JPH03230946A - Laminated film - Google Patents

Laminated film

Info

Publication number
JPH03230946A
JPH03230946A JP2025277A JP2527790A JPH03230946A JP H03230946 A JPH03230946 A JP H03230946A JP 2025277 A JP2025277 A JP 2025277A JP 2527790 A JP2527790 A JP 2527790A JP H03230946 A JPH03230946 A JP H03230946A
Authority
JP
Japan
Prior art keywords
thin film
layer
film
film layer
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2025277A
Other languages
Japanese (ja)
Inventor
Kenji Nakamura
謙治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2025277A priority Critical patent/JPH03230946A/en
Publication of JPH03230946A publication Critical patent/JPH03230946A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To strengthen the interlaminar bonding force by successively laminating a metallic oxide thin film layer, a metallic thin film layer and the metallic oxide thin film layer on a high polymer film which has the coating layer of epoxy acylate ultraviolet-ray curing resin contg. a silane coupling agent on at least single face. CONSTITUTION:A metallic oxide thin film layer, a metallic thin film layer and the metallic oxide thin film layer are successively laminated on a high polymer film. Resistance value of a sheet is regulated to <=50OMEGA and transmittance of ray is regulated to >=70%. A transparent film or sheet having flexibility is utilized for this high polymer film. As resin for an organic coating layer which forms a film on the high polymer film, adhesive force is necessitated for both the high polymer film and the metallic oxide. This is achieved when a silane coupling agent is added to an epoxy acrylate prepolymer. As the metallic layer, the thin film layer of silver-copper alloy is utilized. The laminated material wherein both sides thereof are coated with a tin oxide thin film is provided on polyethylene terephthalate which is coated with an epoxy acrylate prepolymer as coating resin. This laminated material is utilized as a laminated film.

Description

【発明の詳細な説明】 (産業上の利用分野〕 透明導電性フィルムは液晶用、−啄パネル用透明電極と
して利用されている6本発明は、透明性・導電性・耐久
性に優れた透明導電性積層フィルムに関するものである
[Detailed Description of the Invention] (Industrial Application Field) Transparent conductive films are used as transparent electrodes for liquid crystals and panels. This invention relates to a conductive laminated film.

(従来の技術〕 高分子フィルム上に形成された透明導電被膜として従来
から知られているものは ■ 金、銀、銅、パラジウム等の金属薄膜■ 酸化イン
ジウム、酸化錫、ヨウ化銅等の化合物半導体および ■ 金、銀、銅、パラジウム等の導電性金属膜を可視光
領域において透明になるよう透明導電体膜と組み合せた
積層膜が知られている。
(Prior art) Conventionally known transparent conductive coatings formed on polymer films are: ■ Thin films of metals such as gold, silver, copper, and palladium ■ Compounds such as indium oxide, tin oxide, and copper iodide Semiconductors and laminated films are known in which a conductive metal film such as gold, silver, copper, palladium, etc. is combined with a transparent conductor film so as to be transparent in the visible light region.

しかしながら、液晶電極、タッチパネルに応用できる性
能を有する透明導電性膜が工業的に安価に製造されるに
至っていない。
However, a transparent conductive film having performance applicable to liquid crystal electrodes and touch panels has not yet been produced industrially and at low cost.

即ち、上記■の金属薄膜は、金属が広い波長領域にわた
り反射能又は吸収能が高いため、光線透過率の高めると
、膜が薄くなり、導電性、耐久性の高いものが得られ難
い。
That is, in the metal thin film (2) above, since the metal has high reflective or absorbing ability over a wide wavelength range, increasing the light transmittance results in a thin film, making it difficult to obtain a film with high conductivity and durability.

上記■の化合物半導体薄膜は、例えば、真空蒸着法、ス
パンタリング法等の真空中における薄膜形成法で高分子
フィルム上に形成することができる。透明で導電性の高
い膜は通常400°C以上の高温下では得られる。しか
し、高分子フィルムはガラス基板に比べて耐熱性がなく
高温で薄膜を形成することが不可能である。そのため導
電性を高めるため数千オングストローム積層すると高分
子フィルムのカール、薄膜の割れの問題が発生する。
The compound semiconductor thin film described in (1) above can be formed on a polymer film by a thin film forming method in vacuum, such as a vacuum evaporation method or a sputtering method. Transparent and highly conductive films are usually obtained at high temperatures of 400°C or higher. However, polymer films have less heat resistance than glass substrates, making it impossible to form thin films at high temperatures. Therefore, when several thousand angstroms of layers are stacked to increase conductivity, problems occur such as curling of the polymer film and cracking of the thin film.

