JPH0323290A - Molecular ray epitaxy device - Google Patents

Molecular ray epitaxy device

Info

Publication number
JPH0323290A
JPH0323290A JP15458089A JP15458089A JPH0323290A JP H0323290 A JPH0323290 A JP H0323290A JP 15458089 A JP15458089 A JP 15458089A JP 15458089 A JP15458089 A JP 15458089A JP H0323290 A JPH0323290 A JP H0323290A
Authority
JP
Japan
Prior art keywords
crucible
molecular beam
base plate
substrate
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15458089A
Other languages
Japanese (ja)
Other versions
JP2664250B2 (en
Inventor
Nushito Takahashi
主人 高橋
Shinjiro Ueda
上田 新次郎
Hiroki Kawada
洋揮 川田
Yoshifumi Ogawa
芳文 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15458089A priority Critical patent/JP2664250B2/en
Publication of JPH0323290A publication Critical patent/JPH0323290A/en
Application granted granted Critical
Publication of JP2664250B2 publication Critical patent/JP2664250B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain the epitaxy crystal thin film of less deviation of film thickness with a practical growing speed by setting the clearance between the crucible receiving raw material and the base plate on which the crystal is grown to a specified range. CONSTITUTION:The crucible 2 receiving raw material 3 and the base plate 1 on which the crystal is grown are disposed in a molecular ray epitaxy device. Let the diameter of the opening of the crucible 2 by Dmm, the diameter of the base plate 1 (d)mm, the opening angle of the crucible 2 beta-degree, and the permissible growing velocity of crystal R0mum/h, then the distance Lmm between the crucible 2 and the base plate 1 is set in the range determined by the equation. Then the raw material 3 in the crucible 2 is heated to grow epitaxy crystal thin film on the base plate 1. By this method, without the need of raising the temp. of molecular ray source to raise the growth velocity, a sufficient growth velocity is obtained by heating at a suitable temp. Consequently, the temp. of the molecular ray source is lowered and the defects on the surface of the base plate is reduced so that an epitaxy base plate of good quality is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分子線エピタキシ装置に係り、特ニ膜厚分布
,N膜の組或比分布,不純物濃度分布等を均一化し、基
板表面に発生する欠陥を低減する分子線エピタキシ装置
に関する. 〔従来の技術〕 従来の装置は、特開昭62−12694号に記載のよう
に,基板の大きさに応じて分子線源の配置を定め、膜厚
分布,組或分布などを均一化するようにしていた,また
,特開昭62−12694号に記戟のように,膜厚分布
を均一化するため、(a)m数の分子線源を対象な位置
に配置し,(b)分子線源の基板への照射角を30’以
上とし、さらに(c)分子線源と基板との距離を基板直
径の3倍以」二とするようにしていた.さらに、分子線
源の照射中心を基板中心から、基板半径以上ずらすよう
にしていた. また、特開昭62−54421号に記載のように、(a
)基板と分子線源との距離を基板直径の0.7から1.
6倍の範囲とし、(b)分子線源の照射中心を基板中心
からずらし,その距離を基板直径の0.4  から0.
7 倍の長さとするようにしていた, マタ、特開昭61 − 91094 % ’T! ハ、
分子1 ijiX (7) /L/ツボの開き角(θ0
)を考慮し,ルツボ出口直径(A)と分子線源照射角(
θ)と基板と分子線源との距離(L)が、基板直径(d
)との間に、次式(d<0.7 (A+2Ltanθo
)/cos(1)となるように分子線源を配置していた
. 上記特開昭62−12694号および特開昭61−9 
1 094号はいずれも膜厚分布の均一化することを第
一の目的とするものの、膜の成長速度(分子線強度)へ
の配慮がなされていないという欠点があった.このよう
な場合,一般に分子線源の加熱温度を制御して或長速度
をコントロールするのであるが、分子線源の温度は無制
限に高くできないので,或長速度の制御範囲が限られる
という欠点があった.特開昭62−54421号では膜
厚分布の他に或長速度も考慮されてはいるものの特開昭
61−91.094号に記載のようにこれらはさらにル
ツボの形状にも依存していた. 〔発明が解決しようとする課題〕 上記従来技術は分子線エピタキシ装置における膜厚分布
,成長速度に影響する分子線源と基板間距離,照射角,
照射中心位置および基板サイズ、分子線源の大きさ(ル
ツボ形状)等との関係が総合的に関係ずけられておらず
