JPH0323218A - Production of mercury oxide and mercury cell - Google Patents

Production of mercury oxide and mercury cell

Info

Publication number
JPH0323218A
JPH0323218A JP1157803A JP15780389A JPH0323218A JP H0323218 A JPH0323218 A JP H0323218A JP 1157803 A JP1157803 A JP 1157803A JP 15780389 A JP15780389 A JP 15780389A JP H0323218 A JPH0323218 A JP H0323218A
Authority
JP
Japan
Prior art keywords
mercury
water
oxide
mercury oxide
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1157803A
Other languages
Japanese (ja)
Inventor
Hayashi Hayakawa
早川 林
Korenobu Morita
森田 是宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1157803A priority Critical patent/JPH0323218A/en
Publication of JPH0323218A publication Critical patent/JPH0323218A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To efficiently and inexpensively obtain mercury oxide surely separated from mercury and water by separating the mercury oxide obtained by anodizing metallic mercury and water with a double-cone distillation separator. CONSTITUTION:Since the electrolytic mercury oxide contains a large amt. of metallic mercury, the sample separated by centrifugal separation is charged into the main body of a double cone 1 from an upper feed port 7. As the main body of the double cone 1 is evacuated by a water-jet vacuum pump 4, the moisture evaporated by heating is collected by the water-jet pump. The temp. is initially set at 100 deg.C to prevent the condensation of water in the cyclone 2, condenser 3 and cold trap 5. When water has been distilled and separated, the heating temp. is increased to 220 deg.C, and mercury is distilled. The mercury evaporated by heating is collected in the condenser 3, and the mercury not trapped in the condenser 3 is collected by the cold trap 5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水銀電池の正極材料などとして用いられる酸
化水銀の製造法に関する。さらに詳しくは、電解法によ
る酸化水銀の製造法の改良とこれを用いた水銀電池に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing mercury oxide, which is used as a positive electrode material for mercury batteries. More specifically, the present invention relates to an improved method for producing mercury oxide by electrolysis and a mercury battery using the same.

従来の技術 従来、酸化水銀の製造法としては湿式法と乾式法が一般
に広く使用されている。湿式法による酸化水銀の製造法
は、金属水銀を塩酸で溶解し塩化第二水銀( agcl
z昇永)を作り、この塩化第二水銀溶液をアμカリ溶液
中に添加して酸化水銀を得る方法である。このようにし
て得られた酸化水銀を、一般に黄色酸化水銀と呼んでい
る。この湿式法によると針状結晶の発達した微粒子の酸
化水銀が生威しやすく、化学的に活性で電位も責である
のでこの点では好プしい。しかし、電池製造上の観点か
らみれば、みかけ嵩比重が低いので正極合剤の充填性が
悪い。したがって或型性,作業性が著しく悪化し、水銀
電池においては主として次に述べる乾式法による酸化水
銀が使用されている。
BACKGROUND OF THE INVENTION Conventionally, wet methods and dry methods have been widely used as methods for producing mercury oxide. The wet method for producing mercury oxide involves dissolving metallic mercury in hydrochloric acid and producing mercuric chloride (agcl).
In this method, mercuric oxide is obtained by preparing a mercuric chloride solution (Z-Shinaga) and adding this mercuric chloride solution to an alkali solution. The mercury oxide obtained in this way is generally called yellow mercury oxide. According to this wet method, fine particles of mercury oxide with developed needle-like crystals are easily grown, and it is chemically active and has a low potential, so it is preferable from this point of view. However, from the viewpoint of battery manufacturing, the filling property of the positive electrode mixture is poor because the apparent bulk specific gravity is low. As a result, moldability and workability are significantly deteriorated, and mercury oxide produced by the dry method described below is mainly used in mercury batteries.

乾式法は、金属水銀を硝酸に溶解させて硝酸第二水銀を
生或させ、これを熱分解して酸化水銀を得ている。この
方法で得られた酸化水銀を赤色酸化水銀と呼んでいる。
In the dry method, metallic mercury is dissolved in nitric acid to produce mercuric nitrate, which is then thermally decomposed to obtain mercury oxide. The mercury oxide obtained by this method is called red mercury oxide.

