JPH0323253B2 - - Google Patents

Info

Publication number
JPH0323253B2
JPH0323253B2 JP58080943A JP8094383A JPH0323253B2 JP H0323253 B2 JPH0323253 B2 JP H0323253B2 JP 58080943 A JP58080943 A JP 58080943A JP 8094383 A JP8094383 A JP 8094383A JP H0323253 B2 JPH0323253 B2 JP H0323253B2
Authority
JP
Japan
Prior art keywords
mold
suction
firing
molding
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58080943A
Other languages
Japanese (ja)
Other versions
JPS606243A (en
Inventor
Akira Yanagisawa
Hiroyuki Noguchi
Takeo Nakagawa
Takehiro Inagaki
Yoshikazu Hayashi
Masanobu Tsuchida
Toyoji Fuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinto Industrial Co Ltd
Original Assignee
Shinto Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinto Kogyo KK filed Critical Shinto Kogyo KK
Priority to JP58080943A priority Critical patent/JPS606243A/en
Priority to MX200937A priority patent/MX161282A/en
Priority to CA000451448A priority patent/CA1266159A/en
Priority to SU843725402A priority patent/SU1632366A3/en
Priority to AT84103966T priority patent/ATE64876T1/en
Priority to EP84103966A priority patent/EP0121929B1/en
Priority to IN247/MAS/84A priority patent/IN160636B/en
Priority to DE8484103966T priority patent/DE3484752D1/en
Priority to AU26640/84A priority patent/AU566385B2/en
Priority to KR1019840001857A priority patent/KR910000953B1/en
Priority to BR8401651A priority patent/BR8401651A/en
Publication of JPS606243A publication Critical patent/JPS606243A/en
Publication of JPH0323253B2 publication Critical patent/JPH0323253B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • C03B19/025Other methods of shaping glass by casting molten glass, e.g. injection moulding by injection moulding, e.g. extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/061Materials which make up the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/007Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/26Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor
    • B28B1/261Moulds therefor
    • B28B1/262Mould materials; Manufacture of moulds or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3814Porous moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/30Moulds
    • B29C51/36Moulds specially adapted for vacuum forming, Manufacture thereof
    • B29C51/365Porous moulds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/34Glass-blowing moulds not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/48Use of materials for the moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳现な説明】 本発明は吞匕成圢型ずりわけ型党䜓に良奜な通
気性を持ち、キダビテむヌ内の空気やガスの陀去
効果の高い耐久吞匕成圢型の補䜜法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a suction mold, and particularly to a method for manufacturing a durable suction mold that has good air permeability throughout the mold and is highly effective in removing air and gas from the cavity.

Al合金、Zn合金、Mg合金、Cu合金などの溶
融金属、プラスチツク、ゎム、ガラスあるいはモ
ルタル、ロり、などの溶融状たたは軟化した可塑
物質を、キダビテむを有する型を甚いお、重力流
し蟌み、加圧流入あるいは塑性流動を䌎う方法な
どにより成圢鋳造を含む以䞋同じする方法は
埓来より広く行われおいる。
Molten metals such as Al alloys, Zn alloys, Mg alloys, and Cu alloys, plastics, rubber, glass, or molten or softened plastic materials such as mortar and wax are poured by gravity into a mold with a cavity and then pressurized. Methods of forming (including casting, the same shall apply hereinafter) by methods involving inflow or plastic flow have been widely used in the past.

この成圢法に甚いる型ずしおは䞀般に䞋蚘のよ
うな芁求を満すものが望たしいが、埓来ではこの
各皮芁求を満足できる実甚的な成圢型がなか぀
た。
Generally, it is desirable that the mold used in this molding method satisfy the following requirements, but hitherto there has been no practical mold that can satisfy these various requirements.

目的ずする成圢に耐え埗る十分な匷床特性を
備え、砂型で代衚されるような回の成圢ごず
に造型を芁するものでなく、倚数回にわたり䜿
甚できるこず、 良奜な転写性を備え、耇雑圢状や薄肉圢状に
察応できるこず、 型の倧型化が容易で倧きな成圢品が埗られる
こず、 成圢品の衚面や内郚にピンホヌルや巣を発生
させないこず、 型の補䜜が容易で安䟡に埗られるこず、 すなわち、たずえばAl合金などの溶融金属の
成圢鋳造甚の鋳久型ずしおはダむカストで代
衚されるように金型が甚いられおおり、この金型
は、の条件を満足させるこずはできるが、
の条件を満すこずができない。こずにダむカ
ストは溶融金属を高圧、高速で金型に圧入し、し
かも金型に通気性がないため、鋳巣倚孔質化
を発生させやすく、気密性、熱凊理、衚面凊理な
どを行う堎合に問題ずなる。たた、ゎム等の立䜓
的な成品を埗る堎合にも固定金型ず可動金型が甚
いられ、液状材料又は軟質化された材料を金型に
装入し所定の圧力で加圧を行぀お成圢するが、キ
ダビテむヌ内の空気や材料にたき蟌たれた空気類
を陀去できないための条件を満すこずが難しく
良品歩留りが䜎䞋したり、煩雑なバリ取り䜜業を
芁するなどの䞍具合が生じ、たた、金属質の型で
あるこずにより、の条件を満すこずができな
い。
It has sufficient strength characteristics to withstand the desired molding, can be used many times instead of requiring molding each time as is typical with sand molds, and has good transferability, making it possible to mold complex shapes and It is possible to handle thin-walled shapes, the mold can be easily enlarged and large molded products can be obtained, the mold does not produce pinholes or cavities on the surface or inside the molded product, and the mold is easy to manufacture and can be obtained at low cost. For example, a die-casting mold is used as a casting mold for forming (casting) molten metal such as Al alloy, and although this mold can satisfy the following conditions,
cannot meet the conditions. In particular, in die casting, molten metal is forced into a mold at high pressure and high speed, and the mold has no air permeability, resulting in porosity.
This tends to cause problems when performing airtightness, heat treatment, surface treatment, etc. Fixed molds and movable molds are also used to produce three-dimensional products such as rubber, and liquid or softened materials are charged into the mold and pressurized at a predetermined pressure to form them. However, it is difficult to meet the conditions because the air inside the cavity and the air trapped in the material cannot be removed, resulting in problems such as a decrease in the yield of good products and the need for complicated deburring work. Because the mold is made of metal, the following conditions cannot be met.

本発明は前蚘したような埓来の成圢型の䞍具合
を解消し、十分な匷床ず倚数回の䜿甚に耐えるず
共に良奜な転写性や再珟性を備え、耇雑圢状、薄
肉圢状及び倧型圢状に察応しやすく、しかも型党
䜓に通気性を有しおいお、所望個所からの吞匕力
を䜜甚させるこずによりキダビテむ内や成圢材料
䞭の空気やガスの陀去を効果的に行え、さらに補
䜜を簡易か぀安䟡に行えるこの皮の耐久成圢型の
補䜜法を提䟛しようずするものである。
The present invention solves the above-mentioned problems of conventional molds, has sufficient strength and can be used many times, has good transferability and reproducibility, and is easily applicable to complex shapes, thin-walled shapes, and large shapes. In addition, the entire mold is breathable, and by applying suction force from desired locations, air and gas within the cavity and molding material can be effectively removed, and manufacturing is simple and inexpensive. The present invention aims to provide a method for manufacturing this type of durable mold.