,経験により上記分子線源の配置を求めていたので、長
時間を要し、しかもそれが必ずしも最適とは言い難い難
点があった. 本発明の目的は、分子線源と基板間の距離を最適の位置
に配置して高品質の薄膜を効率的に製造することができ
る分子線エピタキシ装置を提供することにある. 〔課題を解決するための手段〕 本発明は上記の目的を達成するために、膜厚偏差、およ
び薄膜の或長速度と、ルツボおよび基板間の大きさ,距
離,角度その他の配置情報との間の関係を明確にし,そ
れにより所定の膜厚偏差、および薄膜の或長速度を与え
るようにしたものである. 〔作用〕 上記配置情報により、従来のような非能率な試行を繰り
返す事無く、所定の膜厚偏差、および薄膜の威長速度に
対する分子線エピタキシの装置の運転条件が直ちに求ま
る, 〔実施例〕 以下,本発明の実施例を図面を用いて説明する.第1図
は本発明の分子線エピタキシ装置の中から基板と分子線
源のみを抽出して示したものである.ルツボ2の中に充
填された原料3には例えばガリウムやアルミニウムなど
が用いられ、加熱されて熔解され、液面4は水平になっ
ている.dは基板↓の直径,Dはルツボの直径,βはル
ッポ2の開口角、hはルッポ2の出口から液面4の中心
までの深さ,Lは基板工とルッポ2の出口までの距離、
θはルツボ2の中心軸が基仮1となす角(照射角)、S
はルツボ2の中心軸と基板lの交点A(照射中心)と基
板1の中心O間の距離(シフト量)である. 第1図に示した分子線エピタキシ装置において、膜厚分
布,成長速度等は分子線源と基板間距離L,照射角θ,
照射中心位l!Sおよび基板サイズd,ルッポの大きさ
D等に関係して変化する.本発明ではこのような関係を
分析し、総合的に把握して上記の分子線源の最適な配置
を求めるようにする。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a molecular beam epitaxy apparatus, which specifically uniformizes film thickness distribution, N film composition ratio distribution, impurity concentration distribution, etc. This article relates to molecular beam epitaxy equipment that reduces defects. [Prior art] As described in Japanese Patent Application Laid-Open No. 62-12694, the conventional apparatus determines the arrangement of the molecular beam source according to the size of the substrate to make the film thickness distribution, composition distribution, etc. uniform. In addition, as described in JP-A-62-12694, in order to make the film thickness distribution uniform, (a) m molecular beam sources were placed at symmetrical positions, and (b) The irradiation angle of the molecular beam source onto the substrate was set to be 30' or more, and (c) the distance between the molecular beam source and the substrate was set to at least 3 times the substrate diameter. Furthermore, the irradiation center of the molecular beam source was shifted from the center of the substrate by more than the radius of the substrate. In addition, as described in JP-A No. 62-54421, (a
) Adjust the distance between the substrate and the molecular beam source from 0.7 to 1.
(b) The irradiation center of the molecular beam source is shifted from the substrate center, and the distance is varied from 0.4 to 0.6 times the substrate diameter.
I was trying to make it 7 times as long, JP-A-61-91094%'T! Ha,
Molecule 1 ijiX (7) /L/Acupoint opening angle (θ0
), the crucible exit diameter (A) and the molecular beam source irradiation angle (
θ) and the distance (L) between the substrate and the molecular beam source are the substrate diameter (d
), the following formula (d<0.7 (A+2Ltanθo
)/cos(1). The above-mentioned JP-A-62-12694 and JP-A-61-9
Although the primary objective of all No. 1094 was to make the film thickness distribution uniform, the drawback was that no consideration was given to the film growth rate (molecular beam intensity). In such cases, a certain longitudinal velocity is generally controlled by controlling the heating temperature of the molecular beam source, but since the temperature of the molecular beam source cannot be increased indefinitely, the disadvantage is that the control range of a certain longitudinal velocity is limited. there were. Although JP-A No. 62-54421 