξツクヒーターよりなる
一本の再生用ヒーター6が複数回にわたって巻回され、
排気ガス供給側から排出側に近づくに従って、各巻回部
分の間隔が密にされている。
A single regeneration heater 6 made of a ceramic heater is wound several times around the outer circumference of the catalyst support 3,
The intervals between the winding portions become closer as the exhaust gas supply side approaches the exhaust side.

又、ケーシング2の通路2a内壁には前記ヒーター6を
被覆する断熱N7が装着されている。
Further, a heat insulator N7 covering the heater 6 is attached to the inner wall of the passage 2a of the casing 2.

尚、前記断熱層の種類としては、アルξナーシリケート
セラミンクファイバー.アルミナファイバー,ジルコニ
アファイバー,シリカファイバーロックウール,石綿等
の無機質ファイバー.ナイロン,ケプラー等の有機質フ
ァイバー.ウレタン等の発泡体の戒形体、又は、これら
の組合せを利用することができる.好ましくは、無機質
ファイバーを一部、又は、全体に利用する. 又、断熱層7の使用に代えて、触媒担体3とケーシング
2との間に触媒担体3のほぼ全周に及ぶ空間を形成し、
その空間内の空気によって両者3,2間の断熱を行うよ
うにしてもよい.つまり、空気層を断熱層とすることも
できる. さて、第1図及び第2図に矢印で示すように、内燃機関
Eの排気ガスがケーシング2の供給側から触媒担体3に
導入されると、ガス通過孔4の壁部によって、排気ガス
中のカーボン(すす)やHC等が濾過されると共に、酸
化触媒により酸化される.そして、浄化された排気ガス
が触媒担体3から排出される. 上記のように使用された触媒担体3の再生処理を行う場
合には、触媒担体3に所定量のカーボンを滞留させた状
態で、ヒーター6による触媒担体3の加熱を開始する.
そして、触媒担体3の排気ガス排出側端部の温度が所定
温度(300〜800℃)に達した時、ケーシング2に
燃焼促進用の二次エアの供給を開始する。上記の処理を
継続することにより、触媒担体3内のカーボンが燃焼さ
れ、触媒担体3が再生される. そして、この発明では、触媒担体3の外周にヒーター6
を装着すると共に、触媒担体3とケーシング2の内壁と
の間にヒーター6を覆う断熱層7を装着したため、触媒
担体3の周縁部からの放熱が抑制され、触媒担体3を再
生温度まで加熱するのに要する時間を極めて短くできる
。従って、再生温度に昇温するための熱エネルギーも節
約することができる.又、触媒担体3全体が均一に加熱
されるため、触媒担体3の両端部分間の温度差が少なく
保持される.従って、部分的な温度差に起因して触媒担
体3にクラックが発生する割合を少なくでき、再生処理
回数を増加させて、耐久性を向上させることができる. [実施例] 触媒担体3として、直径144mm,長さ152U,熱
伝導率4 0 〜7 0 Kcal/m.hr. ’C
 ,比熱0.2 3 Kcal/kg. ’Cのものを
使用した.又、この触媒担体3における各ガス通過孔4
間の隔壁の厚みは0.43■で、各ガス通過孔4はl平
方in当たり、170個形成されている.断熱層7とし
て、0.2 Kcal/m,hr, Icの熱伝導率を
有し、厚さが25一のセラミックファイバーを使用した
.再生処理用セラミックスヒーターは12V−2.5κ
―のものであって、第1図及び第2図に示すように、排
気ガス取入れ側よりも排気ガス排出側の方が密になるよ
うに触媒担体3の外周に巻回した. 第1図に示すように、上記の排気ガス浄化装置1を内燃
機関Eに接続して、内燃機関Eを作動させ、排気ガス中
のカーボンを捕集した.この捕集動作中には、排気管路
Ea内の圧力を圧カセンサPs及び圧電変換素子Peを
介して制御装置Cによって監視し、その圧力が一定値(
0.17 Kg/一)に到達するまで、捕集動作を41
1続した.この時、排気ガスの流量は5 0 1/se
cであり、前記一定圧力までの到達時間は約40分とな
った。この間に補集されたカーボン量の算出に際し、触
媒担体3の容積をガス通過孔部分の総量とし、カーボン
捕集量は捕集処理の前後における重量変化に基づいて求
めた.その結果、カーボン捕集量は15getとなった
. 次に、前記制御装置CによってスイッチSを閉威させ、
ヒーター6への通電を開始した。それからlO分後には
コンブレッサCOを動作させ、エア供給管Caから触媒
担体3に二次エアを501/sinの割合で供給した.
そして、熱電対を使用することにより、触媒担体3の中
心軸線上においてヒーター6からガス排出側(第1図の
右側)へ11m離間した位置Pi及びガス取入れ側位置
P2の温度TI,T2をそれぞれ監視した。
The type of the heat insulating layer is alumina silicate ceramic fiber. Inorganic fibers such as alumina fiber, zirconia fiber, silica fiber rock wool, and asbestos. Organic fibers such as nylon and Kepler. A shape of foam such as urethane, or a combination thereof can be used. Preferably, inorganic fibers are used in part or in whole. Also, instead of using the heat insulating layer 7, a space extending almost all around the catalyst carrier 3 is formed between the catalyst carrier 3 and the casing 2,
The air in that space may be used to insulate both parts 3 and 2. In other words, the air layer can also be used as a heat insulating layer. Now, as shown by arrows in FIGS. 1 and 2, when the exhaust gas of the internal combustion engine E is introduced into the catalyst carrier 3 from the supply side of the casing 2, the wall of the gas passage hole 4 causes the exhaust gas to Carbon (soot), HC, etc. are filtered out and oxidized by the oxidation catalyst. The purified exhaust gas is then discharged from the catalyst carrier 3. When regenerating the catalyst carrier 3 used as described above, heating of the catalyst carrier 3 by the heater 6 is started with a predetermined amount of carbon retained in the catalyst carrier 3.