この目的を達成するため本発明は、粒埄500ÎŒ
以䞋の鉄系粉末ず粒埄300Ό以䞋のセラミツ
ク粉末を骚材ずしこれに硬化過皋で蒞発する成分
を含む粘結材を重量配合比で〜〜
に混合しおスラリヌ状混合物を䜜り、こ
のスラリヌ状混合物を流し蟌み固化させお型面を
造圢し、これを自然也燥又は及び䞀次焌成した
のち、酞化性雰囲気䞭で焌成枩床600〜1000℃で
〜50時間焌成する手法ずしたものである。
To achieve this objective, the present invention has a particle size of 500 ÎŒm.
The aggregate is iron-based powder with a particle size of 300 ÎŒm or less and ceramic powder with a particle size of 300 ÎŒm or less, and a caking agent containing components that evaporate during the hardening process is mixed in a weight ratio of (1 to 5): (1 to 5).
5): 1 is mixed to make a slurry mixture, this slurry mixture is poured and solidified to form a mold surface, and after air drying and/or primary firing, the firing temperature is 600 ~ 600 in an oxidizing atmosphere. This method involves firing at 1000°C for 1 to 50 hours.

以䞋本発明の実斜䟋を添付図面に基いお説明す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第図ないし第図は吞匕成圢型を䟋瀺するも
ので、鉄系粉ずセラミツク粉耐火物粉を骚材
ずする耇合焌成䜓からな぀おいる。この耇合焌
成䜓は、凹状又は凞状など任意の型面を含
む倖呚郚に緻密な硬化局を有するず共に、この
硬化局の内偎に未焌成混合組織からなるバツキ
ング局を有しおいる。
1 to 3 illustrate a suction molding mold, which is made up of a composite fired body 1 made of iron-based powder and ceramic powder (refractory powder) as aggregates. This composite fired body 1 has a dense hardened layer 2 on the outer periphery including an arbitrary mold surface 11 such as a concave or convex shape, and has a backing layer 3 made of an unfired mixed structure inside this hardened layer 2. ing.

第図は分離型ずした䟋を瀺すもので、型面
に通ずる湯道が硬化局により䜜られ、硬化
局及びバツキング局を貫いおピン甚穎が
圢成されおいる。たた必芁に応じ、型冷华、保枩
のための導管やヒヌタが埋蚭されおいる。
Figure 2 shows an example of a separate mold, where the mold surface 1
A runner 12 leading to the backing layer 1 is made of a hardened layer, and a pin hole 13 is formed through the hardened layer 2 and the backing layer 3. Further, if necessary, conduits and heaters 14 for mold cooling and heat retention are buried.

第図は本発明の他の䟋を瀺すもので、鉄系粉
ずセラミツク粉耐火物粉及び鋌繊維を骚材
ずする耇合焌成䜓からな぀おいる。この耇合焌
成䜓′は、さきの実斜䟋ず同様に、倖呚の緻密
な硬化局ずその内偎の未焌成混合物からなるバ
ツキング局を有しおおり、しかも硬化局ずバ
ツキング局の各局内及びそれら䞡局の境界には
鋌繊維がほが䞀様に分散されおいお、この分散
状の鋌繊維がバツキング局を構成する未焌成
混合組織を匷化し、たた硬化局ずバツキング局
の間に枡されるこずでそれら䞡局の付着力を増
匷しおいる。
FIG. 3 shows another example of the present invention, which consists of a composite fired body 1 made of iron-based powder, ceramic powder (refractory powder), and steel fibers 4 as aggregates. Similar to the previous embodiment, this composite fired body 1' has a dense hardened layer 2 on the outer periphery and a backing layer 3 made of an unfired mixture inside the hardened layer 2. Steel fibers 4 are almost uniformly dispersed within each layer and at the boundaries between both layers, and these dispersed steel fibers 4 strengthen the unfired mixed structure constituting the backing layer 3 and also strengthen the hardened layer 2. By being passed between the backing layers 3, the adhesion between both layers is strengthened.

前蚘硬化局は、第図のようにセラミツク
粉に分散した鉄系粉の倉化鉄粒−Fe2O3
ず焌成セラミツク粒ずの接合組織からな぀
おいる。この硬化局の生成機構は必ずしも明確
ではないが、䞀般には、鉄系粉が酞化により倧き
く䜓積が増加し、セラミツク粒子を包み蟌むかた
ちで焌結され぀぀セラミツク粒子の焌成も進行
し、セラミツク粒子ずの界面で拡散接合的な接着
が行われた結果ず考えられる。そしお、この硬化
局には、也燥工皋次焌成工皋及び次焌成工
皋で粘結材に含たれる蒞発成分が蒞発するこずに
よる埮现〜10Όのごずしな気孔を有
し、この埮现な気孔により倚孔質でありなが
ら緻密で平滑な面性状を構成する。
The hardened layer 2 is made of modified iron particles (a-Fe 2 O 3 ) 2 of iron-based powder dispersed in ceramic powder as shown in FIG. 4a.
0 and fired ceramic grains 21. The formation mechanism of this hardened layer 2 is not necessarily clear, but in general, the iron-based powder greatly increases in volume due to oxidation, and is sintered in a manner that envelops the ceramic particles, while the firing of the ceramic particles also progresses. This is thought to be the result of diffusion bonding at the interface. This hardened layer 2 has fine pores 22 (approximately 5 to 10 ÎŒm) due to evaporation of evaporation components contained in the binder during the drying process, primary firing process, and secondary firing process. These fine pores 22 form a porous yet dense and smooth surface.

䞀方、硬化局の内偎のバツキング局は、第
図のように焌成のなされないたたの鉄系粉粒
′ずセラミツク粉粒′の混合組織からな぀
おおり、それら鉄系粉粒′の界面には、さき
の粘結材の蒞発ずあいたち粗な気孔′が圢成
されおいる。この気孔′は硬化局の気孔
ず通じおおり、埓぀お耇合焌成䜓は党䜓が倚
孔質通気構造ずな぀おいる。前蚘気孔
′は亀裂でないこずに特城がある気孔率は埌述
する配合条件焌成条件などによるが、䞀般に〜
50の範囲ずな぀おおり、圧瞮匷床玄200〜900
Kgcm2の特性を備える。
On the other hand, the bucking layer 3 inside the hardened layer 2 is made of a mixed structure of unfired iron-based powder particles 20' and ceramic powder particles 21', as shown in FIG. 4b. Coarse pores 22' are formed at the interface of the grains 20' due to the previous evaporation of the caking agent. These pores 22' are the pores 2 of the hardened layer 2.
2, therefore, the composite fired body 1 has a porous ventilation structure as a whole. The pores 22, 2
2' is characterized by no cracks. The porosity depends on the composition and firing conditions described below, but it is generally between 1 and 2'.
The compressive strength is approximately 200 to 900.
Kg/cm 2 characteristics.

しかしお本発明は、第図ないし第図で瀺さ
れるような吞匕成圢型を埗るにあたり、骚材ず粘
結材を配合混緎しおスラリヌ状資料を埗しめこ
のスラリヌ状詊料を流し蟌み成圢する工皋ず、
混合成圢䜓を也燥ないし次焌成する工皋ず、こ
の工皋を経たものを酞化性雰囲気条件で焌成する
工皋を採甚するものである。
Therefore, in order to obtain a suction molding mold as shown in FIGS. 1 to 4, the present invention mixes and kneads aggregate and caking material to form a slurry sample 5, and pours this slurry sample 5. The process of molding;
This method employs a process of drying or primary firing the mixed molded body, and a process of firing the product that has gone through this process under oxidizing atmosphere conditions.

