JPH0323235A - Production of glass preform for optical fiber - Google Patents

Production of glass preform for optical fiber

Info

Publication number
JPH0323235A
JPH0323235A JP15566589A JP15566589A JPH0323235A JP H0323235 A JPH0323235 A JP H0323235A JP 15566589 A JP15566589 A JP 15566589A JP 15566589 A JP15566589 A JP 15566589A JP H0323235 A JPH0323235 A JP H0323235A
Authority
JP
Japan
Prior art keywords
glass
quartz
tube
glass tube
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15566589A
Other languages
Japanese (ja)
Inventor
Masamoto Ooe
大江 将元
Yoichi Ishiguro
洋一 石黒
Minoru Watanabe
稔 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15566589A priority Critical patent/JPH0323235A/en
Publication of JPH0323235A publication Critical patent/JPH0323235A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01815Reactant deposition burners or deposition heating means
    • C03B37/01823Plasma deposition burners or heating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01815Reactant deposition burners or deposition heating means
    • C03B37/01823Plasma deposition burners or heating means
    • C03B37/0183Plasma deposition burners or heating means for plasma within a tube substrate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To double the deposition rate and to improve the mass-productivity in the reduced-pressure plasma CVD method by arranging a glass rod and/or a glass tube in a reaction pipe. CONSTITUTION:A quartz-based glass rod 2 or a quartz-based glass tube is arranged in a quartz-based glass tube 1 which is placed in a furnace 4. A gaseous glass material (e.g. SiCl4) is introduced into the glass tube 1, the inside of the glass tube 1 is kept at a reduced pressure, and nonisothermal plasma is produced in the glass tube 1 by an annular electrode 3. The glass material is decomposed in the plasma, and the formed glass fine particles 5 are simultaneously deposited on the inner surface of the glass tube 1 and the outer surface of the glass rod 2. The glass tube 1 and the glass rod 2 are heated from the outside and made solid, and the glass preform for the optical fiber is produced.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は光ファイバ用ガラス母材の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a glass preform for optical fibers.

[従来の技術] 光ファイバ用ガラス母材としては、石英又はド一バント
を添加した石英系ガラスが、伝送特性に優れている点で
有利であるため多用されている。
[Prior Art] As a glass base material for optical fibers, quartz or dopant-doped quartz-based glass is often used because it is advantageous in that it has excellent transmission characteristics.

従来、石英(SiO=)を製造する方法としてはガラス
原料としてのケイ素化合物を酸化又は加水分解して二酸
化ケイ素とする反応を利用している。
Conventionally, a method for producing quartz (SiO=) utilizes a reaction in which a silicon compound as a glass raw material is oxidized or hydrolyzed to form silicon dioxide.

四塩化ケイ素を代表例として示すと、 酸化   SiCQ.+O,→S io !+ 2 C
 rt加水分解 S r C (! 4 + 2H t
 O−4S r O z + 4 H C l!であり
、この反応のエネルギーとしては熱やプラズマが使用さ
れている。そして生成したSin,を堆積させてガラス
微粒子体とし、さらに加熱透明化してガラス体を得る。
Taking silicon tetrachloride as a representative example, oxidation SiCQ. +O,→Sio! +2C
rt hydrolysis S r C (! 4 + 2H t
O-4S r O z + 4 H C l! Heat and plasma are used as energy for this reaction. Then, the generated Sin is deposited to form a glass fine particle body, which is further heated and made transparent to obtain a glass body.

また、このSin.の堆積の仕方によって、パイプ材の
内表面に堆積させる内付け法と出発材の外周に堆積させ
る外付け法の2つに大別される。
Also, this Sin. Depending on the method of deposition, there are two types: an internal method in which it is deposited on the inner surface of the pipe material, and an external method in which it is deposited on the outer periphery of the starting material.