Then, when the temperature of the exhaust gas discharge side end of the catalyst carrier 3 reaches a predetermined temperature (300 to 800°C), supply of secondary air for combustion promotion to the casing 2 is started. By continuing the above process, the carbon in the catalyst carrier 3 is burned and the catalyst carrier 3 is regenerated. In this invention, a heater 6 is provided on the outer periphery of the catalyst carrier 3.
At the same time, a heat insulating layer 7 covering the heater 6 is installed between the catalyst carrier 3 and the inner wall of the casing 2, so that heat radiation from the periphery of the catalyst carrier 3 is suppressed and the catalyst carrier 3 is heated to the regeneration temperature. The time required for this can be extremely shortened. Therefore, the thermal energy required to raise the temperature to the regeneration temperature can also be saved. Furthermore, since the entire catalyst carrier 3 is heated uniformly, the temperature difference between both end portions of the catalyst carrier 3 is kept small. Therefore, the rate at which cracks occur in the catalyst carrier 3 due to local temperature differences can be reduced, the number of regeneration treatments can be increased, and durability can be improved. [Example] The catalyst carrier 3 had a diameter of 144 mm, a length of 152 U, and a thermal conductivity of 40 to 70 Kcal/m. hr. 'C
, specific heat 0.2 3 Kcal/kg. 'C' was used. Moreover, each gas passage hole 4 in this catalyst carrier 3
The thickness of the partition wall between them is 0.43 cm, and 170 gas passage holes 4 are formed per 1 square inch. As the heat insulating layer 7, a ceramic fiber having a thermal conductivity of 0.2 Kcal/m, hr, Ic and a thickness of 25 mm was used. Ceramic heater for reprocessing is 12V-2.5κ
As shown in Figures 1 and 2, the catalyst carrier 3 was wound around the outer periphery of the catalyst carrier 3 so that it was more densely wound on the exhaust gas outlet side than on the exhaust gas intake side. As shown in FIG. 1, the above exhaust gas purification device 1 was connected to an internal combustion engine E, and the internal combustion engine E was operated to collect carbon in the exhaust gas. During this collection operation, the pressure in the exhaust pipe Ea is monitored by the control device C via the pressure sensor Ps and the piezoelectric conversion element Pe, and the pressure is kept at a constant value (
The collection operation was repeated 41 times until reaching 0.17 Kg/1).
One in a row. At this time, the flow rate of exhaust gas is 5 0 1/sec
c, and the time required to reach the constant pressure was approximately 40 minutes. When calculating the amount of carbon collected during this time, the volume of the catalyst carrier 3 was taken as the total amount of the gas passage hole portion, and the amount of carbon collected was determined based on the weight change before and after the collection treatment. As a result, the amount of carbon collected was 15 get. Next, the control device C closes the switch S,
Power supply to the heater 6 was started. After 10 minutes, the compressor CO was operated and secondary air was supplied from the air supply pipe Ca to the catalyst carrier 3 at a rate of 501/sin.
Then, by using a thermocouple, temperatures TI and T2 at a position Pi and a position P2 on the gas intake side, which are 11 m apart from the heater 6 toward the gas discharge side (right side in FIG. 1) on the central axis of the catalyst carrier 3, are measured. I watched it.