takes into consideration a certain longitudinal velocity in addition to the film thickness distribution, as described in JP-A No. 61-91.094, these also depended on the shape of the crucible. .. [Problems to be Solved by the Invention] The above-mentioned conventional technology has a problem with the film thickness distribution in a molecular beam epitaxy apparatus, the distance between the molecular beam source and the substrate, the irradiation angle, which affects the growth rate,
The relationship between the irradiation center position, the substrate size, the size of the molecular beam source (crucible shape), etc. had not been determined comprehensively, and the placement of the molecular beam source was determined based on experience, so it took a long time. However, it had the disadvantage that it was not necessarily optimal. An object of the present invention is to provide a molecular beam epitaxy apparatus that can efficiently produce high-quality thin films by optimizing the distance between the molecular beam source and the substrate. [Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides information on the relationship between the film thickness deviation, a certain longitudinal velocity of the thin film, and the size, distance, angle, and other arrangement information between the crucible and the substrate. The relationship between the two is clarified, and thereby a predetermined film thickness deviation and a certain longitudinal velocity of the thin film are given. [Operation] Using the above arrangement information, the operating conditions of the molecular beam epitaxy device for a given film thickness deviation and thin film growth rate can be immediately determined without repeating inefficient trials as in the conventional method. [Example] Examples of the present invention will be described below using drawings. Figure 1 shows only the substrate and molecular beam source extracted from the molecular beam epitaxy apparatus of the present invention. The raw material 3 filled in the crucible 2 is made of, for example, gallium or aluminum, and is heated and melted so that the liquid level 4 is horizontal. d is the diameter of the substrate ↓, D is the diameter of the crucible, β is the opening angle of Lupo 2, h is the depth from the outlet of Lupo 2 to the center of the liquid level 4, L is the distance between the substrate processing and the exit of Lupo 2 ,
θ is the angle between the central axis of crucible 2 and base 1 (irradiation angle), S
is the distance (shift amount) between the intersection A (irradiation center) of the central axis of the crucible 2 and the substrate 1 and the center O of the substrate 1. In the molecular beam epitaxy apparatus shown in Fig. 1, the film thickness distribution, growth rate, etc. are determined by the distance L between the molecular beam source and the substrate, the irradiation angle θ,
Irradiation center position! It changes depending on S, the substrate size d, the size D of the lupus, etc. In the present invention, such relationships are analyzed and comprehensively understood to determine the optimum arrangement of the above-mentioned molecular beam sources.