このような製造方法の1つとしてプラズマCVD法と呼
ばれる方法がある。これは、第6図に示すように石英管
(反応管)61の内部を僅かにガラス原料が流れている
が数torr程度の減圧に保持し、環状電極3により該
石英管61中に非等温(低温)プラズマ(熱的に非平衡
の状態にあるプラズマを指す。気体の圧力がl ssH
Hのような低い値になると、電子と重い粒子間での衝突
回数が小さい為、電子は高温となるが原子やイオンなど
の重い粒子は低温状態のままで存在し、このようなプラ
ズマを非等温プラス゛マと呼ぶ)を発生させるもので、
この非等温プラズマ雰囲気中でガラス原料ガスの分解反
応が起こり、ガラス(SiO=)5が石英管61内側表
面に堆積する。炉4で雰囲気を昇温することによりガラ
ス5の堆積を促進させるという方法である。この非等温
プラズマCVD法は熱的に非平衡な状態にある為、常温
常圧ではつくることのできない組成のガラスを作成する
ことも可能である点で有利な方法である。
One such manufacturing method is a method called plasma CVD method. As shown in FIG. 6, a small amount of glass raw material is flowing inside a quartz tube (reaction tube) 61, but the pressure is maintained at a reduced pressure of several torr, and an annular electrode 3 is used to create a non-isothermal flow inside the quartz tube 61. (low-temperature) plasma (refers to a plasma in a thermally non-equilibrium state.The gas pressure is l ssH
When the value of H is low, the number of collisions between electrons and heavy particles is small, so the electrons become hot, but heavy particles such as atoms and ions remain in a low temperature state, which makes such plasma non-existent. It generates isothermal plasma (called isothermal plasma),
A decomposition reaction of the glass raw material gas occurs in this non-isothermal plasma atmosphere, and glass (SiO=) 5 is deposited on the inner surface of the quartz tube 61. This is a method in which the deposition of glass 5 is promoted by increasing the temperature of the atmosphere in furnace 4. Since this non-isothermal plasma CVD method is in a thermally non-equilibrium state, it is an advantageous method in that it is possible to create glass with a composition that cannot be created at room temperature and pressure.

[発明が解決しようとする課題] 従来のこの種のプラズマCVD装置では、堆積速度が遅
く、O.Ig/分が限界であること、また、石英反応管
に内付けするため製造可能なファイバの種類も限定され
ること、等の欠点により大電生産に向いていないという
問題点があった。
[Problems to be Solved by the Invention] In this type of conventional plasma CVD apparatus, the deposition rate is slow and the O. There are problems in that it is not suitable for large electrical appliance production due to drawbacks such as the limited Ig/min and the fact that the type of fiber that can be manufactured is limited because it is installed inside the quartz reaction tube.

後者の欠点について更に説明すると、純Sin,バイブ
にGem.−Sin,ガラスを内付けする(GeOt 
 Siftファ/純Sin,クラッドファイバ)ことは
可能であるが、純Sin,ロッドにF−SiO,ガラス
を外付けする(純Sin.コア/ F − S iO,
ガラスクラッドファイバ)ことはできないということで
ある。
To further explain the latter drawback, pure Sin, Vibe and Gem. -Sin, glass installed inside (GeOt
Sift core/pure Sin, clad fiber) is possible;
glass-clad fiber).

本発明の目的はこのような従来のプラズマCvD法の問
題点を解消し、堆積速度を向上すると共に内付けのみな
らず外付けも容易に実現できる新規な光ファイバ用母材
の製造方法を提供することにある。
The purpose of the present invention is to provide a novel method for manufacturing an optical fiber base material that solves the problems of the conventional plasma CVD method, improves the deposition rate, and facilitates not only internal attachment but also external attachment. It's about doing.

[課題を解決するための手段] 本発明者等は上記の目的に沿って研究努力の結果、非等
温プラズマ発生中の石英系ガラス管(反応管)中に石英
系ガラスロッド又はパイプを入れることにより、石英系
ガラス管の内付けだけでなく、その中に挿入した石英系
ガラスロブド又は石英系ガラスパイプの外付けも同時に
行う方法を考えだした。
[Means for Solving the Problem] As a result of research efforts in accordance with the above-mentioned purpose, the present inventors have discovered that a quartz-based glass rod or pipe is inserted into a quartz-based glass tube (reaction tube) during non-isothermal plasma generation. Therefore, we devised a method for not only attaching a quartz-based glass tube internally, but also simultaneously attaching a quartz-based glass rod or a quartz-based glass pipe inserted into the tube externally.

すなわち、本発明は非等温プラズマ中において気相のガ
ラス原料から生成せしめた石英系ガラスをドーバントと
共に又はドーバント無しで石英系ガラス管内に堆積させ
た後、該石英系ガラス管を外部から加熱して中実化する
光ファイバ用ガラス母材の製造方法において、上記堆積
は該石英系ガラス管内に石英系ガラスロブド及び/又は
石英系ガラスバイブを入れた状態で行うことを特徴とす
る先ファイバ用ガラス母材の製造方法である。
That is, the present invention involves depositing silica-based glass produced from a vapor-phase glass raw material in a non-isothermal plasma in a silica-based glass tube with or without a dopant, and then heating the silica-based glass tube from the outside. A method for producing a glass preform for an optical fiber which is solidified, characterized in that the above-mentioned deposition is carried out with a quartz glass lobe and/or a quartz glass vibrator placed in the quartz glass tube. This is a method of manufacturing the material.