たず、スラリヌ状詊料を埗る工皋は、鉄系粉
ずセラミツク粉あるいはさらに鋌繊維を十分に混
合撹拌し、これに硬化過皋で蒞発する成分を含む
粘結材を添加しお十分に混合撹拌するこずからな
る。
First, the step of obtaining slurry sample 5 is to thoroughly mix and stir iron-based powder and ceramic powder or steel fibers, add a caking agent containing components that evaporate during the curing process, and thoroughly mix and stir. It consists of things.

詳述するず、「鉄系粉」ずしおは、鋳鉄粉、電
解粉、玔鉄粉などの鉄粉や鋌粉などが甚いられ
る。このうち、鋳鉄粉は焌成時に遊離カヌボンの
燃焌により気孔圢成を促進する利点がある。
Specifically, as the "iron-based powder", iron powder such as cast iron powder, electrolytic powder, pure iron powder, steel powder, etc. are used. Among these, cast iron powder has the advantage of promoting pore formation by burning free carbon during firing.

「セラミツク粉」ずしおは、高枩での倉圢率が
小さく、鉄系粉ず接合しやすいものたずえばムラ
むト、焌成アルミナ、掻性アルミナ、電融アルミ
ナ、クロマむト、シリマナむトなどで代衚される
䞭性系のもの、溶融シリカ、ゞルコニりム、溶融
ゞルコンで代衚される酞性系のものが䞀般に適圓
であるが、マグネシア質で代衚される塩基性のも
のや滑石なども甚いるこずができる。
Ceramic powders include those that have a low deformation rate at high temperatures and are easy to bond with iron-based powders, such as neutral types such as mullite, calcined alumina, activated alumina, fused alumina, chromite, and sillimanite; Acidic materials such as fused silica, zirconium, and fused zircon are generally suitable, but basic materials such as magnesia and talc may also be used.

たた、「鋌繊維」ずしおは、䞀般にステンレス
系のものが適圓ずいえる。ステンレス系の鋌繊維
は焌成工皋で消倱しないため、硬化局及びバツキ
ング局の䞡局に察する補匷効果が高いからであ
る。これ以倖の鋌繊維たずえば快削鋌などを甚い
おもバツキング局の補匷効果は埗られ、亀裂防
止、セラミツク粉の脱萜防止のメリツトは埗られ
る。鋌繊維はそれ自䜓の匷床が倧きくか぀衚面積
の倧きいもの、たずえばビビリ振動切削法などで
生成したものが適圓ずいえる。
Furthermore, as the "steel fiber", stainless steel fibers are generally suitable. This is because stainless steel fibers do not disappear during the firing process, so they have a high reinforcing effect on both the hardened layer and the backing layer. Even if other steel fibers such as free-cutting steel are used, the reinforcing effect of the backing layer can be obtained, and the advantages of preventing cracks and preventing ceramic powder from falling off can also be obtained. Suitable steel fibers are ones that have high strength and a large surface area, such as those produced by a chatter vibration cutting method.

次に「硬化過皋で蒞発する成分を含む粘結材」
は、本発明においお、鉄系粒子ずセラミツク粒子
を接合し、さらに耇合焌成䜓に埮现な気孔を創成
するために䜿甚される。その具䜓䟋ずしおは、コ
ロむダルシリカず、゚チルシリケヌトがあげられ
る。前者はシリカのコロむド甚液を安定にしたも
ので、この堎合には氎が蒞発成分である。たた、
埌者は正−けい酞゚チルの䜎瞮合䜓混合物有効
シリカ玄40〜42にアルコヌル系溶剀たずえ
ば゚タノヌル、む゜プレパノヌルず氎、さらに
反応促進ずゟルの安定化のための酞性物質觊媒
䟋えば塩酞を加え、混合しお加氎分解したも
ので、この堎合の蒞発成分は䞻ずしおアルコヌル
分である。
Next is "caking material containing components that evaporate during the curing process."
is used in the present invention to bond iron-based particles and ceramic particles and to create fine pores in the composite fired body. Specific examples include colloidal silica and ethyl silicate. The former is a stabilized silica colloidal liquid, in which water is the evaporated component. Also,
The latter is a mixture of a low condensate of orthoethyl silicate (approximately 40-42% effective silica), an alcoholic solvent (e.g., ethanol, isoprepanol), water, and an acid catalyst to accelerate the reaction and stabilize the sol. (for example, hydrochloric acid), mixed and hydrolyzed, and the evaporated component in this case is mainly alcohol.

前蚘鉄系粉ずセラミツク粉ず粘結材の配合比、
抂ね重量比で〜〜が奜たし
く、この配合比により匷床、通気性、熱䌝導性、
衚面性状などの諞特性をバランスよく埗るこずが
できる。ここで、配合比の䞋限を芏定したのは、
成圢型ずしお䜿甚可胜な最䜎限の匷床を埗るのに
必芁だからであり、䞊限を芏定したのは、骚材が
倚すぎるず成圢性の面から粘結材の被芆胜を䜎䞋
させ、匷床の䜎䞋や型衚面の安定性劣化を生じさ
せるからである。鉄系粉の䞊限を芏定したのは、
セラミツク粉ず粘結材の配合が適正であ぀おも鉄
系粉が過剰ずなるず十分な匷床が埗られず、か぀
たた必芁以䞊の倚孔質化により衚面性状が悪化
し、転写性が損われるからである。セラミツク粉
の䞊限を限定したのは、過床の配合により匷床が
損われるからである。粘結材は骚材の接合に必芁
であるず共に通気性を䞎えるために必芁である。
The mixing ratio of the iron-based powder, ceramic powder, and binder;
The weight ratio is preferably (1-5):(1-5):1, and this blending ratio improves strength, air permeability, thermal conductivity,
Various properties such as surface texture can be obtained in a well-balanced manner. Here, the lower limit of the blending ratio was defined as
This is because it is necessary to obtain the minimum strength that can be used as a mold, and the reason why the upper limit was specified is that too much aggregate will reduce the covering ability of the caking material from the aspect of moldability, resulting in a decrease in strength. This is because it causes deterioration of the stability of the mold surface. The upper limit for iron-based powder was stipulated by
Even if the blend of ceramic powder and binder is appropriate, if iron-based powder is used in excess, sufficient strength will not be obtained, and the surface quality will deteriorate due to excessive porosity, which will impair transferability. It is. The reason why the upper limit of ceramic powder is limited is that the strength will be impaired if excessively blended. Caking agents are necessary for bonding aggregates together and are necessary to provide air permeability.

鋌繊維を䜵甚する堎合、その添加量は抂ね〜
10volずすべきである。未満では匷床向䞊
や寞法安定性などの効果を期埅できない。しかし
10を超える添加はフアむバヌボヌルが生じやす
くなり、成圢性を䜎䞋させる。たた、硬化局衚面
ぞの析出が過剰ずな぀お肌を悪くしか぀コスト的
にも䞍利である。
When steel fiber is used in combination, the amount added is approximately 1 to 1.
It should be 10vol%. If it is less than 1%, effects such as improved strength and dimensional stability cannot be expected. but
Addition of more than 10% tends to cause fiber balls and reduces moldability. In addition, excessive precipitation on the surface of the hardened layer results in poor skin quality and is also disadvantageous in terms of cost.