また被覆膜特性を均一に制御するためには膜形成速度を
遅くする必要があり生産性が悪く、製造コストが著しく
高くなる。
Furthermore, in order to uniformly control the properties of the coating film, it is necessary to slow down the film formation rate, resulting in poor productivity and significantly increased manufacturing costs.

上記■の透明導電性フィルムの代表的な構成は金属膜を
高屈折率薄膜ではさんだものを高分子フィルム上に形成
させた積層フィルムが挙げられる。
A typical structure of the transparent conductive film (2) above is a laminated film in which a metal film is sandwiched between high refractive index thin films and formed on a polymer film.

例えば、真空蒸着、反応性蒸着又は反応性スパッタリン
グで形成させたB iz 03/Au/B 1z03/
高分子フィルム、Z n S / A g / Z n
 S /高分子フィルム又はT i 02 /Ag/T
 i Oz /高分子フィルム等サンドイッチ構造の積
層フィルムが提案されている。特に金属層として金、銀
を用いたものは、金、銀自身が持つ光学特性により可視
光領域における透明性が特に優れていること、導電性に
おいても好ましい特性を有していること等の点から材料
として特に優れている。
For example, B iz 03/Au/B 1z03/ formed by vacuum evaporation, reactive evaporation or reactive sputtering.
Polymer film, ZnS/Ag/Zn
S/polymer film or T i 02 /Ag/T
Sandwich structure laminated films such as iOz/polymer films have been proposed. In particular, those using gold or silver as the metal layer have excellent transparency in the visible light region due to the optical properties of gold and silver themselves, and have favorable properties in terms of conductivity. It is particularly excellent as a material.

しかし、高分子フィルム上に前記のサンドインチ構造を
有する積層薄膜を直接形成するとフィルムがフレキシブ
ルなことにより割れ等の耐久性、高分子フィルムの表面
と積層薄膜との密着力の不足等の問題があった。
However, when a laminated thin film having the above-mentioned sandwich inch structure is directly formed on a polymer film, problems such as durability such as cracking due to the film's flexibility and insufficient adhesion between the surface of the polymer film and the laminated thin film occur. there were.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

その目的とする所は積層フィルムのそり、透明性、1導
電性、耐久性等、フィルム特有の緒特性も含めて優れた
透明導電性フィルムを提供することにある。
The objective is to provide a transparent conductive film that is excellent in terms of film-specific properties such as warpage, transparency, conductivity, and durability of the laminated film.

〔課題を解決するための手段] 少なくとも片面にシランカップリング剤を含むエポキシ
アクリレート紫外線硬化樹脂のコーティング層を有する
高分子フィルム(A)上に金属酸化物薄膜層(B)、金
属薄膜層(C)、金属酸化物薄膜(D)を順詩形層した
ことを特徴とする積層フィルムである。
[Means for solving the problem] A metal oxide thin film layer (B) and a metal thin film layer (C ) is a laminated film characterized by having metal oxide thin films (D) layered in a regular pattern.

本発明は、従来技術における前述のような欠点のない優
れた透明性、導電性、平坦性、耐久性を存し、密着力の
強い積層体について研究した結果以下に示す構成の積層
フィルムを得るにいたった。
As a result of research into a laminate with excellent transparency, conductivity, flatness, durability, and strong adhesion without the above-mentioned drawbacks of the prior art, the present invention obtains a laminate film having the following structure. It arrived.

以下、本発明の詳細について述べる。The details of the present invention will be described below.