第1図は本発明の一興体例の説明図であって、従来と同
様にプラズマ発生が行われている石英系ガラス管(反応
管)l内に、石英系ガラスロッド2を入れている状態を
示す。3は環状電棒、4は炉である。
FIG. 1 is an explanatory diagram of an example of the present invention, showing a state in which a quartz glass rod 2 is placed in a quartz glass tube (reaction tube) l in which plasma generation is performed as in the past. show. 3 is an annular electric rod, and 4 is a furnace.

第2図は本発明を実施する装置構成を示す概略図であっ
て、1〜4は第1図と同様を意味しくただし、石英系ガ
ラス管1内に挿入された石英系ガラスロツド2の図示は
省略)、5は電源、6は電力計、7はインピーダンスマ
ッチング回路、Tは例えば液体窒素トラップ等のトラッ
プ、8はロータリーポンプ等の減圧系を表す。SiCL
バブラ− 1 0,GeCQ4バブラー11、SiF,
ボンベl2、0!ボンベ!3等の原料ガス系から原料ガ
スを流しつつ、石英系ガラスロッド2をその内部に保持
した石英系ガラス管1内を減圧系8により減圧しながら
、環状電極3により石英系ガラス管1内に非等温プラズ
マを発生させ、ガラス原料ガスを分解せしめて、生成す
るガラスを該石英系ガラスロッド2の外側表面及び該石
英系ガラス管1の内側表面に堆積させガラス堆積層5を
得る。
FIG. 2 is a schematic diagram showing the configuration of an apparatus for carrying out the present invention, and 1 to 4 have the same meanings as in FIG. (omitted), 5 is a power supply, 6 is a wattmeter, 7 is an impedance matching circuit, T is a trap such as a liquid nitrogen trap, and 8 is a pressure reduction system such as a rotary pump. SiCL
Bubbler 1 0, GeCQ4 Bubbler 11, SiF,
Cylinder l2, 0! Bombe! While flowing the raw material gas from a raw material gas system such as No. 3, the inside of the quartz glass tube 1 holding the quartz glass rod 2 therein is depressurized by the pressure reduction system 8, and the annular electrode 3 is used to introduce the material into the quartz glass tube 1. A non-isothermal plasma is generated to decompose the frit gas, and the resulting glass is deposited on the outer surface of the silica-based glass rod 2 and the inner surface of the silica-based glass tube 1 to obtain a glass deposited layer 5.

本発明においては、上記の石英系ガラスロッドに代えて
、石英系ガラスパイプを挿入しておいてもよいし(パイ
プ内にパイプが入った構成)、又さらに石英系ガラスパ
イプ内に石英系ガラスロッドを挿入したものを用いる(
外側からパイプーバイブーロッドの構或)こともできる
。いずれの場合も堆積が終了した後は、加熱により中実
化して一体化したガラス母材を得ることができる。
In the present invention, instead of the quartz glass rod described above, a quartz glass pipe may be inserted (a structure in which a pipe is inserted within a pipe), or a quartz glass pipe may be inserted into the quartz glass pipe. Use one with a rod inserted (
A pipe-vibo rod structure can also be installed from the outside. In either case, after the deposition is completed, it is possible to obtain an integrated glass base material that is solidified by heating.

本発明においては、上記のように従来石英系ガラス管内
側表面に内付けすることしか行われていなかった非等温
プラズマCVD法において、該管内に石英系ガラスロッ
ド及び/又は石英系ガラスパイプを挿入しておく点に特
徴があるので、原料ガスや非等温プラズマCVDの条件
等は特に限定されるところはなく、従来公知の例と同様
に行うことができる。
In the present invention, a quartz glass rod and/or a quartz glass pipe are inserted into the tube in the non-isothermal plasma CVD method, which has conventionally been carried out only by attaching the quartz glass rod and/or pipe to the inner surface of the tube. Since this method is characterized by the fact that the CVD process is carried out in the same manner as above, there are no particular limitations on the raw material gas or the conditions for non-isothermal plasma CVD, and the process can be carried out in the same manner as in conventionally known examples.