なお、鉄系粉末の粒埄は500Ό以䞋、セラミ
ツク粉末の粒埄は300Ό以䞋が望たしい。最倧
寞法が鉄系粉末で500Όを超え、セラミツク粉
末で300Όを超える堎合には、匷床すなわちバ
ツキング効果が䜎䞋するずずもに、倚孔質化が過
剰ずな぀お型面性状を䜎䞋させ、粗い衚面になる
ため転写性を損なう。したが぀お、十分な匷床ず
耐久性、良奜な転写性を具備し、耇雑圢状、薄肉
圢状、倧型圢状の成圢に察応でき、しかも型党䜓
に良奜な通気性を有しおいおキダビテむ内や成圢
材料䞭のガス、空気の吞匕陀去が容易ずいう特性
の成圢型を補䜜する目的を達成できなくなる。し
たが぀お、粒埄の䞊限を芏定したのである。この
最倧粒埄の条件䞋で、成圢型の䜿甚目的や甚途に
応じた匷床ず転写性ず気孔率が埗られるよう、粒
埄を遞定すればよい。転写性に圱響を及がす型面
粗さの点から粒埄は现かいほどよいが、極床に现
かいず也燥工皋や焌成工皋でクラツクが入りやす
い。したが぀お最小粒埄は実際の型補䜜に圓぀お
クラツクの発生を避け埗る寞法を適宜遞定すれば
よい。鋌繊維は、型の倧きさなどにより、たずえ
ば長さ〜30mm、倪さ20〜400Όの範囲ものを
適圓に遞択すればよい。
The particle size of the iron-based powder is preferably 500 ÎŒm or less, and the particle size of the ceramic powder is preferably 300 ÎŒm or less. If the maximum dimension exceeds 500 ÎŒm for iron-based powders and 300 ÎŒm for ceramic powders, the strength, that is, the bucking effect, will decrease and the mold surface will become excessively porous, resulting in a rough surface. Impairs transferability. Therefore, it has sufficient strength and durability and good transferability, and can be used for molding complex shapes, thin-walled shapes, and large shapes.Moreover, it has good air permeability throughout the mold, so it can be easily used inside the cavity or during molding. This makes it impossible to achieve the purpose of producing a mold that allows gas and air in the material to be easily removed by suction. Therefore, the upper limit of particle size was specified. Under the conditions of this maximum particle size, the particle size may be selected so that strength, transferability, and porosity can be obtained according to the purpose and application of the mold. From the viewpoint of mold surface roughness, which affects transferability, the finer the particle size, the better; however, if it is extremely fine, cracks are likely to occur during the drying and firing processes. Therefore, the minimum grain size may be appropriately selected to avoid the occurrence of cracks during actual mold manufacturing. The steel fibers may be appropriately selected, for example, from a length of 1 to 30 mm and a thickness of 20 to 400 ÎŒm depending on the size of the mold.

次いで前蚘スラリヌ状詊料を所望型圢状に固
化成圢する。これはたずえば、第図のように暡
型又は珟物をセツトした型枠にさきのスラリ
ヌ状詊料を流し蟌み、所芁時間攟眮するこずな
どにより行うもので、この流し蟌みに際しお、硬
化剀を加えたり、充填性を助長するため振動を加
えたり、スクむズするこずも効果的である。第
図のような吞匕型ずする堎合には、この流し蟌み
成圢に際しお型枠内にピンやパむプ類を装入しお
おくこずにより簡単に実斜できる。
Next, the slurry sample 5 is solidified and molded into a desired shape. This is done, for example, by pouring the previous slurry sample 5 into a mold 6 in which a model or actual object 4 is set as shown in Fig. 5, and leaving it for the required time. It is also effective to apply vibration or squeeze to promote filling properties. Second
When using a suction mold as shown in the figure, this can be easily carried out by inserting pins and pipes into the mold during the casting process.

次に本発明は前工皋で埗られた成圢䜓′を型
枠から脱型したのち、自然也燥又は及び次
焌成を行う。これは、亀烈の発生や歪発生の防止
を図るず共に、粘結材に含たれるアルコヌル分な
どを蒞発せしめるこずにより倚孔質化を図るため
で、前者の自然也燥は〜48時間のごずき範囲か
ら適圓に遞択する。埌者の次焌成は、成圢䜓
′をトヌチランプなどで盎接点火するこずによ
り行えばよい。
Next, in the present invention, after the molded body 1' obtained in the previous step is removed from the mold 6, it is air-dried and/or subjected to primary firing. This is to prevent cracking and distortion, as well as to make the binder more porous by evaporating the alcohol contained in it. Select appropriately from. The latter primary firing may be performed by directly igniting the molded body 1' with a torch lamp or the like.

この自然也燥又は及び次焌成工皋の終぀た
成圢䜓は党䜓に通気性を有しおおり無加圧泚型甚
などずしおはそのたたでも䜿甚するこずが可胜で
ある。しかし、機械的匷床が䜎く、耐久性の䜎䞋
は歪めないため、本発明は也燥又は及び次焌
成の終぀た成圢䜓′を酞化性雰囲気条件で次
焌成する。酞化性雰囲気は空気でもよいし酞玠䟛
絊を配慮したいわゆる酞玠富化空気などでもよ
い。焌成条件は配合比、型寞法目的ずする気孔率
などにもよるが、䞀般に焌成枩床600〜1000℃、
焌成時間時間以䞊ずすべきである。
The molded product after this natural drying and/or primary firing process has air permeability throughout and can be used as it is for pressureless casting. However, since the mechanical strength is low and the durability does not deteriorate, the present invention subjects the molded body 1' that has been dried and/or primary fired to secondary firing in an oxidizing atmosphere. The oxidizing atmosphere may be air or may be so-called oxygen-enriched air in consideration of oxygen supply. Firing conditions depend on the blending ratio, mold dimensions, and desired porosity, but generally the firing temperature is 600 to 1000℃,
The baking time should be at least 1 hour.

焌成枩床の䞋限を600℃、焌成時間の䞋限を
時間ずしたのは、焌成が䞍十分ずな぀お本発明の
特城である緻密な硬化局が圢成されず、耐久型ず
しお必芁な匷床が埗られないからである。焌成枩
床の䞊限を1000℃ずしたのは、硬化局は圢成され
るものの、衚面が荒れお、転写性が損われるから
である。焌成時間は長いほど匷床が向䞊するが、
硬化局は限床以䞊成長せず、かえ぀お衚面の荒れ
や生産性の䜎䞋をもたらす。型寞法などにもよる
が最長でも50時間を限床ずすべきである。
The lower limit of firing temperature is 600℃, the lower limit of firing time is 1
The reason why the time is set is because the firing is insufficient and a dense hardened layer, which is a feature of the present invention, is not formed, and the strength necessary for a durable type cannot be obtained. The reason why the upper limit of the firing temperature was set at 1000°C is that although a hardened layer is formed, the surface becomes rough and transferability is impaired. The longer the firing time, the higher the strength.
The hardened layer does not grow beyond its limit, and instead causes surface roughness and reduced productivity. Although it depends on the mold dimensions, etc., the maximum time should be 50 hours.