このため,まずシフト量Sがゼロの場合につき,基板1
とルツボ2との距離Lと膜厚偏差tとの関係を計算機シ
ミュレイションにより求め第2図に示すような結果を得
た.ただし、基板直径d=180m,開口角β=5”,
照射角θ=45゜液面深さh=90−である.また,パ
ラメータはそれぞれルツボ径Dが70.60.50.3
5(m.)の場合に対応する。
For this reason, first, when the shift amount S is zero, the substrate 1
The relationship between the distance L from the crucible 2 to the film thickness deviation t was determined by computer simulation, and the results shown in Figure 2 were obtained. However, substrate diameter d = 180 m, aperture angle β = 5'',
Irradiation angle θ = 45° and liquid level depth h = 90°. In addition, the parameters are crucible diameter D of 70.60.50.3.
This corresponds to the case of 5 (m.).

第2図の特性を近似的に数式化すると式(1)が得られ
る. t t(180)は,基板径d=180niにおける膜厚偏
差tを意味する.これにより、膜厚分布の許容値を、例
えばt(180)≦1%とすると、Lは式(2)に示す
値とせねばならないことがわかる.Dり・′・ β0・
1 同様にして計算機シミュレーションにより或長速度Rを
求めると第3図に示す結果が得られ、これを近似的に数
式化すると式(3)が得られる。
Expression (1) can be obtained by approximately converting the characteristics shown in Figure 2 into a mathematical expression. t t(180) means the film thickness deviation t when the substrate diameter d=180ni. This shows that if the allowable value of the film thickness distribution is, for example, t(180)≦1%, then L must be set to the value shown in equation (2). Dri・′・β0・
1 Similarly, when a certain longitudinal speed R is determined by computer simulation, the result shown in FIG. 3 is obtained, and when this is expressed approximately into a mathematical expression, equation (3) is obtained.

これより或長速度Rの許容値を例えば1μm/hにする
と許容されるLの範囲として次式が得られる. なる.なお、上記の関係は基板直径がd=180一の場
合であるが,dがこれ以外の値の場合は,膜厚分布、を
1%以内、許容或長速度をRoとすれば式(2) ,(
4)等はそれぞれ式(6)および式(7)のように表わ
すことができる。
From this, if the allowable value of a certain longitudinal speed R is set to, for example, 1 μm/h, the following equation can be obtained as the allowable range of L. Become. Note that the above relationship applies when the substrate diameter is d = 180, but if d is any other value, the formula (2 ), (
4) etc. can be expressed as equations (6) and (7), respectively.

したがって式(2)および式(4)よりt(180)く
」%,R=1μm / hという条件を満たすLの範囲
は式(5)のように与えられる。
Therefore, from equations (2) and (4), the range of L that satisfies the conditions of t(180)% and R=1 μm/h is given as shown in equation (5).

第4図の斜線で示す部分が式(5)を満足する範囲であ
る.直線13が式(5)の右辺の関係、直線14が同左
辺の関係に対応する. C点がルツボ直径Dの最小値と距ILの最小値を与え、
それぞれはD=63m,L=285mとこれより同様に
してLの範囲を導くと式(8)が得られる. 上記した関係式はさらにシフト量Sや照射角θ,液面深
さh等の変化に対応して修正されねばならない.しかし
、上記S,θ,h等の値が以下に示す範囲内であればそ
の影響は少ないので上記の関係式をそのま\用いること
ができる。
The shaded area in Figure 4 is the range that satisfies equation (5). Line 13 corresponds to the relationship on the right side of equation (5), and line 14 corresponds to the relationship on the left side. Point C gives the minimum value of the crucible diameter D and the minimum value of the distance IL,
For each, D = 63 m and L = 285 m, and formula (8) is obtained by deriving the range of L in the same manner. The above relational expression must be further modified in response to changes in the shift amount S, irradiation angle θ, liquid level depth h, etc. However, if the values of S, θ, h, etc. are within the ranges shown below, the influence will be small, so the above relational expression can be used as is.