例えば原料ガスとしては、SiC(1.、S + H 
4、SF.、S r F 4、CF.、C,F.、G 
eC (1.、O,、BBrs等を挙げることができる
。また更に、石英系ガラス管内の内圧はl ssTor
r以下程度、周波数は2.45GHz(マイクロ波)〜
13.56klHz(高周波)、炉温1000−120
0℃といった条件を挙げることができる。
For example, as a raw material gas, SiC (1., S + H
4. SF. , S r F 4, CF. , C.F. ,G
eC (1., O,, BBrs, etc.).Furthermore, the internal pressure inside the silica glass tube is l ssTor
r or less, frequency is 2.45 GHz (microwave) ~
13.56klHz (high frequency), furnace temperature 1000-120
Conditions such as 0°C can be mentioned.

「作用コ プラズマCVD法の場合、プラズマ雰囲気中では原料ガ
スの分解が起こり、活性種が多く存在しているため、基
板形状,温度等にあまり左右されることな<Sin,が
堆積されていく。この場合には、基板面積が広ければ広
いほど、堆積に有利であり、従来法のように石英反応管
内側表面のみを基板として利用する(内付け)のではな
く、石英反応管内に石英口アド又は石英バイブを入れ、
それらの表面をも基板として利用することで、■ 内付
け,外付けが同時にできるため、SiO−の堆積速度を
向上できる、 ■ 従来のこの種の方法では困難であった外付けが可能
となる、という効果が得られる。
``In the case of the active coplasma CVD method, decomposition of the source gas occurs in the plasma atmosphere, and since there are many active species, <Sin> is deposited, which is not affected much by the substrate shape, temperature, etc. In this case, the wider the substrate area is, the more advantageous it is for deposition, and instead of using only the inner surface of the quartz reaction tube as a substrate (internal attachment) as in the conventional method, the quartz opening is placed inside the quartz reaction tube. Or put a quartz vibrator,
By using those surfaces as substrates, ■ internal and external attachment can be done at the same time, increasing the deposition rate of SiO-; and ■ external attachment, which was difficult with conventional methods of this type, possible. This effect can be obtained.

F実施例コ 実施例l 第1図及び第2図の装置構成により本発明に従って光フ
ァイバ用母材を作製した。原料ガスとして、SiC(2
.流量 3 0 0 cc/win, O ,流ffl
  300cc/sin, S iF 4流fl  ]
 O cc/sinを、純Sin,ロッド(サイズ8■
φ)を内部に保持したF−SiO.管(反応管、△一一
0.3%、サイズ;厚さ4■、内径25−φ)中へ流し
た。全圧はI Torr、マイクロ波周波数2.45G
Hz,パワー300mVをかけることにより、プラズマ
を発生させた。炉温を1000℃に上げ、0.2g/s
inの堆積速度を得た。約3時間堆積した後、2000
゜Cまで加熱しSiO=管を収縮させることにより中実
化してブリフォームを作製した。このブリフォームを溶
融線引きすることによりコア径50μm、ファイバ径1
25μmのファイバが得られた。このファイバの構造を
第3図に示すが、△一−1.0%、NA=0.20であ
った。そしてその特性は、波長0.85μmでの損失が
2 . 5 dB/ km、波長1.30amでの損失
が1 . 8 dB/ kvと低損失であり、また、コ
アにドーパントを含んでいないため、水素や放射線の嗣
環境性に優れたファイバである。
Example F Example 1 An optical fiber preform was produced according to the present invention using the apparatus configuration shown in FIGS. 1 and 2. SiC (2
.. Flow rate 300 cc/win, O, flowffl
300cc/sin, S iF 4th fl]
O cc/sin, pure sin, rod (size 8■
F-SiO. The mixture was poured into a tube (reaction tube, Δ11 0.3%, size: thickness: 4 mm, inner diameter: 25 mm). Total pressure is I Torr, microwave frequency 2.45G
Plasma was generated by applying Hz and power of 300 mV. Raise the furnace temperature to 1000℃, 0.2g/s
A deposition rate of in was obtained. After about 3 hours of deposition, 2000
A preform was produced by heating to °C and shrinking the SiO=tube to solidify it. By melt-drawing this preform, the core diameter is 50 μm and the fiber diameter is 1.
A 25 μm fiber was obtained. The structure of this fiber is shown in FIG. 3, and the fiber was Δ1-1.0% and NA=0.20. Its characteristic is that the loss at a wavelength of 0.85 μm is 2. The loss at 5 dB/km and a wavelength of 1.30 am is 1. The fiber has a low loss of 8 dB/kv and does not contain a dopant in its core, making it a fiber with excellent environmental resistance against hydrogen and radiation.