本発明において用いられる高分子フィルムは、可撓性を
有する透明フィルムもしくはシートであり例えばポリエ
チレンテレフタレート等ポリエステル系フィルム、ポリ
サルフォンボリエーテルサルフォン等すルフォン系フィ
ルムが使用可能である。上記フィルムに塗膜を形成する
有機コーティング層の樹脂としては、高分子フィルム金
属酸化物の双方に対して密着力が必要であり、エポキシ
アクリレートプレポリマーにシランカップリング剤を添
加した時達成されることを見い出した。シランカップリ
ング剤の添加量は0.5〜1重量%が好ましい。シラン
カップリング剤としては、たとえば信越化学■のKMB
−503、KMB−603、KMB−803日本ユニカ
ー−のA−187が用いられるが、特にエポキシ基、ア
ミノ基、メルカプト基を有するものが好ましい。エポキ
シアクリレートプレポリマーは融点が50°C以上のも
のが好ましい。
The polymer film used in the present invention is a flexible transparent film or sheet, and for example, a polyester film such as polyethylene terephthalate, or a sulfone film such as polysulfone polyether sulfone can be used. The resin for the organic coating layer that forms the coating on the above film must have adhesion to both the polymer film and the metal oxide, which can be achieved by adding a silane coupling agent to the epoxy acrylate prepolymer. I discovered that. The amount of the silane coupling agent added is preferably 0.5 to 1% by weight. As a silane coupling agent, for example, Shin-Etsu Chemical's KMB
-503, KMB-603, KMB-803 Nippon Unicar's A-187 are used, and those having an epoxy group, an amino group, or a mercapto group are particularly preferred. The epoxy acrylate prepolymer preferably has a melting point of 50°C or higher.

本発明の積層フィルムは前記有機コーティング上に前記
のごとく、金属酸化物薄膜層、金属薄膜層、金属酸化物
薄膜層を順時積層したものであるが、かかる金属薄膜層
は、金、銀、銅およびプラチナのうちの複数の混合物あ
るいは単体からなることが望ましい。金属薄膜の膜厚は
、透明導電性としての要求特性をもてば別に限定される
ものでないが、導電性を持つためには、少なくともある
程度の領域で連続性を持つことが必要である。島状構造
より、連続構造に移る膜厚として50Å以上又、透明性
の点から500Å以下が好ましい。
The laminated film of the present invention has a metal oxide thin film layer, a metal thin film layer, and a metal oxide thin film layer sequentially laminated on the organic coating as described above. Preferably, it is made of a mixture or a single substance of copper and platinum. The thickness of the metal thin film is not particularly limited as long as it has the required characteristics for transparent conductivity, but in order to have conductivity, it is necessary to have continuity in at least a certain area. The thickness at which the film changes from an island structure to a continuous structure is preferably 50 Å or more, and 500 Å or less from the viewpoint of transparency.

金属酸化物層を構成するものとしては、透明高屈折率、
低比抵抗のものであれば特に限定されるものでないが、
屈折率は可視光に対して1.6以上好ましくは1.7以
上の屈折率を有し、シート抵抗値が300Ω以下、光線
透過率80%以上、好ましくは90%以上であるのが効
果的である。これらの条件を満たすものとしては、イン
ジウム・錫合金の酸化物、酸化錫が上げられる。
The metal oxide layer is made of transparent high refractive index,
It is not particularly limited as long as it has low resistivity, but
It is effective to have a refractive index of 1.6 or more, preferably 1.7 or more for visible light, a sheet resistance value of 300Ω or less, and a light transmittance of 80% or more, preferably 90% or more. It is. Examples of materials that satisfy these conditions include indium-tin alloy oxides and tin oxide.

本発明は金属層として銀銅合金の薄膜層を用いその両側
を酸化錫薄膜で覆った積層物をエポキシアクリレ−I・
プレポリマーを塗布樹脂としコーティングしたポリエチ
レンテレフタレート上に設けた積層フィルムとして使用
される。
The present invention uses a thin film layer of silver-copper alloy as a metal layer and covers both sides with a thin film of tin oxide.
It is used as a laminated film on polyethylene terephthalate coated with a prepolymer as the coating resin.

即ち、ポリエチレンテレフタレートフィルム等の高分子
フィルムは酸化金属薄膜との密着力が低(それに起因し
て、積層フィルムの耐久性が乏しいという欠点があった
が、高分子フィルム、酸化金属の双方に密着力の優れた
有機コーティングを施すことにより面]久性を上げるこ
とができた。
In other words, polymer films such as polyethylene terephthalate film have low adhesion to metal oxide thin films (due to this, the laminated film had the disadvantage of poor durability), but By applying a strong organic coating, we were able to increase the durability of the surface.

本発明による積層フィルムを液晶等に用いる場合には、
フィルム側からの空気の透過を防がなければならない。
When the laminated film according to the present invention is used for liquid crystal etc.,
Air permeation from the film side must be prevented.

空気が透過した場合は液晶内に気泡が生し外観上致命的
な障害となる。
If air passes through the liquid crystal, bubbles will form inside the liquid crystal, causing a fatal problem in appearance.