しかし、このようにして得られた酸化水銀も水銀電池用
としては必ずしも十分に満足できるものとはいえない。
However, the mercury oxide thus obtained cannot necessarily be said to be fully satisfactory for use in mercury batteries.

即ち、パッチシステムで作られるため、均一で品質の安
定したものが得られず、かつ湿式法に比較し電位的に低
く、不活性である。さらに充填性が悪く、乾式で作られ
るため親水性にも乏しい。
That is, since it is produced using a patch system, it is not possible to obtain a product with uniform and stable quality, and the potential is lower and inert compared to the wet method. Furthermore, it has poor filling properties, and because it is produced by a dry process, it is also poor in hydrophilicity.

筐た熱分解時に発生する二酸化窒素ガスは公害上、ある
いは作業環境上にも問題があり、好しい製造法ではない
Nitrogen dioxide gas generated during thermal decomposition poses problems in terms of pollution and work environment, and is therefore not a desirable manufacturing method.

従って、これらの諸問題を解決するために新たな製造法
の開発が要求されていた。これらの要求を解決するため
に、本発明者らは特に水銀電池用に適した新しい電解法
による酸化水銀の製造法を開発した。
Therefore, the development of a new manufacturing method has been required to solve these problems. In order to solve these demands, the present inventors have developed a method for producing mercury oxide using a new electrolytic method that is particularly suitable for use in mercury batteries.

この方法では、炭酸イオンと塩素イオンを含むアルカリ
性電解液中で、金属水銀を陽極酸化する方法である。
In this method, metallic mercury is anodized in an alkaline electrolyte containing carbonate ions and chloride ions.

この方法の具体的な条件の一例を示すと次のと釦シであ
る。
An example of specific conditions for this method is as follows.

炭酸カリウム0.8モN/1l.塩化カリウム1,0モ
/I//lLON.解液と、非アマルガム系の陰極と金
属水銀ようなる陽極とを用い、陽極電流密度3▲/d一
.電流濃度1.5▲/l!.電解温度70″Cの条件下
で、金属水銀を陽極酸化する。
Potassium carbonate 0.8 moN/1l. Potassium chloride 1,0 mo/I//LON. Using a solution, a non-amalgam cathode, and an anode made of metal mercury, the anode current density is 3▲/d1. Current concentration 1.5▲/l! .. Metal mercury is anodized under conditions of an electrolysis temperature of 70''C.

この方法によると、下記の反応式を経て酸化水銀が得ら
れる。
According to this method, mercury oxide is obtained through the following reaction formula.

2 Hg + 2 Cl −+ Hg2Cl2+2e 
−−−−−−−−−0)Hg2Cl2+20H−→ Hg2001+H20+Gl +a −=−・−・・(
2)Hg2QCl+K++e→HgO+Hg+KCl 
 ・・・・・・(3)すなわち、水銀が筐ず塩化第一水
銀となう、この塩化第一水銀よυ酸化水銀を生或する反
応が進行する。
2 Hg + 2 Cl −+ Hg2Cl2+2e
−−−−−−−−−0) Hg2Cl2+20H−→ Hg2001+H20+Gl +a −=−・−・・(
2) Hg2QCl+K++e→HgO+Hg+KCl
(3) In other words, mercury turns into mercurous chloride, and a reaction proceeds that produces mercurous oxide from this mercurous chloride.

発明が解決しようとする課題 このような陽極反応を経過して得られた酸化水銀中には
、多量の金属水銀と水が含有されているので、以後の分
離工程に移すのに容易な点と分離効率を高めるために遠
心分離法による分離法と減圧蒸留分離装置を使用して分
離する事が、粋公昭64−17586号公報に提案され
詳述されている0 その方法の概略は、バスケットタイプの遠心分fII器
を用い、内部に口布を使用して酸化水銀2水銀,水の混
入物を分離する。遠心分離後の試料を温度200”C 
〜220℃で真空度10No.01wIHgの蒸留装置
で、水と金属水銀を減圧蒸留することにある。
Problems to be Solved by the Invention Since the mercury oxide obtained through such an anodic reaction contains a large amount of metal mercury and water, it is easy to transfer it to the subsequent separation process. In order to increase the separation efficiency, separation using a centrifugal separation method and a vacuum distillation separation device was proposed and detailed in Suikō No. 17586. The outline of the method is as follows: Using a centrifugal fII machine, a cloth was used inside to separate mercury oxide dimercury and water contaminants. After centrifugation, the sample is heated to a temperature of 200"C.
~220℃ and vacuum level 10No. The objective is to distill water and metallic mercury under reduced pressure using a 01wIHg distillation apparatus.