実施例2 第4図に示すように、純Sin,管(反応管、サイズ:
厚さ4■1、内径25smφ)41内に純SiO,パイ
プ(サイズ;厚さ2■、外径8■φ)42を挿入した状
態で、第2図の装置構成により本発明に従って光ファイ
バ用ガラス母材を作成した。
Example 2 As shown in FIG. 4, a pure Sin tube (reaction tube, size:
With a pure SiO pipe (size: 2 mm thick, 8 mm outer diameter) 42 inserted into a pipe 41 (thickness: 4 mm, inner diameter: 25 mm φ), an optical fiber was prepared according to the present invention using the apparatus configuration shown in FIG. A glass base material was created.

純Sin,パイプ42内(第1層目)には原料ガスとし
て、SiC(la流量 2 0 0 cc/sin. 
G eC Q4流ffi 5 0 cc/ sin, 
O v流ffi  4 0 0 cc/sinを流した
。また純Sin,管41と純Sin,パイプ42の間(
第2層目)には,SiC(!−流ffi200cc/s
in, S iF 4  流i! 1 0 0 cc/
 sin, O ,流量8 0 0 cc/sinを流
し、ガラス堆積層45及び45′を得た。その他の条件
は実施例lと同様にしてガラス母材を得た。この母材を
溶融線引きすることにより、コア径5μm、ファイバ径
125μmのファイバが得られた。このファイバの構造
を第5図に示すが、Δ+=0.7%、△一一0.3%、
NA=0.20であった。またこのファイバの4−′?
性は、波長1.55μmでの損失が0 . 3 dB/
 kmと低損失で、波長1.55μmでの分散が〜I 
ps/kra八■と長距離伝送に有利なファイバが得ら
れた。
Pure Sin, SiC (la flow rate 200 cc/sin.
G eC Q4 style ffi 5 0 cc/sin,
An Ov flow of 400 cc/sin was applied. Also, between pure Sin, pipe 41 and pure Sin, pipe 42 (
SiC (!-flow ffi200cc/s)
in, S iF 4 style i! 1 00 cc/
sin, O 2 and a flow rate of 800 cc/sin to obtain glass deposited layers 45 and 45'. Other conditions were the same as in Example 1 to obtain a glass base material. By melt-drawing this base material, a fiber with a core diameter of 5 μm and a fiber diameter of 125 μm was obtained. The structure of this fiber is shown in Figure 5, where Δ+=0.7%, Δ11 0.3%,
NA=0.20. Also, the 4-' of this fiber?
The loss at a wavelength of 1.55 μm is 0. 3 dB/
km and low loss, dispersion at wavelength 1.55 μm is ~I
A fiber that is advantageous for long-distance transmission with a ps/kra of 8.2 was obtained.

[発明の効果] 以上説明したように本発明は減圧プラズマ法の反応管の
中にガラスロッドを入れるという簡単な改良により、堆
積速度を従来の2倍近くに上げられるだけでなく、以後
の工程を簡素化できるため、光ファイバの大量生産に利
用すると効果的である。
[Effects of the Invention] As explained above, the present invention not only increases the deposition rate to nearly twice that of the conventional method by a simple improvement of inserting a glass rod into the reaction tube of the reduced pressure plasma method, but also improves the speed of subsequent steps. Since it can simplify the process, it is effective when used for mass production of optical fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一具体例を説明する概略断面因、第2
図は本発明の装置構成の一具体例を示す概略説明図、第
3図は本発明の実施例1で作製したガラス母材から得ら
れたファイバの屈折率分布と構造を示す図、第4図は本
発明の別の実施態様を示す概略図、第5図は本発明の実
施例2で作製したガラス母材から得られたファイバの屈
折率分布と4X造を示す概略図、第6図は従来法を説明
する概略図である。 図中、1は石英系ガラス管、2は石英系ガラスロノド、
3は環状電極、4は炉、5は電源、6は電力計、7はイ
ンピーダンスマッチング回路、8は減T[系、10はS
iCd4バブラー 11はGeCQ4バブラー 12は
SiF.ボンベ 13はO,ボンベ 41は石英系ガラ
ス管,42は石英系ガラスバイブ、61は石英管を表す
FIG. 1 is a schematic cross-sectional view explaining one specific example of the present invention, and FIG.
The figure is a schematic explanatory diagram showing a specific example of the device configuration of the present invention, FIG. 3 is a diagram showing the refractive index distribution and structure of the fiber obtained from the glass base material produced in Example 1 of the present invention, and FIG. The figure is a schematic diagram showing another embodiment of the present invention, Fig. 5 is a schematic diagram showing the refractive index distribution and 4X structure of a fiber obtained from the glass base material produced in Example 2 of the present invention, and Fig. 6 is a schematic diagram showing another embodiment of the present invention. FIG. 1 is a schematic diagram illustrating a conventional method. In the figure, 1 is a quartz glass tube, 2 is a quartz glass tube,
3 is an annular electrode, 4 is a furnace, 5 is a power supply, 6 is a wattmeter, 7 is an impedance matching circuit, 8 is a reduction T [system, 10 is S
iCd4 bubbler 11 is GeCQ4 bubbler 12 is SiF. Cylinder 13 represents O, cylinder 41 represents a quartz-based glass tube, 42 represents a quartz-based glass vibe, and 61 represents a quartz tube.