この酞化性雰囲気での次焌成工皋によりセラ
ミツク粉の焌成ず成圢䜓に分散されおいる鉄系粉
の酞化焌結が進行し、第図のように衚面から内
郚に向か぀お緻密な硬化局が挞進的に生成さ
れ、このずき同時に成圢䜓䞭に残留する粘結材揮
発分が燃焌陀去されるため倚孔質化が促進され、
次焌成の完了により第図ないし第図で瀺す
ような耇合焌成䜓からなる耐久吞匕成圢型が埗
られる。。
In this secondary firing step in an oxidizing atmosphere, firing of the ceramic powder and oxidation sintering of the iron-based powder dispersed in the molded body proceed, and as shown in Figure 6, a dense hardened layer is formed from the surface to the inside. 2 is gradually produced, and at the same time, the volatile components of the caking agent remaining in the molded body are burned and removed, so that the formation of porosity is promoted.
Upon completion of the secondary firing, a durable suction mold made of the composite fired body 1 as shown in FIGS. 1 to 3 is obtained. .

なお、本発明においお、通気性気孔率を調
敎するには、鉄系粉ずセラミツク粉の皮類、粒
埄、配合比、流し蟌み成圢の際の振動やスクむズ
条件、焌成条件などを必芁匷床等を考慮し぀぀任
意に蚭定すればよい。
In addition, in the present invention, in order to adjust the air permeability (porosity), the type, particle size, blending ratio of iron powder and ceramic powder, vibration and squeezing conditions during pour molding, firing conditions, etc. are adjusted by adjusting the required strength, etc. It may be set arbitrarily while taking into consideration.

第図は鉄系粉たずえば鋳鉄粉ずセラミ
ツク粉の配合比鉄系粉セラミツク粉ず気孔
率の関係を瀺すもので、気孔率を䞊げるには鉄系
粉の混合割合を増せばよいこずがわかる。第
図は粘結材骚材鉄系粉セラミツク粉の配
合比ず気孔率の関係を瀺すもので、骚材配合比を
䜎くするず気孔率が高くなる傟向を瀺すこずがわ
かる。
Figure 16 shows the relationship between the mixing ratio of iron-based powder (for example, cast iron powder) and ceramic powder (iron-based powder/ceramic powder) and porosity. To increase the porosity, increase the mixing ratio of iron-based powder. I know it's good. 17th
The figure shows the relationship between the blending ratio of binder and aggregate (iron powder + ceramic powder) and porosity, and it can be seen that the lower the aggregate blending ratio, the higher the porosity tends to be.

次に吞匕成圢型の䜿甚状況ず䜜甚を説明する。 Next, we will explain how the suction molding mold is used and how it works.

第図ないし第図は本発明により補䜜された
吞匕成圢型の䜿甚䟋を瀺すもので、第図はアル
ミニりム合金などの溶融金属、モルタル、ロり、
耐火物などの液状ないしスラリヌ状材料を無加
圧吞匕方匏で成圢する堎合に適甚したもの、第
図は溶融金属で代衚される液状ないしスラリヌ状
材料を䜎加圧吞匕方匏で成圢する堎合に適甚し
たもの、第図はゎム、ガラス、プラスチツク、
金属などの液状又は軟化質材料W′を塑性流動を
䌎う加圧吞匕成圢する堎合に適甚した䟋を瀺す。
Figures 7 to 9 show examples of how the suction molding mold manufactured according to the present invention is used.
Applied when forming liquid or slurry material W such as refractories by non-pressure suction method, No. 8
The figure is applied to molding a liquid or slurry material W, typically molten metal, using a low-pressure suction method. Figure 9 shows rubber, glass, plastic,
An example in which this method is applied to pressurized suction molding of liquid or soft material W' such as metal with plastic flow will be shown.

第図の無加圧吞匕方匏による成圢は、たずえ
ば固定型ず可動型に分割構成し、型面
に塗型剀や離型剀を斜し、成圢装眮に組
蟌んで泚湯、離型を行うもので、この成圢にあた
぀お予め固定型ず可動型の所望個所に吞
匕郚を蚭け、この吞匕郚をホヌスな
どを介しお真空ポンプなどの枛圧装眮に接続
し、材料の泚入時から成圢䞭吞匕力を䜜甚させ
る。
Molding by the non-pressure suction method shown in FIG. 7, for example, is divided into a fixed mold 1a and a movable mold 1b,
1 and 11 are coated with a mold coating agent and a mold release agent, and incorporated into a molding device to perform pouring and mold release.For this molding, suction parts are placed in advance at desired locations on the fixed mold 1a and the movable mold 1b. 8, 8 are provided, and the suction parts 8, 8 are connected to a pressure reducing device 9 such as a vacuum pump via a hose or the like, and a suction force is applied from the time of injection of the material W to the time of molding.

䜎加圧吞匕方匏で成圢する堎合には、第図で
䟋瀺のごずく公知の枛圧鋳造装眮における金型の
代りに耇合焌成䜓からなる固定型ず可動型
を甚い、それら固定型ず可動型の所
望個所に吞匕郚を蚭け、それら吞匕郚
を第図の堎合ず同様に枛圧装眮に接続し、
可動型に型開閉シリンダのピストンロツ
ドを連結すればよい。成圢にあた぀おは、材
料をる぀がに装入しお保持炉により溶
湯を䜜り、る぀が䞊の密閉蓋に蚭けた導気孔
から気䜓を圧入するこずにより、湯䞭に挿蟌
たれた導管を通しお固定型ず可動型
のキダビテむに湯を抌䞊げ、それず䜵行しお
枛圧装眮により吞匕郚を通しお吞匕力を
䜜甚させるものである。
In the case of molding by the low pressure suction method, a fixed mold 1a and a movable mold 1b made of the composite fired body 1 are used instead of the molds in a known vacuum casting apparatus as illustrated in FIG. and suction parts 8, 8 are provided at desired locations on the movable mold 1b, and the suction parts 8,
8 to the pressure reducing device 9 as in the case of FIG. 7,
The piston rod 16 of the mold opening/closing cylinder 15 may be connected to the movable mold 1b. For molding, the material W is charged into the crucible 17, a molten metal is made in the holding furnace 18, and the material W is inserted into hot water by pressurizing gas through the air introduction hole 25 provided in the airtight lid 19 above the crucible. The fixed mold 1a and the movable mold 1b are connected through the conduit 26
The hot water is pushed up into the cavity 10 of the hot water tank, and at the same time, a suction force is applied through the suction parts 8, 8 by the pressure reducing device 9.

さらに、塑性流動を䌎う成圢を行う堎合には、
第図のように埓来の金型からなる雄型の代りに
本発明により補䜜された耇合焌成䜓の吞匕成圢型
を甚い、たずえば雌型に察応する固定
型をプレスベツド偎に固定し、雄型に察応す
る可動型をプレススラむド偎に取付け、それ
ら䞡型の所望郚䜍に吞匕郚を蚭
けお枛圧装眮に接続しおおけばよい。成圢にあた
぀おは、材料W′を固定型の型面に充填し、
次いで可動型を䜜動しお材料W′に必芁な加
圧力を加えながらさきの吞匕郚を通しお吞
気を行うものである。
Furthermore, when forming with plastic flow,
As shown in Fig. 9, suction molding molds 1a and 1b of the composite fired body produced according to the present invention are used instead of the conventional male mold, and a fixed mold 1a corresponding to the female mold is fixed to the pressbed side. However, the movable mold 1b corresponding to the male mold is attached to the press slide side, and the suction parts 8, 8 are provided at desired parts of both molds 1a, 1b and connected to a pressure reducing device. For molding, fill the mold surface of the fixed mold 1a with material W',
Next, the movable die 1b is operated to apply the necessary pressure to the material W' while sucking air through the suction parts 8, 8.