しかし、この減圧蒸留の方法ではバットタイプの静置型
のため、熱の伝導が悪く、酸化水銀を積層するのが困難
で量産には面積効率も悪く、かつ作業性も悪い方法であ
った。
However, this method of vacuum distillation is a vat-type stationary type, which has poor heat conduction, makes it difficult to layer mercury oxide, and is not efficient in terms of area for mass production, as well as poor workability.

本発明者らは各種の蒸留分離方法を検討し、効率的で安
価でかつ確実に酸化水銀が水銀と水を分離する具体的な
方法を提案するものである。
The present inventors investigated various distillation separation methods and proposed a specific method for efficiently, inexpensively, and reliably separating mercury oxide from mercury and water.

課題を解決するための手段 本発明者らは蒸留分離方法にかいて、■安全であること
、■コントロールが容易で均一にできること、■自動排
出と投入が可能なこと、■量産が可能で自動運転ができ
ること、の4点を主眼におき、種々検討した結果、本体
を回転させて熱の伝導を均一にさせて行なうダプルコー
ン型の蒸留分離装置を用いて蒸留することを見出したも
のである。
Means for Solving the Problems The present inventors have developed a distillation separation method that: ■ It is safe; ■ It is easy to control and uniform; ■ It is capable of automatic discharge and input; ■ It is capable of mass production and is automatic. As a result of various studies focusing on the four main points of operability, we discovered that distillation can be carried out using a double cone type distillation separation device that rotates the main body to uniformly conduct heat.

作用 この方法であれば、ダプpコーンの本体の温度を上昇さ
せ、これを熱源とすれば、粉体への熱伝導が確実にかつ
均一に行なわれ、水分の蒸発と水銀の蒸留分離が良好に
実施できる。
Effect: With this method, by increasing the temperature of the main body of the DAP-P cone and using this as a heat source, heat conduction to the powder is ensured and uniform, and water evaporation and mercury are separated by distillation. It can be implemented.

実施例 実施例(1) 本発明による具体的なダプpコーン型の蒸留分離装置の
具体例を第1図に示す。
Examples Example (1) A specific example of a Dap-p cone type distillation separation apparatus according to the present invention is shown in FIG.

この装置の概略を次に述べる。電解生或された酸化水銀
中には多量の金礪水銀が含まれるので、以後の分離工程
に移すのに容易な点と分離効率を高めるために遠心分離
法によって分離された試料を、第1図の上部投入口7よ
シダプpコーン1の本体に投入する。なを試料は酸化水
銀と水銀と水の混合物である。ダブルコーン型の本体の
昇温は熱媒体のオイμにて外側を循環させて所望の温度
に昇温する。なお温度は220′Cに設定する。各装置
の説明をすると、2はサイクロンであう、3は冷却水の
通路を設けたコンデンサで、パイプを通じて6のコーp
ドトラップに通じている。6はオイノレ式真空ポンプで
ある。なk4は水流式真空ポンプである。
The outline of this device will be described below. Since the electrolytically generated mercury oxide contains a large amount of gold mercury, the sample separated by centrifugation was used in the first step for ease of transfer to the subsequent separation process and to increase separation efficiency. Pour it into the main body of the p-cone 1 through the upper input port 7 shown in the figure. The samples are mercury oxide and a mixture of mercury and water. The temperature of the double cone-shaped main body is raised to a desired temperature by circulating the outside using a heating medium, oil μ. Note that the temperature is set at 220'C. To explain each device, 2 is a cyclone, 3 is a condenser with a cooling water passage, and 6 is a condenser with a cooling water passage.
It's familiar with Do Trap. 6 is an oil type vacuum pump. k4 is a water flow vacuum pump.