Claims (1)

【特許請求の範囲】[Claims] (1)非等温プラズマ中において気相のガラス原料から
生成せしめた石英系ガラスをドーパントと共に又はドー
パント無しで石英系ガラス管内に堆積させた後、該石英
系ガラス管を外部から加熱して中実化する光ファイバ用
ガラス母材の製造方法において、上記堆積は該石英系ガ
ラス管内に石英系ガラスロッド及び/又は石英系ガラス
パイプを入れた状態で行うことを特徴とする光ファイバ
用ガラス母材の製造方法。
(1) After depositing silica-based glass produced from a vapor-phase glass raw material in a non-isothermal plasma into a silica-based glass tube with or without a dopant, the silica-based glass tube is heated externally to form a solid material. A method for producing a glass preform for optical fiber, characterized in that the above-mentioned deposition is performed with a quartz glass rod and/or a quartz glass pipe placed in the quartz glass tube. manufacturing method.
JP15566589A 1989-06-20 1989-06-20 Production of glass preform for optical fiber Pending JPH0323235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15566589A JPH0323235A (en) 1989-06-20 1989-06-20 Production of glass preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15566589A JPH0323235A (en) 1989-06-20 1989-06-20 Production of glass preform for optical fiber

Publications (1)

Publication Number Publication Date
JPH0323235A true JPH0323235A (en) 1991-01-31

Family

ID=15610916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15566589A Pending JPH0323235A (en) 1989-06-20 1989-06-20 Production of glass preform for optical fiber

Country Status (1)

Country Link
JP (1) JPH0323235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010068814A (en) * 2000-01-10 2001-07-23 권문구 Free-form production apparatus for optical fiber by high frequency vibration plasma chemical vapor deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010068814A (en) * 2000-01-10 2001-07-23 권문구 Free-form production apparatus for optical fiber by high frequency vibration plasma chemical vapor deposition

Similar Documents

Publication Publication Date Title
CA1080562A (en) Method of and apparatus for manufacturing an optical fibre with plasma activated deposition in a tube
USRE30635E (en) Method of producing internally coated glass tubes for the drawing of fibre optic light conductors
US4125389A (en) Method for manufacturing an optical fibre with plasma activated deposition in a tube
US4145456A (en) Method of producing internally coated glass tubes for the drawing of fibre optic light conductors
JPS6236035A (en) Production of optical fiber base material
US4161505A (en) Process for producing optical transmission fiber
US4295869A (en) Process for producing optical transmission fiber
JPS6411713B2 (en)
JPS6090846A (en) Process and device for manufacturing optical fiber preform at high deposition speed
JPH0314789B2 (en)
JPH0323235A (en) Production of glass preform for optical fiber
JP2004002106A (en) Low loss optical fiber preform and its manufacturing method
JPS6086047A (en) Manufacture of glass preform for optical fiber
JPS63123829A (en) Production of preform for optical fiber
JPS62279303A (en) Production of optical waveguide layer
JPS5852936B2 (en) Manufacturing method for optical transmission materials
JPS6117432A (en) Manufacture of optical fiber preform
JPS6036603Y2 (en) Optical fiber manufacturing equipment
JPS604143B2 (en) Method for producing optical fiber material
JPH0818843B2 (en) Method for manufacturing preform for optical fiber
JPS58217441A (en) Manufacture of base material for optical fiber
JPH11180725A (en) Production of optical fiber preform
JP3077107B1 (en) Chamber for manufacturing porous glass preform for optical fiber
KR100257142B1 (en) Manufacturing method of optical fiber preform using high purity quartz powder
JPH0656454A (en) Production of optical fiber preform