二次エアの供給開始時において、位置P1の温度T1は
約750℃であった.又、ガス取入れ側位置P2の温度
T2はカーボンの燃焼終了時に急激に降下するため、ヒ
ーター6への通電開始時から温度降下時点までの時間を
再生時間とした.その結果、再生時間は7分であった。
At the time of starting the supply of secondary air, the temperature T1 at position P1 was approximately 750°C. Furthermore, since the temperature T2 at the gas intake side position P2 drops rapidly when the combustion of carbon ends, the time from the start of energization to the heater 6 until the temperature drop was defined as the regeneration time. As a result, the playback time was 7 minutes.

更に、触媒担体3が破損するまで、上記の再生処理を繰
り返した。それらの結果を表lに示す。
Furthermore, the above regeneration process was repeated until the catalyst carrier 3 was damaged. The results are shown in Table 1.

又、触媒担体3両端の各位置PI,P2における最大温
度差を併せて示す。
Moreover, the maximum temperature difference at each position PI, P2 on both ends of the catalyst carrier 3 is also shown.

[比較例] 再生処理用セラミックスヒーターを触媒担体のガス排出
側端面に装着した状態で、上記各実施例と同様の再生処
理を行った.その結果を表1に示す。
[Comparative Example] The same regeneration treatment as in each of the above Examples was carried out with a ceramic heater for regeneration treatment attached to the end face of the catalyst carrier on the gas discharge side. The results are shown in Table 1.

(以下、余白) 虹 実施例 比較例 ヒーター 通電時間(分)     10     10カーボン 捕集量(g八e )     15     15再生
処理時間(分)710 再生処理回数(回)20以上  8 最大温度差(’C)    60    500表1の
結果から明らかなように、比較例の触媒担体では、実施
例の触媒担体よりも再生処理に多くの時間を要している
。従って、実施例ではカーボンが効率的に燃焼している
ことがわかる。又、実施例の触媒担体では、最大温度差
が比較例のものに比べて低い値を示し、その温度差に起
因するクランクの発生頻度が少なくなって耐久性が向上
していることがわかる。
(Hereafter, blank space) Rainbow Example Comparative Example Heater energization time (minutes) 10 10 Carbon collection amount (g8e) 15 15 Regeneration treatment time (minutes) 710 Regeneration treatment number (times) 20 or more 8 Maximum temperature difference (' C) 60 500 As is clear from the results in Table 1, the catalyst carrier of the comparative example requires more time for regeneration treatment than the catalyst carrier of the example. Therefore, it can be seen that carbon is burned efficiently in the examples. In addition, the catalyst carriers of the Examples showed a lower maximum temperature difference than those of the Comparative Examples, indicating that the frequency of cranking caused by the temperature difference was reduced and the durability was improved.

[発明の効果] 以上詳述したように、この発明は再生処理中における触
媒担体からの熱伝導に伴う熱損失を防止して安定した完
全な再生を行い、かつ、触媒担体の所定部分間の温度差
を少なくして、クラツクの発生に起因する触媒担体の破
損を確実に防止することができ、よって耐久性を向上さ
せることができるという優れた効果を発揮する.
[Effects of the Invention] As detailed above, the present invention prevents heat loss due to heat conduction from the catalyst carrier during regeneration treatment, performs stable and complete regeneration, and It has the excellent effect of reducing temperature differences and reliably preventing damage to the catalyst carrier due to cracks, thereby improving durability.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】 1 内燃機関(E)の排気側に連通する通路(2a)を
備えたケーシング(2)と、 多孔質炭化珪素焼結体によってハニカム状に形成される
と共に前記通路(2a)内に配設された触媒担体(3)
と、 前記触媒担体(3)の外周に配設されたヒーター(6)
と、 前記ヒーター(6)と前記通路(2a)の内壁との間に
配設された断熱層(7)と を設けたことを特徴とする排気ガス浄化装置。
[Scope of Claims] 1. A casing (2) having a passageway (2a) communicating with the exhaust side of the internal combustion engine (E); ) Catalyst carrier (3) disposed within
and a heater (6) disposed around the outer periphery of the catalyst carrier (3).
An exhaust gas purification device comprising: a heat insulating layer (7) disposed between the heater (6) and an inner wall of the passageway (2a).
JP1156391A 1989-06-19 1989-06-19 Exhaust gas purification device Expired - Lifetime JP2928540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1156391A JP2928540B2 (en) 1989-06-19 1989-06-19 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1156391A JP2928540B2 (en) 1989-06-19 1989-06-19 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JPH0323307A true JPH0323307A (en) 1991-01-31
JP2928540B2 JP2928540B2 (en) 1999-08-03