䞊蚘のような各成圢においお、本発明では成圢
型が鉄系粉ずセラミツク粉を骚材ずする耇合焌成
䜓からな぀おおり、この耇合焌成䜓が鉄系粉
の酞化した硬化局で倖呚郚を圢成しおいるた
め、型匷床が200Kgcm2以䞊ず耐久型ずしお必芁
な条件を備え、急熱、急冷の繰返しによ぀おも亀
裂、欠け、ボロツキなどの発生がなく、成圢型に
おいお重芁なコヌナヌ郚の欠け等が生じない。こ
ずに骚材ずしお鋌繊維を䜵甚した堎合には、曲げ
匷床も高く、寞法倉化も少ない特城が埗られる。
しかも、このように耐久型ずしおの匷床を有しお
いるのに加え、耇合焌成䜓を構成する倖呚の硬
化局及び内偎のバツキング局ずが埮现な気孔
′からなる倚孔質で構成されおおり、
型党䜓に良奜な通気性を備えおいる。そしおた
た、型面ず構成する硬化局は吞匕孔を有しおい
るにも拘らず、緻密で衚面あらさが小さく、流し
蟌み成圢により䜜られるこずずあいたち、良奜な
転写性ず型再珟性を備えおいる。
In each of the above-mentioned moldings, according to the present invention, the mold is composed of a composite fired body 1 made of iron-based powder and ceramic powder as aggregates, and this composite fired body 1 is made of a hardened layer 2 made of oxidized iron-based powder. Because it forms the outer periphery, the mold has a strength of 200 kg/cm 2 or more, which is necessary for a durable mold, and there is no cracking, chipping, or crumbling even after repeated rapid heating and cooling. In this case, important corner chipping does not occur. In particular, when steel fibers are used as an aggregate, characteristics such as high bending strength and little dimensional change can be obtained.
Moreover, in addition to having the strength as a durable type, the outer hardened layer 2 and the inner backing layer 3 that make up the composite fired body 1 are porous, consisting of fine pores 22, 22'. It consists of
The entire mold has good ventilation. Furthermore, although the cured layer 2 that constitutes the mold surface has suction holes, it is dense and has small surface roughness, and since it is made by pour molding, it has good transferability and mold reproducibility. ing.

埓぀お、第図ないし第図のように成圢過皋
で所望個所から吞匕を行うこずによりキダビテむ
ヌないし型面党域を均䞀に負圧化させるこずがで
き、これにより、キダビテむヌないし型面のすみ
ずみたで材料をたんべんなく充填させ良奜な転写
性を䞎えるこずができるず同時に、キダビテむヌ
内の空気や材料充填時に巻きこたれた空気あるい
は材料から攟出されるガスを迅速か぀確実に排陀
できる。しかも、本発明により補䜜された成圢型
は金型に比范しお熱䌝導率が䜎く、溶湯の䜎速、
䜎圧の流入でも湯回りが良奜である。これらのこ
ずから、衚面や内郚にピンホヌルや巣の発生のな
い耇雑圢状、薄肉圢状の成圢品をきわめお簡単に
成圢するこずができるものである。
Therefore, as shown in FIGS. 7 to 9, by applying suction from a desired location during the molding process, the entire cavity or mold surface can be made to have a uniform negative pressure. It is possible to fill the material evenly and provide good transferability, and at the same time, it is possible to quickly and reliably eliminate air in the cavity, air caught in when filling the material, or gas released from the material. Moreover, the mold manufactured according to the present invention has a lower thermal conductivity than a metal mold, and has a low velocity of molten metal.
Even with low-pressure inflow, hot water flows well. For these reasons, molded products with complex shapes and thin shapes without pinholes or cavities on the surface or inside can be molded very easily.

なお、䞊蚘䟋における吞匕郚は流し蟌み
成圢時に吞気管を型枠に装入するこずで埗おもよ
いし、次焌成埌に蚭けおもよい。吞匕郚以倖の
倖面に぀いおは、適宜目どめ材を塗着したり、あ
るいは気密ケヌシングに装着したり、面状䜓を接
合するなどの方法をずればよい。勿論、型党䜓を
吞匕郚ずするこずもできる。䞊蚘䟋では、分割型
の双方を耇合焌成䜓で構成し倫々の型を吞気しお
いるが、堎合によ぀おは分割型の片方だけを耇合
焌成䜓ずしたり、片方のみを吞気しおもよい。
In addition, the suction parts 8, 8 in the above example may be obtained by inserting an intake pipe into a mold during casting molding, or may be provided after secondary firing. For the outer surface other than the suction part, methods such as applying a sealing material as appropriate, attaching it to an airtight casing, or joining a planar body may be used. Of course, the entire mold can also be used as a suction part. In the above example, both of the split molds are composed of composite fired bodies, and each mold is inhaled, but in some cases, only one of the divided molds may be made of a composite fired body, or only one of them may be inhaled. .

次に本発明の具䜓的な実斜䟋を瀺す。 Next, specific examples of the present invention will be shown.

実斜䟋 鉄系粉ずしお鋳鉄粉粒埄100Όアンダ
ヌ、セラミツク粉ずしお合成ムラむト粉粒
埄100Όアンダヌを甚い、粘結材ずしお゚
チルシリケヌトを甚い、それらを重量配合比で
にず぀お均䞀に混合撹拌しおスラリ
ヌ状資料を埗た。
Example: Cast iron powder (particle size under 100 ÎŒm) was used as the iron-based powder, synthetic mullite powder (particle size under 100 ÎŒm) was used as the ceramic powder, and ethyl silicate was used as the binder, with a weight mixing ratio of 3:3:1. A slurry-like material A was obtained by uniformly mixing and stirring the mixture.

たた、䞊蚘配合にステンレス繊維長さ
mm、倪さ0.19mmを〜4volで添加混合し、
スラリヌ状詊料を埗た。
In addition, stainless steel fiber (length 7
mm, thickness 0.19 mm) was added and mixed at 1 to 4 vol%,
A slurry sample B was obtained.

次いでスラリヌ状詊料を倫々暡型ミ
シン郚品、自動車郚品を入れた型枠に流し蟌
み、固化した成圢䜓を脱型埌着火し0.5時間の
次焌成を行い、次いで、焌成炉に装入し、空
気条件で焌成枩床900℃にお次焌成を行い、
吞匕成圢型A′B′を埗た。
Next, slurry samples A and B were respectively poured into molds containing models (sewing machine parts, automobile parts), and the solidified molded bodies were removed from the molds, ignited, and subjected to primary firing for 0.5 hours, and then loaded into a firing furnace. Then, secondary firing was performed at a firing temperature of 900℃ under air conditions.
Suction molding molds A′ and B′ were obtained.

各吞匕成圢型A′B′に぀いお、焌成時間ず
圧瞮匷床の関係を瀺すず第図のずおりであ
り、焌成時間ず重量増加の関係を瀺すず第
図のずおりである。焌成時間の増加ず共に圧瞮
匷床及び重量が増加する。これは鉄系粉が酞化
しお硬化局が生成されたこずによるものであ
る。
For each suction molding mold A' and B', the relationship between firing time and compressive strength is shown in Figure 10, and the relationship between firing time and weight increase is shown in Figure 11.
As shown in the figure. Compressive strength and weight increase with increasing firing time. This is due to the formation of a hardened layer due to oxidation of the iron-based powder.