例えば,通常の分子線エピタキシ装置は、基板に対して
対称な位置に複数の分子線源を設置するので実際上,そ
れらを限られたスペース内に実装できるかどうかを考慮
する必要があり、その結果、例えば照射角θを自由に選
定できない.照射角θが大きいほど膜厚偏差tは減少す
るのであるが、成長速度Rも同時に減少するので、照射
角θの上限も自ずと決まってくる.また、照射角θが大
きいほど、分子線源に近い基板上の位置と遠い位置との
分子線強度差が大きくなるので,WA厚分布や膜質分布
を均一化するには基板の自転回転数を増さなければなら
ず、これからも照射角θが制限される.照射角θの下限
は、分子線源が実装できるかによって自ずと定まる.以
上の点より照射角0は実際上25〜50゜の範囲に限定
される.次に、シフト量Sの許容範囲について考える.
通常、複数の分子線源は基板の回転軸に対して対称に配
置される.基板の回転軸に分子線源に近づけると、膜厚
偏差tが増加するうえ、実装もしにくくなる.したがっ
て分子線源は通常基板の回転軸から離すようにしたい.
しかし、同時に成長速度Rも低下するので、分子線源を
基板の方に近づけだり,ルツボ径Dを大きくしたりして
上記Rの減少を埋め合わせながら、上記シフトlsを適
当な値に設定するようにしている。
For example, in a typical molecular beam epitaxy system, multiple molecular beam sources are installed at symmetrical positions with respect to the substrate, so it is necessary to consider whether they can be mounted within a limited space. As a result, for example, the illumination angle θ cannot be freely selected. As the irradiation angle θ increases, the film thickness deviation t decreases, but since the growth rate R also decreases at the same time, the upper limit of the irradiation angle θ is naturally determined. In addition, the larger the irradiation angle θ, the greater the difference in molecular beam intensity between positions on the substrate near and far from the molecular beam source. Therefore, in order to make the WA thickness distribution and film quality distribution uniform, the rotation speed of the substrate should be adjusted. The illumination angle θ will continue to be limited. The lower limit of the irradiation angle θ is naturally determined by whether the molecular beam source can be implemented. From the above points, the irradiation angle 0 is actually limited to a range of 25 to 50 degrees. Next, consider the allowable range of shift amount S.
Usually, multiple molecular beam sources are arranged symmetrically with respect to the rotation axis of the substrate. If the molecular beam source is brought close to the rotation axis of the substrate, the film thickness deviation t will increase and mounting will also become difficult. Therefore, it is usually desirable to keep the molecular beam source away from the rotation axis of the substrate.
However, at the same time, the growth rate R also decreases, so the shift ls should be set to an appropriate value while compensating for the decrease in R by bringing the molecular beam source closer to the substrate or increasing the crucible diameter D. I have to.

第5図はシフト量Sと戊長速度Rの関係の一例である6
たりし、横軸はSと基板直径dの比で示した。後述する
ように、成長速度をあまりに遅くと正常な結晶或長が困
難になるので、R≧0.5μm / hとして選択する
と、S/d≦1となり、シフト量Sは基板径d以下とす
るのが望ましいことがわかる. 次に、許容成長速度ROの値について説明する.例えば
GaAs薄膜の成長を行なう場合、成長速度は通常は1
μm/}+程度の値に設定される。この成長速度はGa
分子線源の温度、すなわち、Ga分子線の強度に依存し
ており、Ga分子線源の温度を低くすると戊長速度は低
下し、同時にGa酸化物(Gaza)の蒸発も少なくな
るのでいわゆるオーバルデイフエクト(oval de
fect)と称する表面欠陥を減少させる効果が得られ
る.しかし、成長速度を過度に小さくすると或長時間が
長くなり、また残留ガス成分中の一酸化炭素などの有害
分子が基板上に取り込まれる確率が増加する.威長速度
の低下に対応して,基板上のGaやAs原子の拡散時間
を適正化するために基板温度を下げると表面欠陥が増加
する等の問題も発生する.以上の諸点を考慮すると式(
8)に示した許容或長速度はRo≧0.5(μm / 
h )とするのが妥当である。
Figure 5 is an example of the relationship between the shift amount S and the lengthening speed R6.
The horizontal axis shows the ratio of S to the substrate diameter d. As will be described later, if the growth rate is too slow, normal crystal growth becomes difficult, so if R≧0.5 μm/h is selected, S/d≦1, and the shift amount S should be less than or equal to the substrate diameter d. It can be seen that it is desirable to Next, the value of the allowable growth rate RO will be explained. For example, when growing a GaAs thin film, the growth rate is usually 1
μm/}+ approximately. This growth rate is Ga
It depends on the temperature of the molecular beam source, that is, the intensity of the Ga molecular beam.If the temperature of the Ga molecular beam source is lowered, the elongation speed decreases, and at the same time, the evaporation of Ga oxide (Gaza) decreases, so the so-called oval Defect (oval de
This has the effect of reducing surface defects called surface defects. However, if the growth rate is made too low, the growth time becomes long and the probability that harmful molecules such as carbon monoxide in the residual gas components are incorporated onto the substrate increases. Corresponding to the decrease in growth rate, lowering the substrate temperature in order to optimize the diffusion time of Ga and As atoms on the substrate causes problems such as an increase in surface defects. Considering the above points, the formula (
The allowable longitudinal velocity shown in 8) is Ro≧0.5 (μm /
h) is appropriate.