Family

ID=15626718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1156391A Expired - Lifetime JP2928540B2 (en) 1989-06-19 1989-06-19 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP2928540B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184870A (en) * 1992-01-10 1993-07-27 Tdk Corp Deodorizer
US5533167A (en) * 1992-12-15 1996-07-02 Ngk Insulators, Ltd. Honeycomb heater element having front region adapted to heat quickly
JP2011153713A (en) * 1998-09-30 2011-08-11 Cabot Corp Vacuum heat insulation panel and method of manufacturing the same
JP2011194323A (en) * 2010-03-19 2011-10-06 Ngk Insulators Ltd Honeycomb catalyst, and apparatus for cleaning exhaust
WO2012105478A1 (en) * 2011-02-04 2012-08-09 日本碍子株式会社 Silicon carbide material, honeycomb structure and electric-heating type catalyst carrier
WO2013077184A1 (en) * 2011-11-21 2013-05-30 いすゞ自動車株式会社 Device for assisting regeneration of dpf
CN107013288A (en) * 2017-03-24 2017-08-04 常州市金坛奉献橡塑有限公司 A kind of tailed-gas treater of automobile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137423A (en) * 1982-02-09 1983-08-15 Ngk Spark Plug Co Ltd Filter apparatus for exhaust gas
JPS6174616U (en) * 1984-10-22 1986-05-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137423A (en) * 1982-02-09 1983-08-15 Ngk Spark Plug Co Ltd Filter apparatus for exhaust gas
JPS6174616U (en) * 1984-10-22 1986-05-20

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184870A (en) * 1992-01-10 1993-07-27 Tdk Corp Deodorizer
US5533167A (en) * 1992-12-15 1996-07-02 Ngk Insulators, Ltd. Honeycomb heater element having front region adapted to heat quickly
US5664049A (en) * 1992-12-15 1997-09-02 Ngk Insulators, Ltd. Honeycomb heater
JP2011153713A (en) * 1998-09-30 2011-08-11 Cabot Corp Vacuum heat insulation panel and method of manufacturing the same
JP2011194323A (en) * 2010-03-19 2011-10-06 Ngk Insulators Ltd Honeycomb catalyst, and apparatus for cleaning exhaust
WO2012105478A1 (en) * 2011-02-04 2012-08-09 日本碍子株式会社 Silicon carbide material, honeycomb structure and electric-heating type catalyst carrier
CN103339087A (en) * 2011-02-04 2013-10-02 日本碍子株式会社 Silicon carbide material, honeycomb structure and electric-heating type catalyst carrier
JPWO2012105478A1 (en) * 2011-02-04 2014-07-03 日本碍子株式会社 Silicon carbide-based material, honeycomb structure, and electrically heated catalyst carrier
WO2013077184A1 (en) * 2011-11-21 2013-05-30 いすゞ自動車株式会社 Device for assisting regeneration of dpf
JP2013108433A (en) * 2011-11-21 2013-06-06 Isuzu Motors Ltd Device for assisting regeneration of dpf
CN107013288A (en) * 2017-03-24 2017-08-04 常州市金坛奉献橡塑有限公司 A kind of tailed-gas treater of automobile

Also Published As

Publication number Publication date
JP2928540B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
KR930000473B1 (en) Exhaust emission purifier for diesel engines
US4427418A (en) Device for collecting particulates in exhaust gases
JP2002070531A (en) Exhaust emission control device and casing structure for exhaust emission control device
JPH08232643A (en) Method and device for emission control
JP2003161138A (en) Diesel particulate filter
JPH0323307A (en) Exhaust gas purifying device
JP6811367B2 (en) Exhaust gas purification device
JP2812699B2 (en) Exhaust gas purification device
JP2590943Y2 (en) Exhaust gas purification device
JP3587270B2 (en) DPF regeneration system using heater
JPH10259709A (en) Method for purifying exhaust gas and exhaust emission control device
JP3219404B2 (en) Exhaust gas purification device
JPH0315616A (en) Exhaust gas purifying device
JP2012241548A (en) Exhaust emission control system
JP4219420B2 (en) Exhaust gas filter purification method and exhaust gas filter purification device
JP3257370B2 (en) Exhaust gas filter purification method and exhaust gas filter purification device
JP3365244B2 (en) Exhaust gas purification equipment
JPH06296873A (en) Honeycomb heater and exhaust gas purification device using said heater
JPH04164115A (en) Diesel engine exhaust gas purification device
JP2594465Y2 (en) Exhaust gas purification device
JP2003172117A (en) Exhaust emission control device having two ceramic unwoven fabrics
JP2690147B2 (en) Exhaust gas purification device
JPH0530964B2 (en)
JPH0913954A (en) Exhaust gas purifying method and exhaust gas purifying device
JPS6043114A (en) Exhaust gas purifying ceramic filter