光学特性上、液晶用途には、無定形液高分子であるポリ
エーテルサルフォンが適している。しかし、無定形高分
子フィルムは一般的に空気の透過率が大きく、液晶劣化
の防止をすることは困難である。よってこの様な場合ガ
スバリヤ−性、耐熱性、耐塩酸性、ポリエーテルサルフ
ォンに対して強固な密着力を有する有機コーティング層
を有するポリサルフォンフィルムを用いることができる
Due to its optical properties, polyether sulfone, which is an amorphous liquid polymer, is suitable for liquid crystal applications. However, amorphous polymer films generally have high air permeability, making it difficult to prevent liquid crystal deterioration. Therefore, in such cases, a polysulfone film having an organic coating layer having gas barrier properties, heat resistance, hydrochloric acid resistance, and strong adhesion to polyethersulfone can be used.

有機コーティング層としては例えばポリサルフメン上に
ウレタンfd1層、ポリビニルアルコール樹脂層、エポ
キシ系熱硬化樹脂層を順時積層したものが上げられる。
The organic coating layer may be, for example, one in which a urethane fd layer, a polyvinyl alcohol resin layer, and an epoxy thermosetting resin layer are sequentially laminated on polysulfmen.

尚、特に指定していなければ光線透過率は波長600 
(r+m)の値を示している。
In addition, unless otherwise specified, the light transmittance is at wavelength 600.
The value of (r+m) is shown.

(実施例] 高分子フィルムに光線透過率86%厚さ75(μm)の
二軸延伸ポリエチレンテレフタレートフィルムを用い、
その上に第1層として、分子量約1040、融点55°
Cのエポキシアクリレートプレポリマー(昭和高分子株
式会社製UR−90)100重量部、ジエチレングリコ
ール200重量部、酢酸エチル100重量部、ベンゼン
エチルエーテル2重量部、シランカップリング剤1重量
部を50°Cにて撹はん溶解して均一な溶液をデイツプ
法により両面塗布し80°CIO分加熱して紫外線を照
射して有機コーティング層を形成した後、第2層として
リアクテブマグネトロンスバソタリング法により厚さ3
00人のITO膜を形成、第3層としてAgをスパッタ
法により厚さ150人形成し、第4層としてITO膜を
厚さ300人第2層と同様にリアクテブスバッタ法で形
成して積層フィルムを得た。
(Example) Using a biaxially stretched polyethylene terephthalate film with a light transmittance of 86% and a thickness of 75 (μm) as the polymer film,
On top of that, as a first layer, the molecular weight is about 1040, the melting point is 55°
100 parts by weight of epoxy acrylate prepolymer C (UR-90 manufactured by Showa Kobunshi Co., Ltd.), 200 parts by weight of diethylene glycol, 100 parts by weight of ethyl acetate, 2 parts by weight of benzene ethyl ether, and 1 part by weight of a silane coupling agent at 50°C. After stirring and dissolving the solution, a uniform solution was coated on both sides using the dip method, heated for 80°CIO minutes, and irradiated with ultraviolet rays to form an organic coating layer.Then, the second layer was coated using the reactive magnetron bathotering method. thickness 3
An ITO film with a thickness of 150 mm was formed as the third layer by the sputtering method, and an ITO film with a thickness of 300 mm was formed as the fourth layer by the reactive sputtering method in the same manner as the second layer. A laminated film was obtained.

この積層フィルムの光線透過率は72%シート抵抗値2
0Ω/口であった。直径15φの柱状物に導電層が外側
になるようにこの積層フィルムを巻きつけ、巻きだす動
作を50回繰り返し、シート抵抗値の変化、クラック発
生の有無を調べた。その結果、シート抵抗値の変化は1
.3倍以内、クラックの発生は、認められなかった。
The light transmittance of this laminated film is 72%, and the sheet resistance value is 2.
It was 0Ω/mouth. This laminated film was wound around a columnar object with a diameter of 15φ so that the conductive layer was on the outside, and the unwinding operation was repeated 50 times to examine changes in sheet resistance and presence or absence of cracks. As a result, the change in sheet resistance value is 1
.. No cracks were observed within 3 times.

〔比較例] 有機コーティングをしていない以外は実施例と同様な積
層フィルムについて同じく15φの柱状物に導電層が外
側になるように巻き付け、巻き出し動作を行った後のシ
ート抵抗値の変化は2倍以上であり、目視でクラックが
発生しているのが認められた。
[Comparative example] A laminated film similar to that of the example except that no organic coating was applied was wound around a 15φ pillar with the conductive layer facing outward, and the change in sheet resistance after unwinding was as follows: It was more than twice as large, and cracks were visually observed.