この蒸留分離の動作を説明すると、コンデンサ3は冷却
水で冷却し、コーpドトラップ6ぱ50℃に温度制御さ
れる。始めに水流式の真空ボンプ4でダプルコーン1の
本体の真空度を上げて行くと、加熱によって蒸発される
水分は水流ボングに捕集される。温度は初期100゜C
に設定される。これはサイクロン2とコンデンサ3とコ
ーlレドトラップ6に水が凝集するのを防止するためで
ある。水は常温での蒸気圧が低いので上記の部分に水が
凝集すると、真空度が下がり水銀の蒸留が困難となる。
To explain the operation of this distillation separation, the condenser 3 is cooled with cooling water, and the temperature of the code trap 6 is controlled at 50°C. When the degree of vacuum in the main body of the double cone 1 is initially increased using the water jet type vacuum bong 4, water evaporated by heating is collected by the water jet bong. The initial temperature is 100°C
is set to This is to prevent water from condensing in the cyclone 2, condenser 3, and cold trap 6. Water has a low vapor pressure at room temperature, so if water condenses in the above areas, the degree of vacuum will drop and it will be difficult to distill mercury.

水が蒸留分離されると、さらに加熱温度を上昇させ22
0’Cに設定し水銀を蒸留する。このさい、水流ボンブ
4を止めて、真空計を切替する、オイlレ真空ボンプ6
を作動させる。加熱によって蒸発される水銀はコンデン
サ3で捕集され、トラップ3でトラップされなかった水
銀はコーpドトラノグ6で捕集されるこのコールドトラ
ップは安全性を考慮して−50゜Cに設定している。
When the water is distilled and separated, the heating temperature is further increased to 22
Set to 0'C and distill the mercury. At this time, stop the water bomb 4 and switch the vacuum gauge.
Activate. Mercury evaporated by heating is collected in condenser 3, and mercury that is not trapped in trap 3 is collected in CORP de Tolanog 6. This cold trap is set at -50°C for safety reasons. There is.

第2図は上記の蒸留分離過程における各部の温度変化を
示したもので、▲はダプルコーン本体の温度(試料の温
度をあらわす。)、Bは本体内部の真空度を示す。なお
この図は試料として酸化水銀aooKfで、金属水銀が
1Q〜20重量多、水分が1〜3多混合残存している試
料について試験した結果である。
FIG. 2 shows the temperature changes in each part during the above-mentioned distillation separation process, where ▲ indicates the temperature of the double cone body (representing the temperature of the sample), and B indicates the degree of vacuum inside the body. This figure shows the results of a test using mercury oxide aooKf as a sample, in which metallic mercury remains in an amount of 1Q to 20% by weight and water remains in a mixed amount of 1 to 3%.

上記のように3或分の混入試料の温度を220゜C,真
空度を0.1ffHg以下にして減圧蒸留を行ったとこ
ろ、蒸留分離後の酸化水銀中には水銀の残存量が0.1
〜0 .001 %で水分は除去されている。
As mentioned above, when vacuum distillation was carried out at a temperature of 220°C and a degree of vacuum of 0.1 ffHg or less for the mixed sample for 3 minutes, the residual amount of mercury in the mercury oxide after distillation separation was 0.1.
~0. 001% moisture is removed.

実施例(厘) このようにして得られた酸化水銀を用いて水銀電池に応
用実施した例を次に示す。
Examples (厘) An example in which the mercury oxide thus obtained was applied to a mercury battery is shown below.

蒸留分離して得られた酸化水銀を導電剤の黒鉛と97:
3の比率で調合練合して正極ケース内に加圧或型して正
極とする。これを用いて水銀電池MR44タイプを組立
した。その電池の断面形状を第3図に示す。
The mercury oxide obtained by distillation separation is mixed with graphite as a conductive agent.97:
The mixture is mixed in a ratio of 3 and then pressurized or molded into a positive electrode case to form a positive electrode. Using this, a mercury battery MR44 type was assembled. The cross-sectional shape of the battery is shown in FIG.

11ぱ正極ケース、12は本発明の酸化水銀と黒鉛から
なる正極、13は正極リング、14はセパレータと保液
を兼ねる含浸材、15はナイロンからなるガスケット、
16は負極ケース、17は亜鉛粉末と電解液からなる負
極である。
11 is a positive electrode case, 12 is a positive electrode made of mercury oxide and graphite of the present invention, 13 is a positive electrode ring, 14 is an impregnated material that serves as a separator and a liquid retainer, 15 is a gasket made of nylon,
16 is a negative electrode case, and 17 is a negative electrode made of zinc powder and electrolyte.