吞匕成圢型B′に぀いお、曲げ匷床詊隓を行
぀た結果及び寞法倉化を枬定した結果を瀺すず
第図および第図のずおりである。この
第図及び第図から、鋌繊維を添加した
堎合には、曲げ匷床が著しく向䞊するず共に型
寞法の倉化が抑制され、埓぀お倧型の成圢型ず
しお利甚するのに奜適であるこずがわかる。
The results of a bending strength test and measurements of dimensional changes for the suction mold B' are shown in FIGS. 12 and 13. From FIG. 12 and FIG. 13, it can be seen that when steel fibers are added, the bending strength is significantly improved and changes in mold dimensions are suppressed, and therefore it is suitable for use as a large mold. Recognize.

なお、吞匕成圢型A′B′に぀いお急熱急冷
の圱響をみるため、800℃分加熱、垞枩分
冷华のサむクルで繰返し加熱冷华テストを行぀
た。その結果、100サむクル埌も亀裂、欠けな
どの発生はみられなか぀た。
In order to examine the effects of rapid heating and cooling on suction molding molds A' and B', repeated heating and cooling tests were conducted using a cycle of heating at 800°C for 5 minutes and cooling at room temperature for 5 minutes. As a result, no cracks or chips were observed even after 100 cycles.

吞匕成圢型A′B′に぀いお、焌成枩床䞀定
の条件で、焌成時間ず硬化局厚さ及び気孔率の
関係を怜蚎した結果を瀺すず第図のずおり
である。本発明の堎合、型党䜓に少なくずも
以䞊の気孔率を有しおいるこずがわかる。
FIG. 14 shows the results of examining the relationship between firing time, hardened layer thickness, and porosity under conditions of constant firing temperature for suction molding molds A' and B'. In the case of the present invention, the entire mold has at least 5
% or more.

気孔率20の吞匕成圢型A′を甚い、型面に
グラフアむトアルコヌル溶液で塗型を行い、型
偎郚に吞匕管を取付け他の面を目どめしお鋳造
装眮に組蟌み、アルミニりム合金ADC−12の
重力鋳造を行い぀぀、吞匕管を通しお700mmHg
の吞匕を行぀た。鋳蟌み条件は、鋳蟌み枩床
700℃、鋳蟌み時間〜秒、離型時間15〜50
秒で行぀た。
Using a suction molding mold A′ with a porosity of 20%, coat the mold surface with graphite alcohol solution, attach a suction pipe to the side of the mold, select the other surface, and assemble it into the casting machine to form the aluminum alloy ADC. -700 mmHg through the suction tube while performing gravity casting of -12
suction was performed. The casting conditions are the casting temperature
700℃, casting time 3-5 seconds, mold release time 15-50
I was there in seconds.

その結果湯流れが良奜でひけもない良奜な鋳
造を行えただけでなく、単玔な重力鋳造にくら
べ鋳物の転写性鋳肌が著るしく良くなり鋳
出し粟床が向䞊した。それず共に衚面郚は勿論
内郚にも巣のない少密で良奜な鋳物が埗られ
た。あわせお、肉厚が1.5mmの鋳造を行぀たが、
すみずみたで湯が回り、欠陥のない良奜な薄肉
鋳造品が埗られた。耐久性は70回の鋳造埌も型
の損傷は党く芋られず、なお盞圓回数の鋳造が
可胜であ぀た。
As a result, not only was it possible to perform good casting with good melt flow and no sinkage, but the transferability (casting surface) of the casting was significantly better than with simple gravity casting, and casting accuracy was improved. At the same time, a good casting with low density and no cavities was obtained not only on the surface but also inside. At the same time, we performed casting with a wall thickness of 1.5 mm.
The hot water spread to every corner, and a good thin-walled cast product with no defects was obtained. As for durability, no damage to the mold was observed even after 70 castings, and a considerable number of castings were still possible.

気孔率25の吞匕成圢型B′を甚い、䜎圧鋳
造法によりAl合金の鋳造を行い、このずきに
可動型および固定型の偎郚に取付けた吞匕管を
通しお700mmHgの吞匕力を䜜甚させた。その結
果䜎圧鋳造の特城に加えお、鋳出し粟床がダむ
カスト鋳造䞊みに向䞊した。
Using a suction mold B′ with a porosity of 25%, an Al alloy was cast by a low-pressure casting method, and at this time a suction force of 700 mmHg was applied through suction pipes attached to the sides of the movable mold and the fixed mold. As a result, in addition to the characteristics of low-pressure casting, casting accuracy has been improved to the same level as die casting.

なお、その他吞匕成圢型A′B′を甚いお、
靎類の底材をはじめずするゎム補品、ガラス補
品、プラスチツク補品の加圧成圢甚型ずしお甚
いたずころ、良奜な耐久性が埗られるず共に、
キダビテむに均䞀な吞匕力が䜜甚するため転写
性や型ぞの密着性が非垞に良くなり、か぀たた
キダビテむヌ内の空気やガスが効果的に陀去さ
れるため気泡などのない良品の埗られるこずが
わか぀た。同時に埓来のようにバリを発生させ
ないで枈むため材料効率が良くな぀た。第
図にマスタヌモデルず吞匕成圢型および成圢品
の衚面あらさ枬定結果を瀺す。この第図か
ら本発明はすぐれた転写性の埗られるこずがわ
かる。
In addition, using other suction molding molds A' and B',
When used as a mold for pressure molding of rubber products, glass products, and plastic products, including shoe sole materials, good durability was obtained, and
Uniform suction force acts on the cavity, resulting in very good transferability and adhesion to the mold, and since air and gas inside the cavity are effectively removed, good quality products without air bubbles can be obtained. I understand. At the same time, material efficiency has been improved because burrs do not need to be generated as in the conventional method. 15th
The figure shows the surface roughness measurement results of the master model, suction molding mold, and molded product. It can be seen from FIG. 15 that the present invention provides excellent transferability.

以䞊説明した本発明の第発明によるずきに
は、倧量生産甚の匷床ず耐久性を備えるず共に、
良奜な転写性を具備し、しかも型党䜓に通気性を
持ち、キダビテむ党域にきわめお簡単か぀効果的
に脱気効果を䞎えるこずができ、か぀たた倧型化
が容易であるず共に、簡単な工皋ず短い補造時間
及び䜎コストで補造可胜な吞匕成圢型の補䜜法を
提䟛できる。
According to the first aspect of the present invention explained above, it has strength and durability for mass production, and
It has good transferability, has air permeability throughout the mold, can provide an extremely simple and effective deaeration effect to the entire cavity, is easy to upsize, and has a simple and short process. It is possible to provide a method for manufacturing a suction molding mold that can be manufactured in short manufacturing time and at low cost.

本発明により補䜜される吞匕成圢型はアルミニ
りム合金、Zn合金、Mg合金、Cu合金、普通鋳
鉄、ダクタむル鋳鉄などの重力吞匕鋳造、䜎加圧
吞匕鋳造に奜適であるほか、ロり、ゎム、ガラ
ス、プラスチツク、金属などの塑性流動を䌎う加
圧吞匕成圢型など脱気が芁求されるあらゆる型成
圢に甚いるこずができる。たた、セラミツク、モ
ルタル、耐火物などの成圢における脱気、脱氎性
の高い成圢型ずしおも適甚でき、それぞれにおい
お、耇雑圢状、薄肉圢状でしかもち密で粟床の良
い成圢品を安䟡に量産するこずができる。。
The suction molding mold produced according to the present invention is suitable for gravity suction casting and low pressure suction casting of aluminum alloys, Zn alloys, Mg alloys, Cu alloys, ordinary cast iron, ductile cast iron, etc., as well as wax, rubber, glass, etc. It can be used for any type of molding that requires degassing, such as pressurized suction molding that involves plastic flow, such as plastics and metals. It can also be used as a mold with high degassing and dehydration properties in the molding of ceramics, mortar, refractories, etc. In each of these molds, it is possible to inexpensively mass-produce molded products with complex shapes, thin walls, and tightness and precision. can. .