〔発明の効果〕〔Effect of the invention〕

本発明の透明導電性を有する積層フィルムは層間の密着
力が強く、 透明性、 導電性良好でかつ耐久 性のすくれたものである。
The transparent conductive laminated film of the present invention has strong interlayer adhesion, good transparency and conductivity, and excellent durability.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも片面にシランカップリング剤を含むエ
ポキシアクリレート紫外線硬化樹脂のコーティング層を
有する高分子フィルム上に金属酸化物薄膜層、金属薄膜
層、金属酸化物薄膜層を順次積層したシート抵抗値50
Ω以下、光線透過率70%以上であることを特徴とする
積層フィルム。
(1) A sheet resistance value of 50 in which a metal oxide thin film layer, a metal thin film layer, and a metal oxide thin film layer are sequentially laminated on a polymer film having a coating layer of an epoxy acrylate ultraviolet curing resin containing a silane coupling agent on at least one side.
A laminated film characterized by having a light transmittance of Ω or less and a light transmittance of 70% or more.
JP2025277A 1990-02-06 1990-02-06 Laminated film Pending JPH03230946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2025277A JPH03230946A (en) 1990-02-06 1990-02-06 Laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2025277A JPH03230946A (en) 1990-02-06 1990-02-06 Laminated film

Publications (1)

Publication Number Publication Date
JPH03230946A true JPH03230946A (en) 1991-10-14

Family

ID=12161528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2025277A Pending JPH03230946A (en) 1990-02-06 1990-02-06 Laminated film

Country Status (1)

Country Link
JP (1) JPH03230946A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116425A (en) * 1992-10-09 1994-04-26 Sumitomo Bakelite Co Ltd Production of transparent conductive film
JPH0740498A (en) * 1993-07-29 1995-02-10 Sumitomo Bakelite Co Ltd Manufacture of transparent conductive film
JPH11138685A (en) * 1997-11-14 1999-05-25 Fujimori Kogyo Kk Manufacture of transparent conductive sheet
JP2006216266A (en) * 2005-02-01 2006-08-17 Kitagawa Ind Co Ltd Transparent conductive film
WO2015141068A1 (en) * 2014-03-17 2015-09-24 コニカミノルタ株式会社 Touch panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116425A (en) * 1992-10-09 1994-04-26 Sumitomo Bakelite Co Ltd Production of transparent conductive film
JPH0740498A (en) * 1993-07-29 1995-02-10 Sumitomo Bakelite Co Ltd Manufacture of transparent conductive film
JPH11138685A (en) * 1997-11-14 1999-05-25 Fujimori Kogyo Kk Manufacture of transparent conductive sheet
JP2006216266A (en) * 2005-02-01 2006-08-17 Kitagawa Ind Co Ltd Transparent conductive film
WO2015141068A1 (en) * 2014-03-17 2015-09-24 コニカミノルタ株式会社 Touch panel

Similar Documents

Publication Publication Date Title
US6040056A (en) Transparent electrically conductive film-attached substrate and display element using it
US4709991A (en) Liquid crystal display with barrier layer to reduce permeability
KR100821541B1 (en) Transparent conductive film
JP5297125B2 (en) Gas barrier film with transparent conductive film and touch panel using the same
JP2918659B2 (en) Laminated film
JPH03230946A (en) Laminated film
CN115734951A (en) Transparent substrate with antireflection film
JP4385453B2 (en) Transparent electrode substrate and liquid crystal display device
JP3713774B2 (en) Transparent electromagnetic shielding board
JP3933894B2 (en) Transparent water vapor barrier film
JPS60222241A (en) Transparent conductive film
JP2843096B2 (en) Laminated film
JPH08294989A (en) Laminate film
JPS6364003A (en) Optical filter
JPH1148387A (en) Transparent conductive film
JP3877356B2 (en) Optical filter for display
JP3208148B2 (en) Transparent conductive film
JP2613206B2 (en) Method for producing transparent conductive film
CN114566308B (en) Scratch-resistant COP conductive film and preparation method thereof
CN212181065U (en) Light adjusting film
JPH04340522A (en) Transparent conductive film
JPS6059147B2 (en) laminate
JP3027316B2 (en) Laminated film
JPH08323912A (en) Transparent conductive laminated film
JPH0525479A (en) Light intensity regulating element