この電池を300Ωの負荷抵抗で放電をすると、110
時間の放電性能が得られる事を確認し、電池用の正極材
料として安定している事を確認した。
When this battery is discharged with a load resistance of 300Ω, 110
It was confirmed that the discharge performance for hours could be obtained, and it was confirmed that it is stable as a positive electrode material for batteries.

次に本発明の具体的な効果について述べる。従来のバッ
トタイプの減圧蒸留の方法では静置型のため熱伝導が悪
く積屓が困難である。この方式ではバット内の試料の厚
さが2傭が限界でそれ以上の厚さになると蒸留分離が困
難である。したがって本発明の方法に比較すると面積効
率が悪くなる。
Next, specific effects of the present invention will be described. Conventional vat-type vacuum distillation methods are stationary, so heat conduction is poor and stacking is difficult. In this method, the maximum thickness of the sample in the vat is 200 mm, and if it becomes thicker than that, distillation separation becomes difficult. Therefore, compared to the method of the present invention, the area efficiency is poor.

例えば本実施例で示した試料3o o Kgの蒸留分離
を行なうと、次のように多大な設備が必要となる。
For example, if the sample 3o kg shown in this example is subjected to distillation separation, a large amount of equipment will be required as shown below.

試料の嵩比重が約6.0y/CCのため約eolの容積
である。厚さ2備で必要のバットの表面積ぱ30,OO
Odとなり、50cIl×20cIRのパ,トが30枚
も必要である。このための蒸留設備となる。
Since the bulk specific gravity of the sample is about 6.0y/CC, the volume is about eol. Required bat surface area for thickness 2:30,00
Od, and 30 sheets of 50 cIl x 20 cIR are required. The distillation equipment will be used for this purpose.

ところが本発明では第1図に示したグブルコーンの本体
の内容積は2004で極めてコンパクトにできるもので
ある。
However, according to the present invention, the inner volume of the main body of the gobble cone shown in FIG. 1 can be made extremely compact by 2004 mm.

発明の効果 以上のように本発明によると,酸化水銀中の金属水銀と
水分を短時間にかつ効率的に分離することが可能で、し
かも作業面積も少な〈、設備も極めてコンパクトにでき
て量産性にすぐれた方法を提案するものである。
Effects of the Invention As described above, according to the present invention, metallic mercury and water in mercury oxide can be separated efficiently in a short time, and the working area is small. This method proposes a method with excellent performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における蒸留装置の概略図、第
2図は本発明の蒸留装置の温度と真空度をあらわした図
、第3図は本発明による酸化水銀を用いた水銀電池の断
面図である。 1・・・・・・試料を投入するダブpコーンタイプの本
体、2・・・・・・サイクロン、3・・・・・・コンデ
ンサ、4・・・・・・水流ポンプ、6・・・・・・コー
ルドトラップ、e・・・・・オイル真空ポンプ、7・・
・・・・試料投入口。 藪 叩 悴 ν
Figure 1 is a schematic diagram of a distillation apparatus according to an embodiment of the present invention, Figure 2 is a diagram showing the temperature and degree of vacuum of the distillation apparatus of the present invention, and Figure 3 is a diagram of a mercury battery using mercury oxide according to the present invention. FIG. 1... Dove P cone type main body for introducing the sample, 2... Cyclone, 3... Condenser, 4... Water pump, 6... ...Cold trap, e...Oil vacuum pump, 7...
...Sample input port. Bushwhacking Sae ν

Claims (2)

【特許請求の範囲】[Claims] (1)炭酸イオンと塩素イオンを含むアルカリ性電解液
中で金属水銀を陽極酸化する工程と、得られた酸化水銀
および水を水銀の混合物から蒸留分離によって分離する
工程を、本体が回転するダブルコーン型の蒸留分離装置
を用いて行なうことを特徴とする酸化水銀の製造法。
(1) A double cone with a rotating main body performs the process of anodic oxidation of metallic mercury in an alkaline electrolyte containing carbonate ions and chloride ions, and the process of separating the obtained mercury oxide and water from the mercury mixture by distillation. A method for producing mercury oxide, characterized in that it is carried out using a type distillation separation apparatus.
(2)特許請求の範囲第1項に記載の酸化水銀を正極材
料として使用した水銀電池。
(2) A mercury battery using the mercury oxide according to claim 1 as a positive electrode material.
JP1157803A 1989-06-20 1989-06-20 Production of mercury oxide and mercury cell Pending JPH0323218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1157803A JPH0323218A (en) 1989-06-20 1989-06-20 Production of mercury oxide and mercury cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1157803A JPH0323218A (en) 1989-06-20 1989-06-20 Production of mercury oxide and mercury cell