【図面の簡単な説明】[Brief explanation of the drawing]

第図ないし第図は耐久成圢型の䟋を瀺す断
面図、第図は耐久吞匕成圢型の組織を暡
匏的に瀺す断面図、第図ず第図は吞匕成圢型
の補造過皋を瀺す断面図、第図ないし第図は
吞匕成圢型の䜿甚䟋を瀺す断面図、第図は本
発明による吞匕成圢型の匷床ず焌成時間の関係を
瀺すグラフ、第図は焌成時間ず重量増加の関
係を瀺すグラフ、第図は繊維混入率ず曲げ匷
床の関係を瀺すグラフ、第図は繊維混入率ず
寞法倉化の関係を瀺すグラフ、第図は焌成時
間ず気孔率及び硬化局の関係を瀺すグラフ、第
図は吞匕成圢型の転写性を瀺すグラフ、第
図は骚材配合比ず気孔率の関係を瀺すグラフ、第
図は粘結材ず骚材の配合比ず気孔率の関係を
瀺すグラフである。   耇合焌成䜓、  硬化局、  未焌
成バツキング局。
Figures 1 to 3 are cross-sectional views showing examples of durable molds, Figures 4 a and b are cross-sectional views schematically showing the structure of durable suction molds, and Figures 5 and 6 are suction molds. 7 to 9 are cross-sectional views showing examples of the use of the suction molding mold. FIG. 10 is a graph showing the relationship between the strength and firing time of the suction molding mold according to the present invention. The figure is a graph showing the relationship between firing time and weight increase, Figure 12 is a graph showing the relationship between fiber inclusion rate and bending strength, Figure 13 is a graph showing the relationship between fiber inclusion rate and dimensional change, and Figure 14 is a graph showing the relationship between fiber inclusion rate and dimensional change. Graph showing the relationship between time, porosity, and hardened layer, 1st
Figure 5 is a graph showing the transferability of the suction mold, No. 16
The figure is a graph showing the relationship between the blending ratio of aggregate and porosity, and FIG. 17 is a graph showing the relationship between the blending ratio of caking material and aggregate and porosity. 1... Composite fired body, 2... Hardened layer, 3... Unfired backing layer.

Claims (1)

【特蚱請求の範囲】[Claims]  粒埄500Ό以䞋の鉄系粉末ず粒埄300Ό以
䞋のセラミツク粉末を骚材ずしこれに硬化過皋で
蒞発する成分を含む粘結材を重量配合比で〜
〜に混合しおスラリヌ状混合物
を䜜り、このスラリヌ状混合物を流し蟌み固化さ
せお型面を造圢し、これを自然也燥又は及び䞀
次焌成したのち、酞化性雰囲気䞭で焌成枩床600
〜1000℃で〜50時間焌成するこずを特城ずする
耐久性吞匕成圢型の補䜜法。
1 Iron-based powder with a particle size of 500 ÎŒm or less and ceramic powder with a particle size of 300 ÎŒm or less are used as aggregates, and a caking agent containing components that evaporate during the hardening process is mixed in a weight ratio of (1 to 30 ÎŒm).
5): (1 to 5): 1 is mixed to make a slurry mixture, this slurry mixture is poured and solidified to form a mold surface, and after air drying and/or primary firing, it is placed in an oxidizing atmosphere. Firing temperature in 600
A method for producing a durable suction mold, characterized by firing at ~1000°C for 1 to 50 hours.
JP58080943A 1983-04-09 1983-05-11 Durable suction forming mold Granted JPS606243A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP58080943A JPS606243A (en) 1983-05-11 1983-05-11 Durable suction forming mold
MX200937A MX161282A (en) 1983-04-09 1984-04-06 FORMING, COMPOSITE AND DURABLE MODEL TO MANUFACTURE THREE-DIMENSIONAL PRODUCTS
CA000451448A CA1266159A (en) 1983-04-09 1984-04-06 Composite and durable forming model with permeability
SU843725402A SU1632366A3 (en) 1983-04-09 1984-04-06 Wear-resistant split moulding pattern
AT84103966T ATE64876T1 (en) 1983-04-09 1984-04-09 TRANSLUCENT FORM.
EP84103966A EP0121929B1 (en) 1983-04-09 1984-04-09 Permeable mold
IN247/MAS/84A IN160636B (en) 1983-04-09 1984-04-09
DE8484103966T DE3484752D1 (en) 1983-04-09 1984-04-09 PERMANENT SHAPE.
AU26640/84A AU566385B2 (en) 1983-04-09 1984-04-09 Permeable moulds
KR1019840001857A KR910000953B1 (en) 1983-04-09 1984-04-09 Composite and durable forming model with permability
BR8401651A BR8401651A (en) 1983-04-09 1984-04-09 COMPOSITE AND DURABLE SHAPE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58080943A JPS606243A (en) 1983-05-11 1983-05-11 Durable suction forming mold

Publications (2)

Publication Number Publication Date
JPS606243A JPS606243A (en) 1985-01-12
JPH0323253B2 true JPH0323253B2 (en) 1991-03-28

Family

ID=13732568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58080943A Granted JPS606243A (en) 1983-04-09 1983-05-11 Durable suction forming mold

Country Status (1)

Country Link
JP (1) JPS606243A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838288A (en) * 1971-09-20 1973-06-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838288A (en) * 1971-09-20 1973-06-05

Also Published As

Publication number Publication date
JPS606243A (en) 1985-01-12

Similar Documents

Publication Publication Date Title
US4531705A (en) Composite and durable forming model with permeability
US3512571A (en) Cryogenic formation of refractory molds and other foundry articles
EP0121929B1 (en) Permeable mold
Bansode et al. Influence of slurry composition on mould properties and shrinkage of investment casting
JP2013071169A (en) Ceramic core for precision casting, and method for manufacturing the same
JP3271737B2 (en) Porous mold material for casting and method for producing the same
JPH07108348A (en) Production of air permeable durable mold
JPH02501721A (en) Heterogeneous porous mold for manufacturing molds from foundry sand and its manufacturing method
JPH0323253B2 (en)
JPS62227603A (en) Manufacture of ceramics sintered body and molding tool used for said manufacture
JPH0636954B2 (en) Composition for easily disintegrating mold
JPH0663684A (en) Production of ceramic core for casting
TWI377099B (en)
JPH08332547A (en) Casting method and mold and its production
JPS60162623A (en) Blow molding mold and manufacture of master used thereto
JPS6167540A (en) Casting mold
JPS63140740A (en) Mold for casting active metal of high melting point
JPH05277699A (en) Method for casting thin casting
EP3135399B1 (en) Method of manufactruring precision cast parts for vehicle exhaust systems
JPH0210118B2 (en)
JP2654999B2 (en) Precision suction mold
JPS60166405A (en) Air-permeable durable mold
JPS6224172B2 (en)
JPH0478681B2 (en)
JPS6153007A (en) Method of heating-molding ceramics