実際の分子線エピタキシ装置では、分子線原料の種類に
よってたとえば.Asは消費量が多いので、太き目の分
子tiA源としたり、ドーピング用Siは、消費量が少
ないが分子線源温度が高いので小容量にしたりして分子
線源の容量を変えている.しかし、何れの場合も本発明
によって導かれた式(8)に示す位置関係により分子線
源取付位置を定めれば高品質の膜を或長させることがで
きるのである. 〔発明の効果〕 以上詳述したように、本発明により導かれた製造条件を
適用すると実用的な成長速度で膜厚偏差の少ないエピタ
キシ結晶薄膜を得ることができる.また、従来装置のよ
うに上記或長速度を早めるために分子線源の温度を高め
る必要がなく、適度の温度で加熱して十分な或長速度が
得られるので、分子線源温度を下げて基板表面の欠陥を
低減させた良質のエピタキシ基板を得ることができる。
In actual molecular beam epitaxy equipment, for example, depending on the type of molecular beam raw material. Since As consumes a large amount, the capacity of the molecular beam source is changed by using a thick molecular TiA source, and for doping Si, which consumes a small amount but has a small capacity because the molecular beam source temperature is high. .. However, in any case, if the mounting position of the molecular beam source is determined according to the positional relationship shown in equation (8) derived by the present invention, a high-quality film can be made to a certain length. [Effects of the Invention] As detailed above, by applying the manufacturing conditions derived from the present invention, it is possible to obtain an epitaxial crystal thin film with a practical growth rate and little thickness deviation. In addition, there is no need to raise the temperature of the molecular beam source in order to accelerate the above-mentioned elongation velocity as in conventional equipment, and since a sufficient elongation velocity can be obtained by heating at an appropriate temperature, the temperature of the molecular beam source can be lowered. A high-quality epitaxy substrate with reduced defects on the substrate surface can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の分子線エピタキシ装置の原理的構或図
、第2図は本発明の根拠になる分子線源距離と結晶の膜
厚偏差との関係図、第3図は本発明の根拠になる分子線
源距離と結晶の或長速度との関係図、第4図は本発明の
結論を示す特性図、第5図は本発明の適用範囲を確認す
るための特性図である。 1・・・基板、2・・・ルツボ、3・・・原料、4・・
・液面。
Fig. 1 is a diagram showing the basic structure of the molecular beam epitaxy apparatus of the present invention, Fig. 2 is a diagram showing the relationship between the molecular beam source distance and the crystal film thickness deviation, which is the basis of the present invention, and Fig. 3 is a diagram showing the relationship between the molecular beam source distance and the crystal film thickness deviation, which is the basis of the present invention. FIG. 4 is a characteristic diagram showing the conclusion of the present invention, and FIG. 5 is a characteristic diagram for confirming the scope of application of the present invention. 1... Substrate, 2... Crucible, 3... Raw material, 4...
·Liquid surface.

Claims (1)