Publications (1)

Publication Number Publication Date
JPH0323218A true JPH0323218A (en) 1991-01-31

Family

ID=15657632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1157803A Pending JPH0323218A (en) 1989-06-20 1989-06-20 Production of mercury oxide and mercury cell

Country Status (1)

Country Link
JP (1) JPH0323218A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1004566C2 (en) * 1996-11-19 1998-05-20 Begemann Holding Bv Apparatus and method for removing mercury from waste materials by vacuum distillation.
KR100589921B1 (en) * 1997-09-24 2006-10-04 가부시키가이샤 후지킨 Bolt release prevention device
JP2008075795A (en) * 2006-09-22 2008-04-03 Japan Aviation Electronics Industry Ltd Sucker sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1004566C2 (en) * 1996-11-19 1998-05-20 Begemann Holding Bv Apparatus and method for removing mercury from waste materials by vacuum distillation.
WO1998022628A1 (en) * 1996-11-19 1998-05-28 Begemann Holding B.V. Installation and method for removing mercury from waste materials by vacuum distillation
KR100589921B1 (en) * 1997-09-24 2006-10-04 가부시키가이샤 후지킨 Bolt release prevention device
JP2008075795A (en) * 2006-09-22 2008-04-03 Japan Aviation Electronics Industry Ltd Sucker sheet

Similar Documents

Publication Publication Date Title
CN110783658B (en) Ex-service power ternary lithium battery recovery demonstration process method
US1501756A (en) Electrolytic process and cell
US10103413B2 (en) Method for removing copper and aluminum from an electrode material, and process for recycling electrode material from waste lithium-ion batteries
US20230304126A1 (en) A process for recovering cobalt ion, nickel ion and manganese ion from metal-containing residues
DD232378A5 (en) METHOD FOR RECOVERING ZINC AND MANGAN FROM ZINC AND MANGANIC OXIDE CONTAINING SCRAP FROM UNLOADED ZINC U. COAL MANGANOXIDBATTERIEN
JPH0323218A (en) Production of mercury oxide and mercury cell
US5120409A (en) Process for recycling an unsorted mixture of spent button cells and/or other metallic objects and for recovering their metallic components
CN106834711A (en) A kind of method for reclaiming and preparing high purity tellurium in the flue dust from tellurium containing arsenic
RU2089350C1 (en) Method of production of tantalum powder
US3337336A (en) Addition agents for sintering purposes
WO2024055518A1 (en) Method for recycling lithium from electrolyte of lithium ion battery
US2082362A (en) Method of producing finely divided metallic products
US1942208A (en) Means for obtaining lead in metallic condition
US1961160A (en) Process of recovering alkali metals and by-products
GB2309030A (en) Producing pure lead oxide from exhausted batteries
US1538390A (en) Treatment of alkali-metal amalgams, especially for the production of alkali metals
US5145755A (en) Method of making tetrachloroaluminate + sulfur dioxide electrolytes in which hydrolysis products are removed
US4152227A (en) Method for extraction of gallium from aluminate-alkaline solutions in the production of alumina from aluminum-containing ores
JP3493835B2 (en) Method for producing manganese dioxide and alkaline dry battery using the same
US3216914A (en) Method and apparatus for the production of metal hydrides
US291670A (en) Peocess of and apparatus foe obtaining gold and silvee from
US1569137A (en) Refining of copper-nickel matte
CN114351234B (en) Method for preparing two-dimensional material by electrochemical etching based on coordination chemistry and detection method thereof
CN114620722B (en) Porous carbon negative electrode material, preparation method thereof, electrode, battery and capacitor prepared from porous carbon negative electrode material
US121948A (en) Improvement in removing tin from tin-scrap