【特許請求の範囲】 1、ルツボ内の原料を加熱する分子線源により基板上に
結晶を成長せしめる分子線エピタキシ装置において、上
記ルツボの開口部の直径をD(mm)、上記基板直径を
d(mm)、上記ルツボの開口角β(度)、上記結晶の
許容成長速度をR_0(μm/h)として、上記ルツボ
と上記基板間の間隔L(mm)を 2.3D^1^.^2/R_0^0^.^6β^0^.
^1≧L≧220d^0^.^6/D^0^.^7・β
^0^.^4で定まる範囲に設定したことを特徴とする
分子線エピタキシ装置。
[Claims] 1. In a molecular beam epitaxy device that grows crystals on a substrate using a molecular beam source that heats raw materials in a crucible, the diameter of the opening of the crucible is D (mm), and the diameter of the substrate is d. (mm), the opening angle β (degrees) of the crucible, and the allowable growth rate of the crystal R_0 (μm/h), the distance L (mm) between the crucible and the substrate is 2.3D^1^. ^2/R_0^0^. ^6β^0^.
^1≧L≧220d^0^. ^6/D^0^. ^7・β
^0^. A molecular beam epitaxy apparatus characterized in that the setting is within a range determined by ^4.
JP15458089A 1989-06-19 1989-06-19 Molecular beam epitaxy equipment Expired - Lifetime JP2664250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15458089A JP2664250B2 (en) 1989-06-19 1989-06-19 Molecular beam epitaxy equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15458089A JP2664250B2 (en) 1989-06-19 1989-06-19 Molecular beam epitaxy equipment

Publications (2)

Publication Number Publication Date
JPH0323290A true JPH0323290A (en) 1991-01-31
JP2664250B2 JP2664250B2 (en) 1997-10-15

Family

ID=15587323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15458089A Expired - Lifetime JP2664250B2 (en) 1989-06-19 1989-06-19 Molecular beam epitaxy equipment

Country Status (1)

Country Link
JP (1) JP2664250B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021525967A (en) * 2018-06-07 2021-09-27 シランナ・ユー・ブイ・テクノロジーズ・プライベート・リミテッドSilanna Uv Technologies Pte Ltd Methods and material deposition systems for forming semiconductor layers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021525967A (en) * 2018-06-07 2021-09-27 シランナ・ユー・ブイ・テクノロジーズ・プライベート・リミテッドSilanna Uv Technologies Pte Ltd Methods and material deposition systems for forming semiconductor layers
US11670508B2 (en) 2018-06-07 2023-06-06 Silanna UV Technologies Pte Ltd Methods and material deposition systems for forming semiconductor layers
EP4258325A3 (en) * 2018-06-07 2024-01-24 Silanna UV Technologies Pte Ltd Optoelectronic device
US11990338B2 (en) 2018-06-07 2024-05-21 Silanna UV Technologies Pte Ltd Optoelectronic device including a superlattice

Also Published As

Publication number Publication date
JP2664250B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US11624123B2 (en) Method and apparatus of monocrystal growth
JPS6255688B2 (en)
JPH0323290A (en) Molecular ray epitaxy device
JPS6033291A (en) Preparation of single crystal silicon
JPH11228286A (en) Production of single crystal
US20140109824A1 (en) Method of growing silicon single crystal
US20150167169A1 (en) Film forming apparatus
JPS6111914B2 (en)
JPH04354119A (en) Substrate retaining structure of vapor growth equipment
Lin et al. Improvement of stoichiometry in semi-insulating gallium arsenide grown under microgravity
JP2830932B2 (en) Molecular beam epitaxial growth method
JPH0930898A (en) Composition adjustment of melt for growing bismuth-substituted iron garnet film
JPH07147236A (en) Metal organic chemical vapor deposition method
JPS63162596A (en) Vapor growth apparatus of organometal
JPS6270293A (en) Production of compound semiconductor single crystal
JPH05347262A (en) Manufacture of polycrystalline silicon
JPH01138195A (en) Production of semiconductor
JP2804959B2 (en) Method for epitaxial growth of Ш-V compound semiconductor
JPH0423317A (en) Formation method of single-crystal film
JPH0359014A (en) Epitaxial growth of diacetylene or polydiacetylene
JPS62153192A (en) Method for growing crystal of compound semiconductor
JPS59184798A (en) Preparation of group iii-v compound semiconductor single crystal
JPH01290597A (en) Production of semiconductive gaas single crystal
JPH02296791A (en) Liquid phase epitaxial growth method
JPS63226916A (en) Vapor growth system